reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
//===- ASTMatchersInternal.h - Structural query framework -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  Implements the base layer of the matcher framework.
//
//  Matchers are methods that return a Matcher<T> which provides a method
//  Matches(...) which is a predicate on an AST node. The Matches method's
//  parameters define the context of the match, which allows matchers to recurse
//  or store the current node as bound to a specific string, so that it can be
//  retrieved later.
//
//  In general, matchers have two parts:
//  1. A function Matcher<T> MatcherName(<arguments>) which returns a Matcher<T>
//     based on the arguments and optionally on template type deduction based
//     on the arguments. Matcher<T>s form an implicit reverse hierarchy
//     to clang's AST class hierarchy, meaning that you can use a Matcher<Base>
//     everywhere a Matcher<Derived> is required.
//  2. An implementation of a class derived from MatcherInterface<T>.
//
//  The matcher functions are defined in ASTMatchers.h. To make it possible
//  to implement both the matcher function and the implementation of the matcher
//  interface in one place, ASTMatcherMacros.h defines macros that allow
//  implementing a matcher in a single place.
//
//  This file contains the base classes needed to construct the actual matchers.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H
#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H

#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ManagedStatic.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>

namespace clang {

class ASTContext;

namespace ast_matchers {

class BoundNodes;

namespace internal {

/// Variadic function object.
///
/// Most of the functions below that use VariadicFunction could be implemented
/// using plain C++11 variadic functions, but the function object allows us to
/// capture it on the dynamic matcher registry.
template <typename ResultT, typename ArgT,
          ResultT (*Func)(ArrayRef<const ArgT *>)>
struct VariadicFunction {
  ResultT operator()() const { return Func(None); }

  template <typename... ArgsT>
  ResultT operator()(const ArgT &Arg1, const ArgsT &... Args) const {
    return Execute(Arg1, static_cast<const ArgT &>(Args)...);
  }

  // We also allow calls with an already created array, in case the caller
  // already had it.
  ResultT operator()(ArrayRef<ArgT> Args) const {
    SmallVector<const ArgT*, 8> InnerArgs;
    for (const ArgT &Arg : Args)
      InnerArgs.push_back(&Arg);
    return Func(InnerArgs);
  }

private:
  // Trampoline function to allow for implicit conversions to take place
  // before we make the array.
  template <typename... ArgsT> ResultT Execute(const ArgsT &... Args) const {
    const ArgT *const ArgsArray[] = {&Args...};
    return Func(ArrayRef<const ArgT *>(ArgsArray, sizeof...(ArgsT)));
  }
};

/// Unifies obtaining the underlying type of a regular node through
/// `getType` and a TypedefNameDecl node through `getUnderlyingType`.
inline QualType getUnderlyingType(const Expr &Node) { return Node.getType(); }

inline QualType getUnderlyingType(const ValueDecl &Node) {
  return Node.getType();
}
inline QualType getUnderlyingType(const TypedefNameDecl &Node) {
  return Node.getUnderlyingType();
}
inline QualType getUnderlyingType(const FriendDecl &Node) {
  if (const TypeSourceInfo *TSI = Node.getFriendType())
    return TSI->getType();
  return QualType();
}

/// Unifies obtaining the FunctionProtoType pointer from both
/// FunctionProtoType and FunctionDecl nodes..
inline const FunctionProtoType *
getFunctionProtoType(const FunctionProtoType &Node) {
  return &Node;
}

inline const FunctionProtoType *getFunctionProtoType(const FunctionDecl &Node) {
  return Node.getType()->getAs<FunctionProtoType>();
}

/// Internal version of BoundNodes. Holds all the bound nodes.
class BoundNodesMap {
public:
  /// Adds \c Node to the map with key \c ID.
  ///
  /// The node's base type should be in NodeBaseType or it will be unaccessible.
  void addNode(StringRef ID, const ast_type_traits::DynTypedNode& DynNode) {
    NodeMap[ID] = DynNode;
  }

  /// Returns the AST node bound to \c ID.
  ///
  /// Returns NULL if there was no node bound to \c ID or if there is a node but
  /// it cannot be converted to the specified type.
  template <typename T>
  const T *getNodeAs(StringRef ID) const {
    IDToNodeMap::const_iterator It = NodeMap.find(ID);
    if (It == NodeMap.end()) {
      return nullptr;
    }
    return It->second.get<T>();
  }

  ast_type_traits::DynTypedNode getNode(StringRef ID) const {
    IDToNodeMap::const_iterator It = NodeMap.find(ID);
    if (It == NodeMap.end()) {
      return ast_type_traits::DynTypedNode();
    }
    return It->second;
  }

  /// Imposes an order on BoundNodesMaps.
  bool operator<(const BoundNodesMap &Other) const {
    return NodeMap < Other.NodeMap;
  }

  /// A map from IDs to the bound nodes.
  ///
  /// Note that we're using std::map here, as for memoization:
  /// - we need a comparison operator
  /// - we need an assignment operator
  using IDToNodeMap =
      std::map<std::string, ast_type_traits::DynTypedNode, std::less<>>;

  const IDToNodeMap &getMap() const {
    return NodeMap;
  }

  /// Returns \c true if this \c BoundNodesMap can be compared, i.e. all
  /// stored nodes have memoization data.
  bool isComparable() const {
    for (const auto &IDAndNode : NodeMap) {
      if (!IDAndNode.second.getMemoizationData())
        return false;
    }
    return true;
  }

private:
  IDToNodeMap NodeMap;
};

/// Creates BoundNodesTree objects.
///
/// The tree builder is used during the matching process to insert the bound
/// nodes from the Id matcher.
class BoundNodesTreeBuilder {
public:
  /// A visitor interface to visit all BoundNodes results for a
  /// BoundNodesTree.
  class Visitor {
  public:
    virtual ~Visitor() = default;

    /// Called multiple times during a single call to VisitMatches(...).
    ///
    /// 'BoundNodesView' contains the bound nodes for a single match.
    virtual void visitMatch(const BoundNodes& BoundNodesView) = 0;
  };

  /// Add a binding from an id to a node.
  void setBinding(StringRef Id, const ast_type_traits::DynTypedNode &DynNode) {
    if (Bindings.empty())
      Bindings.emplace_back();
    for (BoundNodesMap &Binding : Bindings)
      Binding.addNode(Id, DynNode);
  }

  /// Adds a branch in the tree.
  void addMatch(const BoundNodesTreeBuilder &Bindings);

  /// Visits all matches that this BoundNodesTree represents.
  ///
  /// The ownership of 'ResultVisitor' remains at the caller.
  void visitMatches(Visitor* ResultVisitor);

  template <typename ExcludePredicate>
  bool removeBindings(const ExcludePredicate &Predicate) {
    Bindings.erase(std::remove_if(Bindings.begin(), Bindings.end(), Predicate),
                   Bindings.end());
    return !Bindings.empty();
  }

  /// Imposes an order on BoundNodesTreeBuilders.
  bool operator<(const BoundNodesTreeBuilder &Other) const {
    return Bindings < Other.Bindings;
  }

  /// Returns \c true if this \c BoundNodesTreeBuilder can be compared,
  /// i.e. all stored node maps have memoization data.
  bool isComparable() const {
    for (const BoundNodesMap &NodesMap : Bindings) {
      if (!NodesMap.isComparable())
        return false;
    }
    return true;
  }

private:
  SmallVector<BoundNodesMap, 1> Bindings;
};

class ASTMatchFinder;

/// Generic interface for all matchers.
///
/// Used by the implementation of Matcher<T> and DynTypedMatcher.
/// In general, implement MatcherInterface<T> or SingleNodeMatcherInterface<T>
/// instead.
class DynMatcherInterface
    : public llvm::ThreadSafeRefCountedBase<DynMatcherInterface> {
public:
  virtual ~DynMatcherInterface() = default;

  /// Returns true if \p DynNode can be matched.
  ///
  /// May bind \p DynNode to an ID via \p Builder, or recurse into
  /// the AST via \p Finder.
  virtual bool dynMatches(const ast_type_traits::DynTypedNode &DynNode,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const = 0;
};

