reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
//===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LoopConvertUtils.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <string>
#include <utility>

using namespace clang::ast_matchers;

namespace clang {
namespace tidy {
namespace modernize {

/// Tracks a stack of parent statements during traversal.
///
/// All this really does is inject push_back() before running
/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
/// the stack is the parent of the current statement (NULL for the topmost
/// statement).
bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
  StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
  StmtStack.push_back(Statement);
  RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
  StmtStack.pop_back();
  return true;
}

/// Keep track of the DeclStmt associated with each VarDecl.
///
/// Combined with StmtAncestors, this provides roughly the same information as
/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
/// using StmtAncestors.
bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
  for (const auto *decl : Decls->decls()) {
    if (const auto *V = dyn_cast<VarDecl>(decl))
      DeclParents.insert(std::make_pair(V, Decls));
  }
  return true;
}

/// record the DeclRefExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
  Components.push_back(E);
  return true;
}

/// record the MemberExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
  Components.push_back(Member);
  return true;
}

/// Forward any DeclRefExprs to a check on the referenced variable
/// declaration.
bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
  if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
    return VisitVarDecl(V);
  return true;
}

/// Determine if any this variable is declared inside the ContainingStmt.
bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
  const Stmt *Curr = DeclParents->lookup(V);
  // First, see if the variable was declared within an inner scope of the loop.
  while (Curr != nullptr) {
    if (Curr == ContainingStmt) {
      DependsOnInsideVariable = true;
      return false;
    }
    Curr = StmtParents->lookup(Curr);
  }

  // Next, check if the variable was removed from existence by an earlier
  // iteration.
  for (const auto &I : *ReplacedVars) {
    if (I.second == V) {
      DependsOnInsideVariable = true;
      return false;
    }
  }
  return true;
}

/// If we already created a variable for TheLoop, check to make sure
/// that the name was not already taken.
bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
  StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
  if (I != GeneratedDecls->end() && I->second == Name) {
    Found = true;
    return false;
  }
  return true;
}

/// If any named declaration within the AST subtree has the same name,
/// then consider Name already taken.
bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
  const IdentifierInfo *Ident = D->getIdentifier();
  if (Ident && Ident->getName() == Name) {
    Found = true;
    return false;
  }
  return true;
}

/// Forward any declaration references to the actual check on the
/// referenced declaration.
bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
  if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
    return VisitNamedDecl(D);
  return true;
}

/// If the new variable name conflicts with any type used in the loop,
/// then we mark that variable name as taken.
bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
  QualType QType = TL.getType();

  // Check if our name conflicts with a type, to handle for typedefs.
  if (QType.getAsString() == Name) {
    Found = true;
    return false;
  }
  // Check for base type conflicts. For example, when a struct is being
  // referenced in the body of the loop, the above getAsString() will return the
  // whole type (ex. "struct s"), but will be caught here.
  if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
    if (Ident->getName() == Name) {
      Found = true;
      return false;
    }
  }
  return true;
}

/// Look through conversion/copy constructors to find the explicit
/// initialization expression, returning it is found.
///
/// The main idea is that given
///   vector<int> v;
/// we consider either of these initializations
///   vector<int>::iterator it = v.begin();
///   vector<int>::iterator it(v.begin());
/// and retrieve `v.begin()` as the expression used to initialize `it` but do
/// not include
///   vector<int>::iterator it;
///   vector<int>::iterator it(v.begin(), 0); // if this constructor existed
/// as being initialized from `v.begin()`
const Expr *digThroughConstructors(const Expr *E) {
  if (!E)
    return nullptr;
  E = E->IgnoreImplicit();
  if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
    // The initial constructor must take exactly one parameter, but base class
    // and deferred constructors can take more.
    if (ConstructExpr->getNumArgs() != 1 ||
        ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
      return nullptr;
    E = ConstructExpr->getArg(0);
    if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
      E = Temp->GetTemporaryExpr();
    return digThroughConstructors(E);
  }
  return E;
}

/// Returns true when two Exprs are equivalent.
bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
  if (!First || !Second)
    return false;

  llvm::FoldingSetNodeID FirstID, SecondID;
  First->Profile(FirstID, *Context, true);
  Second->Profile(SecondID, *Context, true);
  return FirstID == SecondID;
}

