reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitons for the AST differencing interface.
//
//===----------------------------------------------------------------------===//

#include "clang/Tooling/ASTDiff/ASTDiff.h"

#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/PriorityQueue.h"

#include <limits>
#include <memory>
#include <unordered_set>

using namespace llvm;
using namespace clang;

namespace clang {
namespace diff {

namespace {
/// Maps nodes of the left tree to ones on the right, and vice versa.
class Mapping {
public:
  Mapping() = default;
  Mapping(Mapping &&Other) = default;
  Mapping &operator=(Mapping &&Other) = default;

  Mapping(size_t Size) {
    SrcToDst = std::make_unique<NodeId[]>(Size);
    DstToSrc = std::make_unique<NodeId[]>(Size);
  }

  void link(NodeId Src, NodeId Dst) {
    SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
  }

  NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
  NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
  bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
  bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }

private:
  std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
};
} // end anonymous namespace

class ASTDiff::Impl {
public:
  SyntaxTree::Impl &T1, &T2;
  Mapping TheMapping;

  Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
       const ComparisonOptions &Options);

  /// Matches nodes one-by-one based on their similarity.
  void computeMapping();

  // Compute Change for each node based on similarity.
  void computeChangeKinds(Mapping &M);

  NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
                   NodeId Id) const {
    if (&*Tree == &T1)
      return TheMapping.getDst(Id);
    assert(&*Tree == &T2 && "Invalid tree.");
    return TheMapping.getSrc(Id);
  }

private:
  // Returns true if the two subtrees are identical.
  bool identical(NodeId Id1, NodeId Id2) const;

  // Returns false if the nodes must not be mached.
  bool isMatchingPossible(NodeId Id1, NodeId Id2) const;

  // Returns true if the nodes' parents are matched.
  bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;

  // Uses an optimal albeit slow algorithm to compute a mapping between two
  // subtrees, but only if both have fewer nodes than MaxSize.
  void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;

  // Computes the ratio of common descendants between the two nodes.
  // Descendants are only considered to be equal when they are mapped in M.
  double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;

  // Returns the node that has the highest degree of similarity.
  NodeId findCandidate(const Mapping &M, NodeId Id1) const;

  // Returns a mapping of identical subtrees.
  Mapping matchTopDown() const;

  // Tries to match any yet unmapped nodes, in a bottom-up fashion.
  void matchBottomUp(Mapping &M) const;

  const ComparisonOptions &Options;

  friend class ZhangShashaMatcher;
};

/// Represents the AST of a TranslationUnit.
class SyntaxTree::Impl {
public:
  Impl(SyntaxTree *Parent, ASTContext &AST);
  /// Constructs a tree from an AST node.
  Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
  Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
  template <class T>
  Impl(SyntaxTree *Parent,
       typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node,
       ASTContext &AST)
      : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
  template <class T>
  Impl(SyntaxTree *Parent,
       typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node,
       ASTContext &AST)
      : Impl(Parent, dyn_cast<Decl>(Node), AST) {}

  SyntaxTree *Parent;
  ASTContext &AST;
  PrintingPolicy TypePP;
  /// Nodes in preorder.
  std::vector<Node> Nodes;
  std::vector<NodeId> Leaves;
  // Maps preorder indices to postorder ones.
  std::vector<int> PostorderIds;
  std::vector<NodeId> NodesBfs;

  int getSize() const { return Nodes.size(); }
  NodeId getRootId() const { return 0; }
  PreorderIterator begin() const { return getRootId(); }
  PreorderIterator end() const { return getSize(); }

  const Node &getNode(NodeId Id) const { return Nodes[Id]; }
  Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
  bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
  void addNode(Node &N) { Nodes.push_back(N); }
  int getNumberOfDescendants(NodeId Id) const;
  bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
  int findPositionInParent(NodeId Id, bool Shifted = false) const;

  std::string getRelativeName(const NamedDecl *ND,
                              const DeclContext *Context) const;
  std::string getRelativeName(const NamedDecl *ND) const;

  std::string getNodeValue(NodeId Id) const;
  std::string getNodeValue(const Node &Node) const;
  std::string getDeclValue(const Decl *D) const;
  std::string getStmtValue(const Stmt *S) const;

private:
  void initTree();
  void setLeftMostDescendants();
};

static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
  return !I->isWritten();
}

template <class T>
static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
  if (!N)
    return true;
  SourceLocation SLoc = N->getSourceRange().getBegin();
  if (SLoc.isValid()) {
    // Ignore everything from other files.
    if (!SrcMgr.isInMainFile(SLoc))
      return true;
    // Ignore macros.
    if (SLoc != SrcMgr.getSpellingLoc(SLoc))
      return true;
  }
  return isSpecializedNodeExcluded(N);
}

namespace {
// Sets Height, Parent and Children for each node.
struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
  int Id = 0, Depth = 0;
  NodeId Parent;
  SyntaxTree::Impl &Tree;

  PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}

  template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
    NodeId MyId = Id;
    Tree.Nodes.emplace_back();
    Node &N = Tree.getMutableNode(MyId);
    N.Parent = Parent;
    N.Depth = Depth;
    N.ASTNode = DynTypedNode::create(*ASTNode);
    assert(!N.ASTNode.getNodeKind().isNone() &&
           "Expected nodes to have a valid kind.");
    if (Parent.isValid()) {
      Node &P = Tree.getMutableNode(Parent);
      P.Children.push_back(MyId);
    }
    Parent = MyId;
    ++Id;
    ++Depth;
    return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
  }
  void PostTraverse(std::tuple<NodeId, NodeId> State) {
    NodeId MyId, PreviousParent;
    std::tie(MyId, PreviousParent) = State;
    assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
    Parent = PreviousParent;
    --Depth;
    Node &N = Tree.getMutableNode(MyId);
    N.RightMostDescendant = Id - 1;
    assert(N.RightMostDescendant >= 0 &&
           N.RightMostDescendant < Tree.getSize() &&
           "Rightmost descendant must be a valid tree node.");
    if (N.isLeaf())
      Tree.Leaves.push_back(MyId);
    N.Height = 1;
    for (NodeId Child : N.Children)
      N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
  }
  bool TraverseDecl(Decl *D) {
    if (isNodeExcluded(Tree.AST.getSourceManager(), D))
      return true;
    auto SavedState = PreTraverse(D);
    RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
    PostTraverse(SavedState);
    return true;
  }
  bool TraverseStmt(Stmt *S) {
    if (auto *E = dyn_cast_or_null<Expr>(S))
      S = E->IgnoreImplicit();
    if (isNodeExcluded(Tree.AST.getSourceManager(), S))
      return true;
    auto SavedState = PreTraverse(S);
    RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
    PostTraverse(SavedState);
    return true;
  }
  bool TraverseType(QualType T) { return true; }
  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
    if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
      return true;
    auto SavedState = PreTraverse(Init);
    RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
    PostTraverse(SavedState);
    return true;
  }
};
} // end anonymous namespace

SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
    : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
  TypePP.AnonymousTagLocations = false;
}

SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
    : Impl(Parent, AST) {
  PreorderVisitor PreorderWalker(*this);
  PreorderWalker.TraverseDecl(N);
  initTree();
}

SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
    : Impl(Parent, AST) {
  PreorderVisitor PreorderWalker(*this);
  PreorderWalker.TraverseStmt(N);
  initTree();
}

static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
                                               NodeId Root) {
  std::vector<NodeId> Postorder;
  std::function<void(NodeId)> Traverse = [&](NodeId Id) {
    const Node &N = Tree.getNode(Id);
    for (NodeId Child : N.Children)
      Traverse(Child);
    Postorder.push_back(Id);
  };
  Traverse(Root);
  return Postorder;
}

static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
                                         NodeId Root) {
  std::vector<NodeId> Ids;
  size_t Expanded = 0;
  Ids.push_back(Root);
  while (Expanded < Ids.size())
    for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
      Ids.push_back(Child);
  return Ids;
}

void SyntaxTree::Impl::initTree() {
  setLeftMostDescendants();
  int PostorderId = 0;
  PostorderIds.resize(getSize());
  std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
    for (NodeId Child : getNode(Id).Children)
      PostorderTraverse(Child);
    PostorderIds[Id] = PostorderId;
    ++PostorderId;
  };
  PostorderTraverse(getRootId());
  NodesBfs = getSubtreeBfs(*this, getRootId());
}

void SyntaxTree::Impl::setLeftMostDescendants() {
  for (NodeId Leaf : Leaves) {
    getMutableNode(Leaf).LeftMostDescendant = Leaf;
    NodeId Parent, Cur = Leaf;
    while ((Parent = getNode(Cur).Parent).isValid() &&
           getNode(Parent).Children[0] == Cur) {
      Cur = Parent;
      getMutableNode(Cur).LeftMostDescendant = Leaf;
    }
  }
}

int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
  return getNode(Id).RightMostDescendant - Id + 1;
}

bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
  return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
}

int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
  NodeId Parent = getNode(Id).Parent;
  if (Parent.isInvalid())
    return 0;
  const auto &Siblings = getNode(Parent).Children;
  int Position = 0;
  for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
    if (Shifted)
      Position += getNode(Siblings[I]).Shift;
    if (Siblings[I] == Id) {
      Position += I;
      return Position;
    }
  }
  llvm_unreachable("Node not found in parent's children.");
}