/// Generic interface for matchers on an AST node of type T.
///
/// Implement this if your matcher may need to inspect the children or
/// descendants of the node or bind matched nodes to names. If you are
/// writing a simple matcher that only inspects properties of the
/// current node and doesn't care about its children or descendants,
/// implement SingleNodeMatcherInterface instead.
template <typename T>
class MatcherInterface : public DynMatcherInterface {
public:
  /// Returns true if 'Node' can be matched.
  ///
  /// May bind 'Node' to an ID via 'Builder', or recurse into
  /// the AST via 'Finder'.
  virtual bool matches(const T &Node,
                       ASTMatchFinder *Finder,
                       BoundNodesTreeBuilder *Builder) const = 0;

  bool dynMatches(const ast_type_traits::DynTypedNode &DynNode,
                  ASTMatchFinder *Finder,
                  BoundNodesTreeBuilder *Builder) const override {
    return matches(DynNode.getUnchecked<T>(), Finder, Builder);
  }
};

/// Interface for matchers that only evaluate properties on a single
/// node.
template <typename T>
class SingleNodeMatcherInterface : public MatcherInterface<T> {
public:
  /// Returns true if the matcher matches the provided node.
  ///
  /// A subclass must implement this instead of Matches().
  virtual bool matchesNode(const T &Node) const = 0;

private:
  /// Implements MatcherInterface::Matches.
  bool matches(const T &Node,
               ASTMatchFinder * /* Finder */,
               BoundNodesTreeBuilder * /*  Builder */) const override {
    return matchesNode(Node);
  }
};

template <typename> class Matcher;

/// Matcher that works on a \c DynTypedNode.
///
/// It is constructed from a \c Matcher<T> object and redirects most calls to
/// underlying matcher.
/// It checks whether the \c DynTypedNode is convertible into the type of the
/// underlying matcher and then do the actual match on the actual node, or
/// return false if it is not convertible.
class DynTypedMatcher {
public:
  /// Takes ownership of the provided implementation pointer.
  template <typename T>
  DynTypedMatcher(MatcherInterface<T> *Implementation)
      : SupportedKind(ast_type_traits::ASTNodeKind::getFromNodeKind<T>()),
        RestrictKind(SupportedKind), Implementation(Implementation) {}

  /// Construct from a variadic function.
  enum VariadicOperator {
    /// Matches nodes for which all provided matchers match.
    VO_AllOf,

    /// Matches nodes for which at least one of the provided matchers
    /// matches.
    VO_AnyOf,

    /// Matches nodes for which at least one of the provided matchers
    /// matches, but doesn't stop at the first match.
    VO_EachOf,

    /// Matches nodes that do not match the provided matcher.
    ///
    /// Uses the variadic matcher interface, but fails if
    /// InnerMatchers.size() != 1.
    VO_UnaryNot
  };

  static DynTypedMatcher
  constructVariadic(VariadicOperator Op,
                    ast_type_traits::ASTNodeKind SupportedKind,
                    std::vector<DynTypedMatcher> InnerMatchers);

  /// Get a "true" matcher for \p NodeKind.
  ///
  /// It only checks that the node is of the right kind.
  static DynTypedMatcher trueMatcher(ast_type_traits::ASTNodeKind NodeKind);

  void setAllowBind(bool AB) { AllowBind = AB; }

  /// Check whether this matcher could ever match a node of kind \p Kind.
  /// \return \c false if this matcher will never match such a node. Otherwise,
  /// return \c true.
  bool canMatchNodesOfKind(ast_type_traits::ASTNodeKind Kind) const;

  /// Return a matcher that points to the same implementation, but
  ///   restricts the node types for \p Kind.
  DynTypedMatcher dynCastTo(const ast_type_traits::ASTNodeKind Kind) const;

  /// Returns true if the matcher matches the given \c DynNode.
  bool matches(const ast_type_traits::DynTypedNode &DynNode,
               ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder) const;

  /// Same as matches(), but skips the kind check.
  ///
  /// It is faster, but the caller must ensure the node is valid for the
  /// kind of this matcher.
  bool matchesNoKindCheck(const ast_type_traits::DynTypedNode &DynNode,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const;

  /// Bind the specified \p ID to the matcher.
  /// \return A new matcher with the \p ID bound to it if this matcher supports
  ///   binding. Otherwise, returns an empty \c Optional<>.
  llvm::Optional<DynTypedMatcher> tryBind(StringRef ID) const;

  /// Returns a unique \p ID for the matcher.
  ///
  /// Casting a Matcher<T> to Matcher<U> creates a matcher that has the
  /// same \c Implementation pointer, but different \c RestrictKind. We need to
  /// include both in the ID to make it unique.
  ///
  /// \c MatcherIDType supports operator< and provides strict weak ordering.
  using MatcherIDType = std::pair<ast_type_traits::ASTNodeKind, uint64_t>;
  MatcherIDType getID() const {
    /// FIXME: Document the requirements this imposes on matcher
    /// implementations (no new() implementation_ during a Matches()).
    return std::make_pair(RestrictKind,
                          reinterpret_cast<uint64_t>(Implementation.get()));
  }

  /// Returns the type this matcher works on.
  ///
  /// \c matches() will always return false unless the node passed is of this
  /// or a derived type.
  ast_type_traits::ASTNodeKind getSupportedKind() const {
    return SupportedKind;
  }

  /// Returns \c true if the passed \c DynTypedMatcher can be converted
  ///   to a \c Matcher<T>.
  ///
  /// This method verifies that the underlying matcher in \c Other can process
  /// nodes of types T.
  template <typename T> bool canConvertTo() const {
    return canConvertTo(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
  }
  bool canConvertTo(ast_type_traits::ASTNodeKind To) const;

  /// Construct a \c Matcher<T> interface around the dynamic matcher.
  ///
  /// This method asserts that \c canConvertTo() is \c true. Callers
  /// should call \c canConvertTo() first to make sure that \c this is
  /// compatible with T.
  template <typename T> Matcher<T> convertTo() const {
    assert(canConvertTo<T>());
    return unconditionalConvertTo<T>();
  }

  /// Same as \c convertTo(), but does not check that the underlying
  ///   matcher can handle a value of T.
  ///
  /// If it is not compatible, then this matcher will never match anything.
  template <typename T> Matcher<T> unconditionalConvertTo() const;

private:
 DynTypedMatcher(ast_type_traits::ASTNodeKind SupportedKind,
                 ast_type_traits::ASTNodeKind RestrictKind,
                 IntrusiveRefCntPtr<DynMatcherInterface> Implementation)
     : SupportedKind(SupportedKind), RestrictKind(RestrictKind),
       Implementation(std::move(Implementation)) {}

  bool AllowBind = false;
  ast_type_traits::ASTNodeKind SupportedKind;

  /// A potentially stricter node kind.
  ///
  /// It allows to perform implicit and dynamic cast of matchers without
  /// needing to change \c Implementation.
  ast_type_traits::ASTNodeKind RestrictKind;
  IntrusiveRefCntPtr<DynMatcherInterface> Implementation;
};

/// Wrapper base class for a wrapping matcher.
///
/// This is just a container for a DynTypedMatcher that can be used as a base
/// class for another matcher.
template <typename T>
class WrapperMatcherInterface : public MatcherInterface<T> {
protected:
  explicit WrapperMatcherInterface(DynTypedMatcher &&InnerMatcher)
      : InnerMatcher(std::move(InnerMatcher)) {}

  const DynTypedMatcher InnerMatcher;
};

/// Wrapper of a MatcherInterface<T> *that allows copying.
///
/// A Matcher<Base> can be used anywhere a Matcher<Derived> is
/// required. This establishes an is-a relationship which is reverse
/// to the AST hierarchy. In other words, Matcher<T> is contravariant
/// with respect to T. The relationship is built via a type conversion
/// operator rather than a type hierarchy to be able to templatize the
/// type hierarchy instead of spelling it out.
template <typename T>
class Matcher {
public:
  /// Takes ownership of the provided implementation pointer.
  explicit Matcher(MatcherInterface<T> *Implementation)
      : Implementation(Implementation) {}