/// Returns the DeclRefExpr represented by E, or NULL if there isn't one.
const DeclRefExpr *getDeclRef(const Expr *E) {
  return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
}

/// Returns true when two ValueDecls are the same variable.
bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
  return First && Second &&
         First->getCanonicalDecl() == Second->getCanonicalDecl();
}

/// Determines if an expression is a declaration reference to a
/// particular variable.
static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
  if (!Target || !E)
    return false;
  const DeclRefExpr *Decl = getDeclRef(E);
  return Decl && areSameVariable(Target, Decl->getDecl());
}

/// If the expression is a dereference or call to operator*(), return the
/// operand. Otherwise, return NULL.
static const Expr *getDereferenceOperand(const Expr *E) {
  if (const auto *Uop = dyn_cast<UnaryOperator>(E))
    return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;

  if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
    return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
               ? OpCall->getArg(0)
               : nullptr;
  }

  return nullptr;
}

/// Returns true when the Container contains an Expr equivalent to E.
template <typename ContainerT>
static bool containsExpr(ASTContext *Context, const ContainerT *Container,
                         const Expr *E) {
  llvm::FoldingSetNodeID ID;
  E->Profile(ID, *Context, true);
  for (const auto &I : *Container) {
    if (ID == I.second)
      return true;
  }
  return false;
}

/// Returns true when the index expression is a declaration reference to
/// IndexVar.
///
/// If the index variable is `index`, this function returns true on
///    arrayExpression[index];
///    containerExpression[index];
/// but not
///    containerExpression[notIndex];
static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
                                   const VarDecl *IndexVar) {
  const DeclRefExpr *Idx = getDeclRef(IndexExpr);
  return Idx && Idx->getType()->isIntegerType() &&
         areSameVariable(IndexVar, Idx->getDecl());
}

/// Returns true when the index expression is a declaration reference to
/// IndexVar, Obj is the same expression as SourceExpr after all parens and
/// implicit casts are stripped off.
///
/// If PermitDeref is true, IndexExpression may
/// be a dereference (overloaded or builtin operator*).
///
/// This function is intended for array-like containers, as it makes sure that
/// both the container and the index match.
/// If the loop has index variable `index` and iterates over `container`, then
/// isIndexInSubscriptExpr returns true for
/// \code
///   container[index]
///   container.at(index)
///   container->at(index)
/// \endcode
/// but not for
/// \code
///   container[notIndex]
///   notContainer[index]
/// \endcode
/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
/// true on these expressions:
/// \code
///   (*container)[index]
///   (*container).at(index)
/// \endcode
static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
                                   const VarDecl *IndexVar, const Expr *Obj,
                                   const Expr *SourceExpr, bool PermitDeref) {
  if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
    return false;

  if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
                  Obj->IgnoreParenImpCasts()))
    return true;

  if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
    if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
                                   InnerObj->IgnoreParenImpCasts()))
      return true;

  return false;
}

/// Returns true when Opcall is a call a one-parameter dereference of
/// IndexVar.
///
/// For example, if the index variable is `index`, returns true for
///   *index
/// but not
///   index
///   *notIndex
static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
                                  const VarDecl *IndexVar) {
  return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
         exprReferencesVariable(IndexVar, OpCall->getArg(0));
}

/// Returns true when Uop is a dereference of IndexVar.
///
/// For example, if the index variable is `index`, returns true for
///   *index
/// but not
///   index
///   *notIndex
static bool isDereferenceOfUop(const UnaryOperator *Uop,
                               const VarDecl *IndexVar) {
  return Uop->getOpcode() == UO_Deref &&
         exprReferencesVariable(IndexVar, Uop->getSubExpr());
}

/// Determines whether the given Decl defines a variable initialized to
/// the loop object.
///
/// This is intended to find cases such as
/// \code
///   for (int i = 0; i < arraySize(arr); ++i) {
///     T t = arr[i];
///     // use t, do not use i
///   }
/// \endcode
/// and
/// \code
///   for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
///     T t = *i;
///     // use t, do not use i
///   }
/// \endcode
static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl,
                        const VarDecl *IndexVar) {
  const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
  if (!VDecl)
    return false;
  if (!VDecl->hasInit())
    return false;

  bool OnlyCasts = true;
  const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts();
  if (Init && isa<CXXConstructExpr>(Init)) {
    Init = digThroughConstructors(Init);
    OnlyCasts = false;
  }
  if (!Init)
    return false;

  // Check that the declared type is the same as (or a reference to) the
  // container type.
  if (!OnlyCasts) {
    QualType InitType = Init->getType();
    QualType DeclarationType = VDecl->getType();
    if (!DeclarationType.isNull() && DeclarationType->isReferenceType())
      DeclarationType = DeclarationType.getNonReferenceType();

    if (InitType.isNull() || DeclarationType.isNull() ||
        !Context->hasSameUnqualifiedType(DeclarationType, InitType))
      return false;
  }

  switch (Init->getStmtClass()) {
  case Stmt::ArraySubscriptExprClass: {
    const auto *E = cast<ArraySubscriptExpr>(Init);
    // We don't really care which array is used here. We check to make sure
    // it was the correct one later, since the AST will traverse it next.
    return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
  }

  case Stmt::UnaryOperatorClass:
    return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);

  case Stmt::CXXOperatorCallExprClass: {
    const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
    if (OpCall->getOperator() == OO_Star)
      return isDereferenceOfOpCall(OpCall, IndexVar);
    if (OpCall->getOperator() == OO_Subscript) {
      assert(OpCall->getNumArgs() == 2);
      return isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar);
    }
    break;
  }

  case Stmt::CXXMemberCallExprClass: {
    const auto *MemCall = cast<CXXMemberCallExpr>(Init);
    // This check is needed because getMethodDecl can return nullptr if the
    // callee is a member function pointer.
    const auto *MDecl = MemCall->getMethodDecl();
    if (MDecl && !isa<CXXConversionDecl>(MDecl) &&
        MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) {
      return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar);
    }
    return false;
  }

  default:
    break;
  }
  return false;
}

/// Determines whether the bound of a for loop condition expression is
/// the same as the statically computable size of ArrayType.
///
/// Given
/// \code
///   const int N = 5;
///   int arr[N];
/// \endcode
/// This is intended to permit
/// \code
///   for (int i = 0; i < N; ++i) {  /* use arr[i] */ }
///   for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
/// \endcode
static bool arrayMatchesBoundExpr(ASTContext *Context,
                                  const QualType &ArrayType,
                                  const Expr *ConditionExpr) {
  if (!ConditionExpr || ConditionExpr->isValueDependent())
    return false;
  const ConstantArrayType *ConstType =
      Context->getAsConstantArrayType(ArrayType);
  if (!ConstType)
    return false;
  llvm::APSInt ConditionSize;
  if (!ConditionExpr->isIntegerConstantExpr(ConditionSize, *Context))
    return false;
  llvm::APSInt ArraySize(ConstType->getSize());
  return llvm::APSInt::isSameValue(ConditionSize, ArraySize);
}

ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
                                               const VarDecl *IndexVar,
                                               const VarDecl *EndVar,
                                               const Expr *ContainerExpr,
                                               const Expr *ArrayBoundExpr,
                                               bool ContainerNeedsDereference)
    : Context(Context), IndexVar(IndexVar), EndVar(EndVar),
      ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
      ContainerNeedsDereference(ContainerNeedsDereference),
      OnlyUsedAsIndex(true), AliasDecl(nullptr),
      ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr),
      CurrStmtParent(nullptr), ReplaceWithAliasUse(false),
      AliasFromForInit(false) {
  if (ContainerExpr)
    addComponent(ContainerExpr);
}

bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
  TraverseStmt(const_cast<Stmt *>(Body));
  return OnlyUsedAsIndex && ContainerExpr;
}

void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
  // FIXME: add sort(on ID)+unique to avoid extra work.
  for (const auto &I : Components)
    addComponent(I);
}

void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
  llvm::FoldingSetNodeID ID;
  const Expr *Node = E->IgnoreParenImpCasts();
  Node->Profile(ID, *Context, true);
  DependentExprs.push_back(std::make_pair(Node, ID));
}