  /// Implicitly converts \c Other to a Matcher<T>.
  ///
  /// Requires \c T to be derived from \c From.
  template <typename From>
  Matcher(const Matcher<From> &Other,
          typename std::enable_if<std::is_base_of<From, T>::value &&
                               !std::is_same<From, T>::value>::type * = nullptr)
      : Implementation(restrictMatcher(Other.Implementation)) {
    assert(Implementation.getSupportedKind().isSame(
        ast_type_traits::ASTNodeKind::getFromNodeKind<T>()));
  }

  /// Implicitly converts \c Matcher<Type> to \c Matcher<QualType>.
  ///
  /// The resulting matcher is not strict, i.e. ignores qualifiers.
  template <typename TypeT>
  Matcher(const Matcher<TypeT> &Other,
          typename std::enable_if<
            std::is_same<T, QualType>::value &&
            std::is_same<TypeT, Type>::value>::type* = nullptr)
      : Implementation(new TypeToQualType<TypeT>(Other)) {}

  /// Convert \c this into a \c Matcher<T> by applying dyn_cast<> to the
  /// argument.
  /// \c To must be a base class of \c T.
  template <typename To>
  Matcher<To> dynCastTo() const {
    static_assert(std::is_base_of<To, T>::value, "Invalid dynCast call.");
    return Matcher<To>(Implementation);
  }

  /// Forwards the call to the underlying MatcherInterface<T> pointer.
  bool matches(const T &Node,
               ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const {
    return Implementation.matches(ast_type_traits::DynTypedNode::create(Node),
                                  Finder, Builder);
  }

  /// Returns an ID that uniquely identifies the matcher.
  DynTypedMatcher::MatcherIDType getID() const {
    return Implementation.getID();
  }

  /// Extract the dynamic matcher.
  ///
  /// The returned matcher keeps the same restrictions as \c this and remembers
  /// that it is meant to support nodes of type \c T.
  operator DynTypedMatcher() const { return Implementation; }

  /// Allows the conversion of a \c Matcher<Type> to a \c
  /// Matcher<QualType>.
  ///
  /// Depending on the constructor argument, the matcher is either strict, i.e.
  /// does only matches in the absence of qualifiers, or not, i.e. simply
  /// ignores any qualifiers.
  template <typename TypeT>
  class TypeToQualType : public WrapperMatcherInterface<QualType> {
  public:
    TypeToQualType(const Matcher<TypeT> &InnerMatcher)
        : TypeToQualType::WrapperMatcherInterface(InnerMatcher) {}

    bool matches(const QualType &Node, ASTMatchFinder *Finder,
                 BoundNodesTreeBuilder *Builder) const override {
      if (Node.isNull())
        return false;
      return this->InnerMatcher.matches(
          ast_type_traits::DynTypedNode::create(*Node), Finder, Builder);
    }
  };

private:
  // For Matcher<T> <=> Matcher<U> conversions.
  template <typename U> friend class Matcher;

  // For DynTypedMatcher::unconditionalConvertTo<T>.
  friend class DynTypedMatcher;

  static DynTypedMatcher restrictMatcher(const DynTypedMatcher &Other) {
    return Other.dynCastTo(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
  }

  explicit Matcher(const DynTypedMatcher &Implementation)
      : Implementation(restrictMatcher(Implementation)) {
    assert(this->Implementation.getSupportedKind()
               .isSame(ast_type_traits::ASTNodeKind::getFromNodeKind<T>()));
  }

  DynTypedMatcher Implementation;
};  // class Matcher

/// A convenient helper for creating a Matcher<T> without specifying
/// the template type argument.
template <typename T>
inline Matcher<T> makeMatcher(MatcherInterface<T> *Implementation) {
  return Matcher<T>(Implementation);
}

/// Specialization of the conversion functions for QualType.
///
/// This specialization provides the Matcher<Type>->Matcher<QualType>
/// conversion that the static API does.
template <>
inline Matcher<QualType> DynTypedMatcher::convertTo<QualType>() const {
  assert(canConvertTo<QualType>());
  const ast_type_traits::ASTNodeKind SourceKind = getSupportedKind();
  if (SourceKind.isSame(
          ast_type_traits::ASTNodeKind::getFromNodeKind<Type>())) {
    // We support implicit conversion from Matcher<Type> to Matcher<QualType>
    return unconditionalConvertTo<Type>();
  }
  return unconditionalConvertTo<QualType>();
}

/// Finds the first node in a range that matches the given matcher.
template <typename MatcherT, typename IteratorT>
bool matchesFirstInRange(const MatcherT &Matcher, IteratorT Start,
                         IteratorT End, ASTMatchFinder *Finder,
                         BoundNodesTreeBuilder *Builder) {
  for (IteratorT I = Start; I != End; ++I) {
    BoundNodesTreeBuilder Result(*Builder);
    if (Matcher.matches(*I, Finder, &Result)) {
      *Builder = std::move(Result);
      return true;
    }
  }
  return false;
}

/// Finds the first node in a pointer range that matches the given
/// matcher.
template <typename MatcherT, typename IteratorT>
bool matchesFirstInPointerRange(const MatcherT &Matcher, IteratorT Start,
                                IteratorT End, ASTMatchFinder *Finder,
                                BoundNodesTreeBuilder *Builder) {
  for (IteratorT I = Start; I != End; ++I) {
    BoundNodesTreeBuilder Result(*Builder);
    if (Matcher.matches(**I, Finder, &Result)) {
      *Builder = std::move(Result);
      return true;
    }
  }
  return false;
}

// Metafunction to determine if type T has a member called getDecl.
template <typename Ty>
class has_getDecl {
  using yes = char[1];
  using no = char[2];

  template <typename Inner>
  static yes& test(Inner *I, decltype(I->getDecl()) * = nullptr);

  template <typename>
  static no& test(...);

public:
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};

/// Matches overloaded operators with a specific name.
///
/// The type argument ArgT is not used by this matcher but is used by
/// PolymorphicMatcherWithParam1 and should be StringRef.
template <typename T, typename ArgT>
class HasOverloadedOperatorNameMatcher : public SingleNodeMatcherInterface<T> {
  static_assert(std::is_same<T, CXXOperatorCallExpr>::value ||
                std::is_base_of<FunctionDecl, T>::value,
                "unsupported class for matcher");
  static_assert(std::is_same<ArgT, StringRef>::value,
                "argument type must be StringRef");

public:
  explicit HasOverloadedOperatorNameMatcher(const StringRef Name)
      : SingleNodeMatcherInterface<T>(), Name(Name) {}

  bool matchesNode(const T &Node) const override {
    return matchesSpecialized(Node);
  }

private:

  /// CXXOperatorCallExpr exist only for calls to overloaded operators
  /// so this function returns true if the call is to an operator of the given
  /// name.
  bool matchesSpecialized(const CXXOperatorCallExpr &Node) const {
    return getOperatorSpelling(Node.getOperator()) == Name;
  }

  /// Returns true only if CXXMethodDecl represents an overloaded
  /// operator and has the given operator name.
  bool matchesSpecialized(const FunctionDecl &Node) const {
    return Node.isOverloadedOperator() &&
           getOperatorSpelling(Node.getOverloadedOperator()) == Name;
  }

  std::string Name;
};

/// Matches named declarations with a specific name.
///
/// See \c hasName() and \c hasAnyName() in ASTMatchers.h for details.
class HasNameMatcher : public SingleNodeMatcherInterface<NamedDecl> {
 public:
  explicit HasNameMatcher(std::vector<std::string> Names);

  bool matchesNode(const NamedDecl &Node) const override;

 private:
  /// Unqualified match routine.
  ///
  /// It is much faster than the full match, but it only works for unqualified
  /// matches.
  bool matchesNodeUnqualified(const NamedDecl &Node) const;