void ForLoopIndexUseVisitor::addUsage(const Usage &U) {
  SourceLocation Begin = U.Range.getBegin();
  if (Begin.isMacroID())
    Begin = Context->getSourceManager().getSpellingLoc(Begin);

  if (UsageLocations.insert(Begin).second)
    Usages.push_back(U);
}

/// If the unary operator is a dereference of IndexVar, include it
/// as a valid usage and prune the traversal.
///
/// For example, if container.begin() and container.end() both return pointers
/// to int, this makes sure that the initialization for `k` is not counted as an
/// unconvertible use of the iterator `i`.
/// \code
///   for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
///     int k = *i + 2;
///   }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseUnaryDeref(UnaryOperator *Uop) {
  // If we dereference an iterator that's actually a pointer, count the
  // occurrence.
  if (isDereferenceOfUop(Uop, IndexVar)) {
    addUsage(Usage(Uop));
    return true;
  }

  return VisitorBase::TraverseUnaryOperator(Uop);
}

/// If the member expression is operator-> (overloaded or not) on
/// IndexVar, include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
///   struct Foo { int bar(); int x; };
///   vector<Foo> v;
/// \endcode
/// the following uses will be considered convertible:
/// \code
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     int b = i->bar();
///     int k = i->x + 1;
///   }
/// \endcode
/// though
/// \code
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     int k = i.insert(1);
///   }
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     int b = e->bar();
///   }
/// \endcode
/// will not.
bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
  const Expr *Base = Member->getBase();
  const DeclRefExpr *Obj = getDeclRef(Base);
  const Expr *ResultExpr = Member;
  QualType ExprType;
  if (const auto *Call =
          dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
    // If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
    // the MemberExpr does not have the expression we want. We therefore catch
    // that instance here.
    // For example, if vector<Foo>::iterator defines operator->(), then the
    // example `i->bar()` at the top of this function is a CXXMemberCallExpr
    // referring to `i->` as the member function called. We want just `i`, so
    // we take the argument to operator->() as the base object.
    if (Call->getOperator() == OO_Arrow) {
      assert(Call->getNumArgs() == 1 &&
             "Operator-> takes more than one argument");
      Obj = getDeclRef(Call->getArg(0));
      ResultExpr = Obj;
      ExprType = Call->getCallReturnType(*Context);
    }
  }

  if (Obj && exprReferencesVariable(IndexVar, Obj)) {
    // Member calls on the iterator with '.' are not allowed.
    if (!Member->isArrow()) {
      OnlyUsedAsIndex = false;
      return true;
    }

    if (ExprType.isNull())
      ExprType = Obj->getType();

    if (!ExprType->isPointerType())
      return false;

    // FIXME: This works around not having the location of the arrow operator.
    // Consider adding OperatorLoc to MemberExpr?
    SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
        Base->getExprLoc(), 0, Context->getSourceManager(),
        Context->getLangOpts());
    // If something complicated is happening (i.e. the next token isn't an
    // arrow), give up on making this work.
    if (ArrowLoc.isValid()) {
      addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow,
                     SourceRange(Base->getExprLoc(), ArrowLoc)));
      return true;
    }
  }
  return VisitorBase::TraverseMemberExpr(Member);
}

/// If a member function call is the at() accessor on the container with
/// IndexVar as the single argument, include it as a valid usage and prune
/// the traversal.
///
/// Member calls on other objects will not be permitted.
/// Calls on the iterator object are not permitted, unless done through
/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
    CXXMemberCallExpr *MemberCall) {
  auto *Member =
      dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
  if (!Member)
    return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);

  // We specifically allow an accessor named "at" to let STL in, though
  // this is restricted to pseudo-arrays by requiring a single, integer
  // argument.
  const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
  if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
    if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
                               Member->getBase(), ContainerExpr,
                               ContainerNeedsDereference)) {
      addUsage(Usage(MemberCall));
      return true;
    }
  }

  if (containsExpr(Context, &DependentExprs, Member->getBase()))
    ConfidenceLevel.lowerTo(Confidence::CL_Risky);