  /// Full match routine
  ///
  /// Fast implementation for the simple case of a named declaration at
  /// namespace or RecordDecl scope.
  /// It is slower than matchesNodeUnqualified, but faster than
  /// matchesNodeFullSlow.
  bool matchesNodeFullFast(const NamedDecl &Node) const;

  /// Full match routine
  ///
  /// It generates the fully qualified name of the declaration (which is
  /// expensive) before trying to match.
  /// It is slower but simple and works on all cases.
  bool matchesNodeFullSlow(const NamedDecl &Node) const;

  const bool UseUnqualifiedMatch;
  const std::vector<std::string> Names;
};

/// Trampoline function to use VariadicFunction<> to construct a
///        HasNameMatcher.
Matcher<NamedDecl> hasAnyNameFunc(ArrayRef<const StringRef *> NameRefs);

/// Trampoline function to use VariadicFunction<> to construct a
///        hasAnySelector matcher.
Matcher<ObjCMessageExpr> hasAnySelectorFunc(
    ArrayRef<const StringRef *> NameRefs);

/// Matches declarations for QualType and CallExpr.
///
/// Type argument DeclMatcherT is required by PolymorphicMatcherWithParam1 but
/// not actually used.
template <typename T, typename DeclMatcherT>
class HasDeclarationMatcher : public WrapperMatcherInterface<T> {
  static_assert(std::is_same<DeclMatcherT, Matcher<Decl>>::value,
                "instantiated with wrong types");

public:
  explicit HasDeclarationMatcher(const Matcher<Decl> &InnerMatcher)
      : HasDeclarationMatcher::WrapperMatcherInterface(InnerMatcher) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    return matchesSpecialized(Node, Finder, Builder);
  }

private:
  /// Forwards to matching on the underlying type of the QualType.
  bool matchesSpecialized(const QualType &Node, ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    if (Node.isNull())
      return false;

    return matchesSpecialized(*Node, Finder, Builder);
  }

  /// Finds the best declaration for a type and returns whether the inner
  /// matcher matches on it.
  bool matchesSpecialized(const Type &Node, ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    // DeducedType does not have declarations of its own, so
    // match the deduced type instead.
    const Type *EffectiveType = &Node;
    if (const auto *S = dyn_cast<DeducedType>(&Node)) {
      EffectiveType = S->getDeducedType().getTypePtrOrNull();
      if (!EffectiveType)
        return false;
    }

    // First, for any types that have a declaration, extract the declaration and
    // match on it.
    if (const auto *S = dyn_cast<TagType>(EffectiveType)) {
      return matchesDecl(S->getDecl(), Finder, Builder);
    }
    if (const auto *S = dyn_cast<InjectedClassNameType>(EffectiveType)) {
      return matchesDecl(S->getDecl(), Finder, Builder);
    }
    if (const auto *S = dyn_cast<TemplateTypeParmType>(EffectiveType)) {
      return matchesDecl(S->getDecl(), Finder, Builder);
    }
    if (const auto *S = dyn_cast<TypedefType>(EffectiveType)) {
      return matchesDecl(S->getDecl(), Finder, Builder);
    }
    if (const auto *S = dyn_cast<UnresolvedUsingType>(EffectiveType)) {
      return matchesDecl(S->getDecl(), Finder, Builder);
    }
    if (const auto *S = dyn_cast<ObjCObjectType>(EffectiveType)) {
      return matchesDecl(S->getInterface(), Finder, Builder);
    }

    // A SubstTemplateTypeParmType exists solely to mark a type substitution
    // on the instantiated template. As users usually want to match the
    // template parameter on the uninitialized template, we can always desugar
    // one level without loss of expressivness.
    // For example, given:
    //   template<typename T> struct X { T t; } class A {}; X<A> a;
    // The following matcher will match, which otherwise would not:
    //   fieldDecl(hasType(pointerType())).
    if (const auto *S = dyn_cast<SubstTemplateTypeParmType>(EffectiveType)) {
      return matchesSpecialized(S->getReplacementType(), Finder, Builder);
    }

    // For template specialization types, we want to match the template
    // declaration, as long as the type is still dependent, and otherwise the
    // declaration of the instantiated tag type.
    if (const auto *S = dyn_cast<TemplateSpecializationType>(EffectiveType)) {
      if (!S->isTypeAlias() && S->isSugared()) {
        // If the template is non-dependent, we want to match the instantiated
        // tag type.
        // For example, given:
        //   template<typename T> struct X {}; X<int> a;
        // The following matcher will match, which otherwise would not:
        //   templateSpecializationType(hasDeclaration(cxxRecordDecl())).
        return matchesSpecialized(*S->desugar(), Finder, Builder);
      }
      // If the template is dependent or an alias, match the template
      // declaration.
      return matchesDecl(S->getTemplateName().getAsTemplateDecl(), Finder,
                         Builder);
    }

    // FIXME: We desugar elaborated types. This makes the assumption that users
    // do never want to match on whether a type is elaborated - there are
    // arguments for both sides; for now, continue desugaring.
    if (const auto *S = dyn_cast<ElaboratedType>(EffectiveType)) {
      return matchesSpecialized(S->desugar(), Finder, Builder);
    }
    return false;
  }

  /// Extracts the Decl the DeclRefExpr references and returns whether
  /// the inner matcher matches on it.
  bool matchesSpecialized(const DeclRefExpr &Node, ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getDecl(), Finder, Builder);
  }

  /// Extracts the Decl of the callee of a CallExpr and returns whether
  /// the inner matcher matches on it.
  bool matchesSpecialized(const CallExpr &Node, ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getCalleeDecl(), Finder, Builder);
  }

  /// Extracts the Decl of the constructor call and returns whether the
  /// inner matcher matches on it.
  bool matchesSpecialized(const CXXConstructExpr &Node,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getConstructor(), Finder, Builder);
  }

  bool matchesSpecialized(const ObjCIvarRefExpr &Node,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getDecl(), Finder, Builder);
  }

  /// Extracts the operator new of the new call and returns whether the
  /// inner matcher matches on it.
  bool matchesSpecialized(const CXXNewExpr &Node,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getOperatorNew(), Finder, Builder);
  }

  /// Extracts the \c ValueDecl a \c MemberExpr refers to and returns
  /// whether the inner matcher matches on it.
  bool matchesSpecialized(const MemberExpr &Node,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getMemberDecl(), Finder, Builder);
  }

  /// Extracts the \c LabelDecl a \c AddrLabelExpr refers to and returns
  /// whether the inner matcher matches on it.
  bool matchesSpecialized(const AddrLabelExpr &Node,
                          ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getLabel(), Finder, Builder);
  }

  /// Extracts the declaration of a LabelStmt and returns whether the
  /// inner matcher matches on it.
  bool matchesSpecialized(const LabelStmt &Node, ASTMatchFinder *Finder,
                          BoundNodesTreeBuilder *Builder) const {
    return matchesDecl(Node.getDecl(), Finder, Builder);
  }

  /// Returns whether the inner matcher \c Node. Returns false if \c Node
  /// is \c NULL.
  bool matchesDecl(const Decl *Node, ASTMatchFinder *Finder,
                   BoundNodesTreeBuilder *Builder) const {
    return Node != nullptr &&
           this->InnerMatcher.matches(
               ast_type_traits::DynTypedNode::create(*Node), Finder, Builder);
  }
};

/// IsBaseType<T>::value is true if T is a "base" type in the AST
/// node class hierarchies.
template <typename T>
struct IsBaseType {
  static const bool value =
      std::is_same<T, Decl>::value ||
      std::is_same<T, Stmt>::value ||
      std::is_same<T, QualType>::value ||
      std::is_same<T, Type>::value ||
      std::is_same<T, TypeLoc>::value ||
      std::is_same<T, NestedNameSpecifier>::value ||
      std::is_same<T, NestedNameSpecifierLoc>::value ||
      std::is_same<T, CXXCtorInitializer>::value;
};
template <typename T>
const bool IsBaseType<T>::value;