  return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
}

/// If an overloaded operator call is a dereference of IndexVar or
/// a subscript of the container with IndexVar as the single argument,
/// include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
///   struct Foo { int bar(); int x; };
///   vector<Foo> v;
///   void f(Foo);
/// \endcode
/// the following uses will be considered convertible:
/// \code
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     f(*i);
///   }
///   for (int i = 0; i < v.size(); ++i) {
///      int i = v[i] + 1;
///   }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
    CXXOperatorCallExpr *OpCall) {
  switch (OpCall->getOperator()) {
  case OO_Star:
    if (isDereferenceOfOpCall(OpCall, IndexVar)) {
      addUsage(Usage(OpCall));
      return true;
    }
    break;

  case OO_Subscript:
    if (OpCall->getNumArgs() != 2)
      break;
    if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
                               OpCall->getArg(0), ContainerExpr,
                               ContainerNeedsDereference)) {
      addUsage(Usage(OpCall));
      return true;
    }
    break;

  default:
    break;
  }
  return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
}

/// If we encounter an array with IndexVar as the index of an
/// ArraySubsriptExpression, note it as a consistent usage and prune the
/// AST traversal.
///
/// For example, given
/// \code
///   const int N = 5;
///   int arr[N];
/// \endcode
/// This is intended to permit
/// \code
///   for (int i = 0; i < N; ++i) {  /* use arr[i] */ }
/// \endcode
/// but not
/// \code
///   for (int i = 0; i < N; ++i) {  /* use notArr[i] */ }
/// \endcode
/// and further checking needs to be done later to ensure that exactly one array
/// is referenced.
bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
  Expr *Arr = E->getBase();
  if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
    return VisitorBase::TraverseArraySubscriptExpr(E);

  if ((ContainerExpr &&
       !areSameExpr(Context, Arr->IgnoreParenImpCasts(),
                    ContainerExpr->IgnoreParenImpCasts())) ||
      !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
                             ArrayBoundExpr)) {
    // If we have already discovered the array being indexed and this isn't it
    // or this array doesn't match, mark this loop as unconvertible.
    OnlyUsedAsIndex = false;
    return VisitorBase::TraverseArraySubscriptExpr(E);
  }

  if (!ContainerExpr)
    ContainerExpr = Arr;

  addUsage(Usage(E));
  return true;
}

/// If we encounter a reference to IndexVar in an unpruned branch of the
/// traversal, mark this loop as unconvertible.
///
/// This implements the whitelist for convertible loops: any usages of IndexVar
/// not explicitly considered convertible by this traversal will be caught by
/// this function.
///
/// Additionally, if the container expression is more complex than just a
/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
/// our confidence in the transformation.
///
/// For example, these are not permitted:
/// \code
///   for (int i = 0; i < N; ++i) {  printf("arr[%d] = %d", i, arr[i]); }
///   for (vector<int>::iterator i = container.begin(), e = container.end();
///        i != e; ++i)
///     i.insert(0);
///   for (vector<int>::iterator i = container.begin(), e = container.end();
///        i != e; ++i)
///     if (i + 1 != e)
///       printf("%d", *i);
/// \endcode
///
/// And these will raise the risk level:
/// \code
///    int arr[10][20];
///    int l = 5;
///    for (int j = 0; j < 20; ++j)
///      int k = arr[l][j] + l; // using l outside arr[l] is considered risky
///    for (int i = 0; i < obj.getVector().size(); ++i)
///      obj.foo(10); // using `obj` is considered risky
/// \endcode
bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
  const ValueDecl *TheDecl = E->getDecl();
  if (areSameVariable(IndexVar, TheDecl) ||
      exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) ||
      exprReferencesVariable(EndVar, E))
    OnlyUsedAsIndex = false;
  if (containsExpr(Context, &DependentExprs, E))
    ConfidenceLevel.lowerTo(Confidence::CL_Risky);
  return true;
}