/// Interface that allows matchers to traverse the AST.
/// FIXME: Find a better name.
///
/// This provides three entry methods for each base node type in the AST:
/// - \c matchesChildOf:
///   Matches a matcher on every child node of the given node. Returns true
///   if at least one child node could be matched.
/// - \c matchesDescendantOf:
///   Matches a matcher on all descendant nodes of the given node. Returns true
///   if at least one descendant matched.
/// - \c matchesAncestorOf:
///   Matches a matcher on all ancestors of the given node. Returns true if
///   at least one ancestor matched.
///
/// FIXME: Currently we only allow Stmt and Decl nodes to start a traversal.
/// In the future, we want to implement this for all nodes for which it makes
/// sense. In the case of matchesAncestorOf, we'll want to implement it for
/// all nodes, as all nodes have ancestors.
class ASTMatchFinder {
public:

  /// Defines how bindings are processed on recursive matches.
  enum BindKind {
    /// Stop at the first match and only bind the first match.
    BK_First,

    /// Create results for all combinations of bindings that match.
    BK_All
  };

  /// Defines which ancestors are considered for a match.
  enum AncestorMatchMode {
    /// All ancestors.
    AMM_All,

    /// Direct parent only.
    AMM_ParentOnly
  };

  virtual ~ASTMatchFinder() = default;

  /// Returns true if the given C++ class is directly or indirectly derived
  /// from a base type matching \c base.
  ///
  /// A class is not considered to be derived from itself.
  virtual bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
                                  const Matcher<NamedDecl> &Base,
                                  BoundNodesTreeBuilder *Builder,
                                  bool Directly) = 0;

  /// Returns true if the given Objective-C class is directly or indirectly
  /// derived from a base class matching \c base.
  ///
  /// A class is not considered to be derived from itself.
  virtual bool objcClassIsDerivedFrom(const ObjCInterfaceDecl *Declaration,
                                      const Matcher<NamedDecl> &Base,
                                      BoundNodesTreeBuilder *Builder,
                                      bool Directly) = 0;

  template <typename T>
  bool matchesChildOf(const T &Node, const DynTypedMatcher &Matcher,
                      BoundNodesTreeBuilder *Builder,
                      ast_type_traits::TraversalKind Traverse, BindKind Bind) {
    static_assert(std::is_base_of<Decl, T>::value ||
                  std::is_base_of<Stmt, T>::value ||
                  std::is_base_of<NestedNameSpecifier, T>::value ||
                  std::is_base_of<NestedNameSpecifierLoc, T>::value ||
                  std::is_base_of<TypeLoc, T>::value ||
                  std::is_base_of<QualType, T>::value,
                  "unsupported type for recursive matching");
    return matchesChildOf(ast_type_traits::DynTypedNode::create(Node),
                          Matcher, Builder, Traverse, Bind);
  }

  template <typename T>
  bool matchesDescendantOf(const T &Node,
                           const DynTypedMatcher &Matcher,
                           BoundNodesTreeBuilder *Builder,
                           BindKind Bind) {
    static_assert(std::is_base_of<Decl, T>::value ||
                  std::is_base_of<Stmt, T>::value ||
                  std::is_base_of<NestedNameSpecifier, T>::value ||
                  std::is_base_of<NestedNameSpecifierLoc, T>::value ||
                  std::is_base_of<TypeLoc, T>::value ||
                  std::is_base_of<QualType, T>::value,
                  "unsupported type for recursive matching");
    return matchesDescendantOf(ast_type_traits::DynTypedNode::create(Node),
                               Matcher, Builder, Bind);
  }

  // FIXME: Implement support for BindKind.
  template <typename T>
  bool matchesAncestorOf(const T &Node,
                         const DynTypedMatcher &Matcher,
                         BoundNodesTreeBuilder *Builder,
                         AncestorMatchMode MatchMode) {
    static_assert(std::is_base_of<Decl, T>::value ||
                      std::is_base_of<NestedNameSpecifierLoc, T>::value ||
                      std::is_base_of<Stmt, T>::value ||
                      std::is_base_of<TypeLoc, T>::value,
                  "type not allowed for recursive matching");
    return matchesAncestorOf(ast_type_traits::DynTypedNode::create(Node),
                             Matcher, Builder, MatchMode);
  }

  virtual ASTContext &getASTContext() const = 0;

protected:
  virtual bool matchesChildOf(const ast_type_traits::DynTypedNode &Node,
                              const DynTypedMatcher &Matcher,
                              BoundNodesTreeBuilder *Builder,
                              ast_type_traits::TraversalKind Traverse,
                              BindKind Bind) = 0;

  virtual bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node,
                                   const DynTypedMatcher &Matcher,
                                   BoundNodesTreeBuilder *Builder,
                                   BindKind Bind) = 0;

  virtual bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node,
                                 const DynTypedMatcher &Matcher,
                                 BoundNodesTreeBuilder *Builder,
                                 AncestorMatchMode MatchMode) = 0;
};

/// A type-list implementation.
///
/// A "linked list" of types, accessible by using the ::head and ::tail
/// typedefs.
template <typename... Ts> struct TypeList {}; // Empty sentinel type list.

template <typename T1, typename... Ts> struct TypeList<T1, Ts...> {
  /// The first type on the list.
  using head = T1;

  /// A sublist with the tail. ie everything but the head.
  ///
  /// This type is used to do recursion. TypeList<>/EmptyTypeList indicates the
  /// end of the list.
  using tail = TypeList<Ts...>;
};

/// The empty type list.
using EmptyTypeList = TypeList<>;

/// Helper meta-function to determine if some type \c T is present or
///   a parent type in the list.
template <typename AnyTypeList, typename T>
struct TypeListContainsSuperOf {
  static const bool value =
      std::is_base_of<typename AnyTypeList::head, T>::value ||
      TypeListContainsSuperOf<typename AnyTypeList::tail, T>::value;
};
template <typename T>
struct TypeListContainsSuperOf<EmptyTypeList, T> {
  static const bool value = false;
};

/// A "type list" that contains all types.
///
/// Useful for matchers like \c anything and \c unless.
using AllNodeBaseTypes =
    TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc, QualType,
             Type, TypeLoc, CXXCtorInitializer>;

/// Helper meta-function to extract the argument out of a function of
///   type void(Arg).
///
/// See AST_POLYMORPHIC_SUPPORTED_TYPES for details.
template <class T> struct ExtractFunctionArgMeta;
template <class T> struct ExtractFunctionArgMeta<void(T)> {
  using type = T;
};

/// Default type lists for ArgumentAdaptingMatcher matchers.
using AdaptativeDefaultFromTypes = AllNodeBaseTypes;
using AdaptativeDefaultToTypes =
    TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc, TypeLoc,
             QualType>;

/// All types that are supported by HasDeclarationMatcher above.
using HasDeclarationSupportedTypes =
    TypeList<CallExpr, CXXConstructExpr, CXXNewExpr, DeclRefExpr, EnumType,
             ElaboratedType, InjectedClassNameType, LabelStmt, AddrLabelExpr,
             MemberExpr, QualType, RecordType, TagType,
             TemplateSpecializationType, TemplateTypeParmType, TypedefType,
             UnresolvedUsingType, ObjCIvarRefExpr>;

/// Converts a \c Matcher<T> to a matcher of desired type \c To by
/// "adapting" a \c To into a \c T.
///
/// The \c ArgumentAdapterT argument specifies how the adaptation is done.
///
/// For example:
///   \c ArgumentAdaptingMatcher<HasMatcher, T>(InnerMatcher);
/// Given that \c InnerMatcher is of type \c Matcher<T>, this returns a matcher
/// that is convertible into any matcher of type \c To by constructing
/// \c HasMatcher<To, T>(InnerMatcher).
///
/// If a matcher does not need knowledge about the inner type, prefer to use
/// PolymorphicMatcherWithParam1.
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
          typename FromTypes = AdaptativeDefaultFromTypes,
          typename ToTypes = AdaptativeDefaultToTypes>
struct ArgumentAdaptingMatcherFunc {
  template <typename T> class Adaptor {
  public:
    explicit Adaptor(const Matcher<T> &InnerMatcher)
        : InnerMatcher(InnerMatcher) {}

    using ReturnTypes = ToTypes;

    template <typename To> operator Matcher<To>() const {
      return Matcher<To>(new ArgumentAdapterT<To, T>(InnerMatcher));
    }

  private:
    const Matcher<T> InnerMatcher;
  };

  template <typename T>
  static Adaptor<T> create(const Matcher<T> &InnerMatcher) {
    return Adaptor<T>(InnerMatcher);
  }

  template <typename T>
  Adaptor<T> operator()(const Matcher<T> &InnerMatcher) const {
    return create(InnerMatcher);
  }
};

/// A PolymorphicMatcherWithParamN<MatcherT, P1, ..., PN> object can be
/// created from N parameters p1, ..., pN (of type P1, ..., PN) and
/// used as a Matcher<T> where a MatcherT<T, P1, ..., PN>(p1, ..., pN)
/// can be constructed.
///
/// For example:
/// - PolymorphicMatcherWithParam0<IsDefinitionMatcher>()
///   creates an object that can be used as a Matcher<T> for any type T
///   where an IsDefinitionMatcher<T>() can be constructed.
/// - PolymorphicMatcherWithParam1<ValueEqualsMatcher, int>(42)
///   creates an object that can be used as a Matcher<T> for any type T
///   where a ValueEqualsMatcher<T, int>(42) can be constructed.
template <template <typename T> class MatcherT,
          typename ReturnTypesF = void(AllNodeBaseTypes)>
class PolymorphicMatcherWithParam0 {
public:
  using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;

  template <typename T>
  operator Matcher<T>() const {
    static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
                  "right polymorphic conversion");
    return Matcher<T>(new MatcherT<T>());
  }
};

template <template <typename T, typename P1> class MatcherT,
          typename P1,
          typename ReturnTypesF = void(AllNodeBaseTypes)>
class PolymorphicMatcherWithParam1 {
public:
  explicit PolymorphicMatcherWithParam1(const P1 &Param1)
      : Param1(Param1) {}

  using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;

  template <typename T>
  operator Matcher<T>() const {
    static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
                  "right polymorphic conversion");
    return Matcher<T>(new MatcherT<T, P1>(Param1));
  }

private:
  const P1 Param1;
};

template <template <typename T, typename P1, typename P2> class MatcherT,
          typename P1, typename P2,
          typename ReturnTypesF = void(AllNodeBaseTypes)>
class PolymorphicMatcherWithParam2 {
public:
  PolymorphicMatcherWithParam2(const P1 &Param1, const P2 &Param2)
      : Param1(Param1), Param2(Param2) {}

  using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;

  template <typename T>
  operator Matcher<T>() const {
    static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
                  "right polymorphic conversion");
    return Matcher<T>(new MatcherT<T, P1, P2>(Param1, Param2));
  }

private:
  const P1 Param1;
  const P2 Param2;
};

/// Matches any instance of the given NodeType.
///
/// This is useful when a matcher syntactically requires a child matcher,
/// but the context doesn't care. See for example: anything().
class TrueMatcher {
public:
  using ReturnTypes = AllNodeBaseTypes;

  template <typename T>
  operator Matcher<T>() const {
    return DynTypedMatcher::trueMatcher(
               ast_type_traits::ASTNodeKind::getFromNodeKind<T>())
        .template unconditionalConvertTo<T>();
  }
};

/// A Matcher that allows binding the node it matches to an id.
///
/// BindableMatcher provides a \a bind() method that allows binding the
/// matched node to an id if the match was successful.
template <typename T>
class BindableMatcher : public Matcher<T> {
public:
  explicit BindableMatcher(const Matcher<T> &M) : Matcher<T>(M) {}
  explicit BindableMatcher(MatcherInterface<T> *Implementation)
    : Matcher<T>(Implementation) {}

  /// Returns a matcher that will bind the matched node on a match.
  ///
  /// The returned matcher is equivalent to this matcher, but will
  /// bind the matched node on a match.
  Matcher<T> bind(StringRef ID) const {
    return DynTypedMatcher(*this)
        .tryBind(ID)
        ->template unconditionalConvertTo<T>();
  }

  /// Same as Matcher<T>'s conversion operator, but enables binding on
  /// the returned matcher.
  operator DynTypedMatcher() const {
    DynTypedMatcher Result = static_cast<const Matcher<T>&>(*this);
    Result.setAllowBind(true);
    return Result;
  }
};

/// Matches nodes of type T that have child nodes of type ChildT for
/// which a specified child matcher matches.
///
/// ChildT must be an AST base type.
template <typename T, typename ChildT>
class HasMatcher : public WrapperMatcherInterface<T> {
public:
  explicit HasMatcher(const Matcher<ChildT> &ChildMatcher)
      : HasMatcher::WrapperMatcherInterface(ChildMatcher) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    return Finder->matchesChildOf(Node, this->InnerMatcher, Builder,
                                  ast_type_traits::TraversalKind::TK_AsIs,
                                  ASTMatchFinder::BK_First);
  }
};

/// Matches nodes of type T that have child nodes of type ChildT for
/// which a specified child matcher matches. ChildT must be an AST base
/// type.
/// As opposed to the HasMatcher, the ForEachMatcher will produce a match
/// for each child that matches.
template <typename T, typename ChildT>
class ForEachMatcher : public WrapperMatcherInterface<T> {
  static_assert(IsBaseType<ChildT>::value,
                "for each only accepts base type matcher");

 public:
   explicit ForEachMatcher(const Matcher<ChildT> &ChildMatcher)
       : ForEachMatcher::WrapperMatcherInterface(ChildMatcher) {}

  bool matches(const T& Node, ASTMatchFinder* Finder,
               BoundNodesTreeBuilder* Builder) const override {
    return Finder->matchesChildOf(
        Node, this->InnerMatcher, Builder,
        ast_type_traits::TraversalKind::TK_IgnoreImplicitCastsAndParentheses,
        ASTMatchFinder::BK_All);
  }
};

/// VariadicOperatorMatcher related types.
/// @{

/// Polymorphic matcher object that uses a \c
/// DynTypedMatcher::VariadicOperator operator.
///
/// Input matchers can have any type (including other polymorphic matcher
/// types), and the actual Matcher<T> is generated on demand with an implicit
/// conversion operator.
template <typename... Ps> class VariadicOperatorMatcher {
public:
  VariadicOperatorMatcher(DynTypedMatcher::VariadicOperator Op, Ps &&... Params)
      : Op(Op), Params(std::forward<Ps>(Params)...) {}

  template <typename T> operator Matcher<T>() const {
    return DynTypedMatcher::constructVariadic(
               Op, ast_type_traits::ASTNodeKind::getFromNodeKind<T>(),
               getMatchers<T>(std::index_sequence_for<Ps...>()))
        .template unconditionalConvertTo<T>();
  }

private:
  // Helper method to unpack the tuple into a vector.
  template <typename T, std::size_t... Is>
  std::vector<DynTypedMatcher> getMatchers(std::index_sequence<Is...>) const {
    return {Matcher<T>(std::get<Is>(Params))...};
  }

  const DynTypedMatcher::VariadicOperator Op;
  std::tuple<Ps...> Params;
};

/// Overloaded function object to generate VariadicOperatorMatcher
///   objects from arbitrary matchers.
template <unsigned MinCount, unsigned MaxCount>
struct VariadicOperatorMatcherFunc {
  DynTypedMatcher::VariadicOperator Op;

  template <typename... Ms>
  VariadicOperatorMatcher<Ms...> operator()(Ms &&... Ps) const {
    static_assert(MinCount <= sizeof...(Ms) && sizeof...(Ms) <= MaxCount,
                  "invalid number of parameters for variadic matcher");
    return VariadicOperatorMatcher<Ms...>(Op, std::forward<Ms>(Ps)...);
  }
};

/// @}

template <typename T>
inline Matcher<T> DynTypedMatcher::unconditionalConvertTo() const {
  return Matcher<T>(*this);
}