/// If the loop index is captured by a lambda, replace this capture
/// by the range-for loop variable.
///
/// For example:
/// \code
///   for (int i = 0; i < N; ++i) {
///     auto f = [v, i](int k) {
///       printf("%d\n", v[i] + k);
///     };
///     f(v[i]);
///   }
/// \endcode
///
/// Will be replaced by:
/// \code
///   for (auto & elem : v) {
///     auto f = [v, elem](int k) {
///       printf("%d\n", elem + k);
///     };
///     f(elem);
///   }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE,
                                                   const LambdaCapture *C,
                                                   Expr *Init) {
  if (C->capturesVariable()) {
    const VarDecl *VDecl = C->getCapturedVar();
    if (areSameVariable(IndexVar, cast<ValueDecl>(VDecl))) {
      // FIXME: if the index is captured, it will count as an usage and the
      // alias (if any) won't work, because it is only used in case of having
      // exactly one usage.
      addUsage(Usage(nullptr,
                     C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy
                                                       : Usage::UK_CaptureByRef,
                     C->getLocation()));
    }
  }
  return VisitorBase::TraverseLambdaCapture(LE, C, Init);
}

/// If we find that another variable is created just to refer to the loop
/// element, note it for reuse as the loop variable.
///
/// See the comments for isAliasDecl.
bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
  if (!AliasDecl && S->isSingleDecl() &&
      isAliasDecl(Context, S->getSingleDecl(), IndexVar)) {
    AliasDecl = S;
    if (CurrStmtParent) {
      if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
          isa<SwitchStmt>(CurrStmtParent))
        ReplaceWithAliasUse = true;
      else if (isa<ForStmt>(CurrStmtParent)) {
        if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
          ReplaceWithAliasUse = true;
        else
          // It's assumed S came the for loop's init clause.
          AliasFromForInit = true;
      }
    }
  }

  return true;
}

bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
  // If this is an initialization expression for a lambda capture, prune the
  // traversal so that we don't end up diagnosing the contained DeclRefExpr as
  // inconsistent usage. No need to record the usage here -- this is done in
  // TraverseLambdaCapture().
  if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) {
    // Any child of a LambdaExpr that isn't the body is an initialization
    // expression.
    if (S != LE->getBody()) {
      return true;
    }
  }

  // All this pointer swapping is a mechanism for tracking immediate parentage
  // of Stmts.
  const Stmt *OldNextParent = NextStmtParent;
  CurrStmtParent = NextStmtParent;
  NextStmtParent = S;
  bool Result = VisitorBase::TraverseStmt(S);
  NextStmtParent = OldNextParent;
  return Result;
}

std::string VariableNamer::createIndexName() {
  // FIXME: Add in naming conventions to handle:
  //  - How to handle conflicts.
  //  - An interactive process for naming.
  std::string IteratorName;
  StringRef ContainerName;
  if (TheContainer)
    ContainerName = TheContainer->getName();

  size_t Len = ContainerName.size();
  if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) {
    IteratorName = ContainerName.substr(0, Len - 1);
    // E.g.: (auto thing : things)
    if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
      return IteratorName;
  }

  if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) {
    IteratorName = ContainerName.substr(0, Len - 2);
    // E.g.: (auto thing : things_)
    if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
      return IteratorName;
  }

  return OldIndex->getName();
}

/// Determines whether or not the the name \a Symbol conflicts with
/// language keywords or defined macros. Also checks if the name exists in
/// LoopContext, any of its parent contexts, or any of its child statements.
///
/// We also check to see if the same identifier was generated by this loop
/// converter in a loop nested within SourceStmt.
bool VariableNamer::declarationExists(StringRef Symbol) {
  assert(Context != nullptr && "Expected an ASTContext");
  IdentifierInfo &Ident = Context->Idents.get(Symbol);

  // Check if the symbol is not an identifier (ie. is a keyword or alias).
  if (!isAnyIdentifier(Ident.getTokenID()))
    return true;

  // Check for conflicting macro definitions.
  if (Ident.hasMacroDefinition())
    return true;

  // Determine if the symbol was generated in a parent context.
  for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
    StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
    if (I != GeneratedDecls->end() && I->second == Symbol)
      return true;
  }

  // FIXME: Rather than detecting conflicts at their usages, we should check the
  // parent context.
  // For some reason, lookup() always returns the pair (NULL, NULL) because its
  // StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
  // of DeclContext::lookup()). Why is this?

  // Finally, determine if the symbol was used in the loop or a child context.
  DeclFinderASTVisitor DeclFinder(Symbol, GeneratedDecls);
  return DeclFinder.findUsages(SourceStmt);
}

} // namespace modernize
} // namespace tidy
} // namespace clang