/// Creates a Matcher<T> that matches if all inner matchers match.
template<typename T>
BindableMatcher<T> makeAllOfComposite(
    ArrayRef<const Matcher<T> *> InnerMatchers) {
  // For the size() == 0 case, we return a "true" matcher.
  if (InnerMatchers.empty()) {
    return BindableMatcher<T>(TrueMatcher());
  }
  // For the size() == 1 case, we simply return that one matcher.
  // No need to wrap it in a variadic operation.
  if (InnerMatchers.size() == 1) {
    return BindableMatcher<T>(*InnerMatchers[0]);
  }

  using PI = llvm::pointee_iterator<const Matcher<T> *const *>;

  std::vector<DynTypedMatcher> DynMatchers(PI(InnerMatchers.begin()),
                                           PI(InnerMatchers.end()));
  return BindableMatcher<T>(
      DynTypedMatcher::constructVariadic(
          DynTypedMatcher::VO_AllOf,
          ast_type_traits::ASTNodeKind::getFromNodeKind<T>(),
          std::move(DynMatchers))
          .template unconditionalConvertTo<T>());
}

/// Creates a Matcher<T> that matches if
/// T is dyn_cast'able into InnerT and all inner matchers match.
///
/// Returns BindableMatcher, as matchers that use dyn_cast have
/// the same object both to match on and to run submatchers on,
/// so there is no ambiguity with what gets bound.
template<typename T, typename InnerT>
BindableMatcher<T> makeDynCastAllOfComposite(
    ArrayRef<const Matcher<InnerT> *> InnerMatchers) {
  return BindableMatcher<T>(
      makeAllOfComposite(InnerMatchers).template dynCastTo<T>());
}

/// Matches nodes of type T that have at least one descendant node of
/// type DescendantT for which the given inner matcher matches.
///
/// DescendantT must be an AST base type.
template <typename T, typename DescendantT>
class HasDescendantMatcher : public WrapperMatcherInterface<T> {
  static_assert(IsBaseType<DescendantT>::value,
                "has descendant only accepts base type matcher");

public:
  explicit HasDescendantMatcher(const Matcher<DescendantT> &DescendantMatcher)
      : HasDescendantMatcher::WrapperMatcherInterface(DescendantMatcher) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    return Finder->matchesDescendantOf(Node, this->InnerMatcher, Builder,
                                       ASTMatchFinder::BK_First);
  }
};

/// Matches nodes of type \c T that have a parent node of type \c ParentT
/// for which the given inner matcher matches.
///
/// \c ParentT must be an AST base type.
template <typename T, typename ParentT>
class HasParentMatcher : public WrapperMatcherInterface<T> {
  static_assert(IsBaseType<ParentT>::value,
                "has parent only accepts base type matcher");

public:
  explicit HasParentMatcher(const Matcher<ParentT> &ParentMatcher)
      : HasParentMatcher::WrapperMatcherInterface(ParentMatcher) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    return Finder->matchesAncestorOf(Node, this->InnerMatcher, Builder,
                                     ASTMatchFinder::AMM_ParentOnly);
  }
};

/// Matches nodes of type \c T that have at least one ancestor node of
/// type \c AncestorT for which the given inner matcher matches.
///
/// \c AncestorT must be an AST base type.
template <typename T, typename AncestorT>
class HasAncestorMatcher : public WrapperMatcherInterface<T> {
  static_assert(IsBaseType<AncestorT>::value,
                "has ancestor only accepts base type matcher");

public:
  explicit HasAncestorMatcher(const Matcher<AncestorT> &AncestorMatcher)
      : HasAncestorMatcher::WrapperMatcherInterface(AncestorMatcher) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    return Finder->matchesAncestorOf(Node, this->InnerMatcher, Builder,
                                     ASTMatchFinder::AMM_All);
  }
};

/// Matches nodes of type T that have at least one descendant node of
/// type DescendantT for which the given inner matcher matches.
///
/// DescendantT must be an AST base type.
/// As opposed to HasDescendantMatcher, ForEachDescendantMatcher will match
/// for each descendant node that matches instead of only for the first.
template <typename T, typename DescendantT>
class ForEachDescendantMatcher : public WrapperMatcherInterface<T> {
  static_assert(IsBaseType<DescendantT>::value,
                "for each descendant only accepts base type matcher");

public:
  explicit ForEachDescendantMatcher(
      const Matcher<DescendantT> &DescendantMatcher)
      : ForEachDescendantMatcher::WrapperMatcherInterface(DescendantMatcher) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    return Finder->matchesDescendantOf(Node, this->InnerMatcher, Builder,
                                       ASTMatchFinder::BK_All);
  }
};

/// Matches on nodes that have a getValue() method if getValue() equals
/// the value the ValueEqualsMatcher was constructed with.
template <typename T, typename ValueT>
class ValueEqualsMatcher : public SingleNodeMatcherInterface<T> {
  static_assert(std::is_base_of<CharacterLiteral, T>::value ||
                std::is_base_of<CXXBoolLiteralExpr, T>::value ||
                std::is_base_of<FloatingLiteral, T>::value ||
                std::is_base_of<IntegerLiteral, T>::value,
                "the node must have a getValue method");

public:
  explicit ValueEqualsMatcher(const ValueT &ExpectedValue)
      : ExpectedValue(ExpectedValue) {}

  bool matchesNode(const T &Node) const override {
    return Node.getValue() == ExpectedValue;
  }

private:
  const ValueT ExpectedValue;
};

/// Template specializations to easily write matchers for floating point
/// literals.
template <>
inline bool ValueEqualsMatcher<FloatingLiteral, double>::matchesNode(
    const FloatingLiteral &Node) const {
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEsingle())
    return Node.getValue().convertToFloat() == ExpectedValue;
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEdouble())
    return Node.getValue().convertToDouble() == ExpectedValue;
  return false;
}
template <>
inline bool ValueEqualsMatcher<FloatingLiteral, float>::matchesNode(
    const FloatingLiteral &Node) const {
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEsingle())
    return Node.getValue().convertToFloat() == ExpectedValue;
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEdouble())
    return Node.getValue().convertToDouble() == ExpectedValue;
  return false;
}
template <>
inline bool ValueEqualsMatcher<FloatingLiteral, llvm::APFloat>::matchesNode(
    const FloatingLiteral &Node) const {
  return ExpectedValue.compare(Node.getValue()) == llvm::APFloat::cmpEqual;
}

/// A VariadicDynCastAllOfMatcher<SourceT, TargetT> object is a
/// variadic functor that takes a number of Matcher<TargetT> and returns a
/// Matcher<SourceT> that matches TargetT nodes that are matched by all of the
/// given matchers, if SourceT can be dynamically casted into TargetT.
///
/// For example:
///   const VariadicDynCastAllOfMatcher<Decl, CXXRecordDecl> record;
/// Creates a functor record(...) that creates a Matcher<Decl> given
/// a variable number of arguments of type Matcher<CXXRecordDecl>.
/// The returned matcher matches if the given Decl can by dynamically
/// casted to CXXRecordDecl and all given matchers match.
template <typename SourceT, typename TargetT>
class VariadicDynCastAllOfMatcher
    : public VariadicFunction<BindableMatcher<SourceT>, Matcher<TargetT>,
                              makeDynCastAllOfComposite<SourceT, TargetT>> {
public:
  VariadicDynCastAllOfMatcher() {}
};

/// A \c VariadicAllOfMatcher<T> object is a variadic functor that takes
/// a number of \c Matcher<T> and returns a \c Matcher<T> that matches \c T
/// nodes that are matched by all of the given matchers.
///
/// For example:
///   const VariadicAllOfMatcher<NestedNameSpecifier> nestedNameSpecifier;
/// Creates a functor nestedNameSpecifier(...) that creates a
/// \c Matcher<NestedNameSpecifier> given a variable number of arguments of type
/// \c Matcher<NestedNameSpecifier>.
/// The returned matcher matches if all given matchers match.
template <typename T>
class VariadicAllOfMatcher
    : public VariadicFunction<BindableMatcher<T>, Matcher<T>,
                              makeAllOfComposite<T>> {
public:
  VariadicAllOfMatcher() {}
};

/// Matches nodes of type \c TLoc for which the inner
/// \c Matcher<T> matches.
template <typename TLoc, typename T>
class LocMatcher : public WrapperMatcherInterface<TLoc> {
public:
  explicit LocMatcher(const Matcher<T> &InnerMatcher)
      : LocMatcher::WrapperMatcherInterface(InnerMatcher) {}

  bool matches(const TLoc &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    if (!Node)
      return false;
    return this->InnerMatcher.matches(extract(Node), Finder, Builder);
  }

private:
  static ast_type_traits::DynTypedNode
  extract(const NestedNameSpecifierLoc &Loc) {
    return ast_type_traits::DynTypedNode::create(*Loc.getNestedNameSpecifier());
  }
};

/// Matches \c TypeLocs based on an inner matcher matching a certain
/// \c QualType.
///
/// Used to implement the \c loc() matcher.
class TypeLocTypeMatcher : public WrapperMatcherInterface<TypeLoc> {
public:
  explicit TypeLocTypeMatcher(const Matcher<QualType> &InnerMatcher)
      : TypeLocTypeMatcher::WrapperMatcherInterface(InnerMatcher) {}

  bool matches(const TypeLoc &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    if (!Node)
      return false;
    return this->InnerMatcher.matches(
        ast_type_traits::DynTypedNode::create(Node.getType()), Finder, Builder);
  }
};

/// Matches nodes of type \c T for which the inner matcher matches on a
/// another node of type \c T that can be reached using a given traverse
/// function.
template <typename T>
class TypeTraverseMatcher : public WrapperMatcherInterface<T> {
public:
  explicit TypeTraverseMatcher(const Matcher<QualType> &InnerMatcher,
                               QualType (T::*TraverseFunction)() const)
      : TypeTraverseMatcher::WrapperMatcherInterface(InnerMatcher),
        TraverseFunction(TraverseFunction) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    QualType NextNode = (Node.*TraverseFunction)();
    if (NextNode.isNull())
      return false;
    return this->InnerMatcher.matches(
        ast_type_traits::DynTypedNode::create(NextNode), Finder, Builder);
  }

private:
  QualType (T::*TraverseFunction)() const;
};

/// Matches nodes of type \c T in a ..Loc hierarchy, for which the inner
/// matcher matches on a another node of type \c T that can be reached using a
/// given traverse function.
template <typename T>
class TypeLocTraverseMatcher : public WrapperMatcherInterface<T> {
public:
  explicit TypeLocTraverseMatcher(const Matcher<TypeLoc> &InnerMatcher,
                                  TypeLoc (T::*TraverseFunction)() const)
      : TypeLocTraverseMatcher::WrapperMatcherInterface(InnerMatcher),
        TraverseFunction(TraverseFunction) {}

  bool matches(const T &Node, ASTMatchFinder *Finder,
               BoundNodesTreeBuilder *Builder) const override {
    TypeLoc NextNode = (Node.*TraverseFunction)();
    if (!NextNode)
      return false;
    return this->InnerMatcher.matches(
        ast_type_traits::DynTypedNode::create(NextNode), Finder, Builder);
  }

private:
  TypeLoc (T::*TraverseFunction)() const;
};

/// Converts a \c Matcher<InnerT> to a \c Matcher<OuterT>, where
/// \c OuterT is any type that is supported by \c Getter.
///
/// \code Getter<OuterT>::value() \endcode returns a
/// \code InnerTBase (OuterT::*)() \endcode, which is used to adapt a \c OuterT
/// object into a \c InnerT
template <typename InnerTBase,
          template <typename OuterT> class Getter,
          template <typename OuterT> class MatcherImpl,
          typename ReturnTypesF>
class TypeTraversePolymorphicMatcher {
private:
  using Self = TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl,
                                              ReturnTypesF>;

  static Self create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers);

public:
  using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;

  explicit TypeTraversePolymorphicMatcher(
      ArrayRef<const Matcher<InnerTBase> *> InnerMatchers)
      : InnerMatcher(makeAllOfComposite(InnerMatchers)) {}

  template <typename OuterT> operator Matcher<OuterT>() const {
    return Matcher<OuterT>(
        new MatcherImpl<OuterT>(InnerMatcher, Getter<OuterT>::value()));
  }

  struct Func
      : public VariadicFunction<Self, Matcher<InnerTBase>, &Self::create> {
    Func() {}
  };

private:
  const Matcher<InnerTBase> InnerMatcher;
};

/// A simple memoizer of T(*)() functions.
///
/// It will call the passed 'Func' template parameter at most once.
/// Used to support AST_MATCHER_FUNCTION() macro.
template <typename Matcher, Matcher (*Func)()> class MemoizedMatcher {
  struct Wrapper {
    Wrapper() : M(Func()) {}

    Matcher M;
  };

public:
  static const Matcher &getInstance() {
    static llvm::ManagedStatic<Wrapper> Instance;
    return Instance->M;
  }
};

// Define the create() method out of line to silence a GCC warning about
// the struct "Func" having greater visibility than its base, which comes from
// using the flag -fvisibility-inlines-hidden.
template <typename InnerTBase, template <typename OuterT> class Getter,
          template <typename OuterT> class MatcherImpl, typename ReturnTypesF>
TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl, ReturnTypesF>
TypeTraversePolymorphicMatcher<
    InnerTBase, Getter, MatcherImpl,
    ReturnTypesF>::create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers) {
  return Self(InnerMatchers);
}

// FIXME: unify ClassTemplateSpecializationDecl and TemplateSpecializationType's
// APIs for accessing the template argument list.
inline ArrayRef<TemplateArgument>
getTemplateSpecializationArgs(const ClassTemplateSpecializationDecl &D) {
  return D.getTemplateArgs().asArray();
}

inline ArrayRef<TemplateArgument>
getTemplateSpecializationArgs(const TemplateSpecializationType &T) {
  return llvm::makeArrayRef(T.getArgs(), T.getNumArgs());
}

inline ArrayRef<TemplateArgument>
getTemplateSpecializationArgs(const FunctionDecl &FD) {
  if (const auto* TemplateArgs = FD.getTemplateSpecializationArgs())
    return TemplateArgs->asArray();
  return ArrayRef<TemplateArgument>();
}

struct NotEqualsBoundNodePredicate {
  bool operator()(const internal::BoundNodesMap &Nodes) const {
    return Nodes.getNode(ID) != Node;
  }

  std::string ID;
  ast_type_traits::DynTypedNode Node;
};

template <typename Ty>
struct GetBodyMatcher {
  static const Stmt *get(const Ty &Node) {
    return Node.getBody();
  }
};

template <>
inline const Stmt *GetBodyMatcher<FunctionDecl>::get(const FunctionDecl &Node) {
  return Node.doesThisDeclarationHaveABody() ? Node.getBody() : nullptr;
}

template <typename Ty>
struct HasSizeMatcher {
  static bool hasSize(const Ty &Node, unsigned int N) {
    return Node.getSize() == N;
  }
};

template <>
inline bool HasSizeMatcher<StringLiteral>::hasSize(
    const StringLiteral &Node, unsigned int N) {
  return Node.getLength() == N;
}

template <typename Ty>
struct GetSourceExpressionMatcher {
  static const Expr *get(const Ty &Node) {
    return Node.getSubExpr();
  }
};

template <>
inline const Expr *GetSourceExpressionMatcher<OpaqueValueExpr>::get(
    const OpaqueValueExpr &Node) {
  return Node.getSourceExpr();
}

template <typename Ty>
struct CompoundStmtMatcher {
  static const CompoundStmt *get(const Ty &Node) {
    return &Node;
  }
};

template <>
inline const CompoundStmt *
CompoundStmtMatcher<StmtExpr>::get(const StmtExpr &Node) {
  return Node.getSubStmt();
}

} // namespace internal

} // namespace ast_matchers

} // namespace clang

#endif // LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H