// Returns the qualified name of ND. If it is subordinate to Context,
// then the prefix of the latter is removed from the returned value.
std::string
SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
                                  const DeclContext *Context) const {
  std::string Val = ND->getQualifiedNameAsString();
  std::string ContextPrefix;
  if (!Context)
    return Val;
  if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
    ContextPrefix = Namespace->getQualifiedNameAsString();
  else if (auto *Record = dyn_cast<RecordDecl>(Context))
    ContextPrefix = Record->getQualifiedNameAsString();
  else if (AST.getLangOpts().CPlusPlus11)
    if (auto *Tag = dyn_cast<TagDecl>(Context))
      ContextPrefix = Tag->getQualifiedNameAsString();
  // Strip the qualifier, if Val refers to something in the current scope.
  // But leave one leading ':' in place, so that we know that this is a
  // relative path.
  if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
    Val = Val.substr(ContextPrefix.size() + 1);
  return Val;
}

std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
  return getRelativeName(ND, ND->getDeclContext());
}

static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
                                                  const Stmt *S) {
  while (S) {
    const auto &Parents = AST.getParents(*S);
    if (Parents.empty())
      return nullptr;
    const auto &P = Parents[0];
    if (const auto *D = P.get<Decl>())
      return D->getDeclContext();
    S = P.get<Stmt>();
  }
  return nullptr;
}

static std::string getInitializerValue(const CXXCtorInitializer *Init,
                                       const PrintingPolicy &TypePP) {
  if (Init->isAnyMemberInitializer())
    return Init->getAnyMember()->getName();
  if (Init->isBaseInitializer())
    return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
  if (Init->isDelegatingInitializer())
    return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
  llvm_unreachable("Unknown initializer type");
}

std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
  return getNodeValue(getNode(Id));
}

std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
  const DynTypedNode &DTN = N.ASTNode;
  if (auto *S = DTN.get<Stmt>())
    return getStmtValue(S);
  if (auto *D = DTN.get<Decl>())
    return getDeclValue(D);
  if (auto *Init = DTN.get<CXXCtorInitializer>())
    return getInitializerValue(Init, TypePP);
  llvm_unreachable("Fatal: unhandled AST node.\n");
}

std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
  std::string Value;
  if (auto *V = dyn_cast<ValueDecl>(D))
    return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
  if (auto *N = dyn_cast<NamedDecl>(D))
    Value += getRelativeName(N) + ";";
  if (auto *T = dyn_cast<TypedefNameDecl>(D))
    return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
  if (auto *T = dyn_cast<TypeDecl>(D))
    if (T->getTypeForDecl())
      Value +=
          T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
          ";";
  if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
    return U->getNominatedNamespace()->getName();
  if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
    CharSourceRange Range(A->getSourceRange(), false);
    return Lexer::getSourceText(Range, AST.getSourceManager(),
                                AST.getLangOpts());
  }
  return Value;
}

std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
  if (auto *U = dyn_cast<UnaryOperator>(S))
    return UnaryOperator::getOpcodeStr(U->getOpcode());
  if (auto *B = dyn_cast<BinaryOperator>(S))
    return B->getOpcodeStr();
  if (auto *M = dyn_cast<MemberExpr>(S))
    return getRelativeName(M->getMemberDecl());
  if (auto *I = dyn_cast<IntegerLiteral>(S)) {
    SmallString<256> Str;
    I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
    return Str.str();
  }
  if (auto *F = dyn_cast<FloatingLiteral>(S)) {
    SmallString<256> Str;
    F->getValue().toString(Str);
    return Str.str();
  }
  if (auto *D = dyn_cast<DeclRefExpr>(S))
    return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
  if (auto *String = dyn_cast<StringLiteral>(S))
    return String->getString();
  if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
    return B->getValue() ? "true" : "false";
  return "";
}

/// Identifies a node in a subtree by its postorder offset, starting at 1.
struct SNodeId {
  int Id = 0;

  explicit SNodeId(int Id) : Id(Id) {}
  explicit SNodeId() = default;

  operator int() const { return Id; }
  SNodeId &operator++() { return ++Id, *this; }
  SNodeId &operator--() { return --Id, *this; }
  SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
};

class Subtree {
private:
  /// The parent tree.
  const SyntaxTree::Impl &Tree;
  /// Maps SNodeIds to original ids.
  std::vector<NodeId> RootIds;
  /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
  std::vector<SNodeId> LeftMostDescendants;

public:
  std::vector<SNodeId> KeyRoots;

  Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
    RootIds = getSubtreePostorder(Tree, SubtreeRoot);
    int NumLeaves = setLeftMostDescendants();
    computeKeyRoots(NumLeaves);
  }
  int getSize() const { return RootIds.size(); }
  NodeId getIdInRoot(SNodeId Id) const {
    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
    return RootIds[Id - 1];
  }
  const Node &getNode(SNodeId Id) const {
    return Tree.getNode(getIdInRoot(Id));
  }
  SNodeId getLeftMostDescendant(SNodeId Id) const {
    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
    return LeftMostDescendants[Id - 1];
  }
  /// Returns the postorder index of the leftmost descendant in the subtree.
  NodeId getPostorderOffset() const {
    return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
  }
  std::string getNodeValue(SNodeId Id) const {
    return Tree.getNodeValue(getIdInRoot(Id));
  }

private:
  /// Returns the number of leafs in the subtree.
  int setLeftMostDescendants() {
    int NumLeaves = 0;
    LeftMostDescendants.resize(getSize());
    for (int I = 0; I < getSize(); ++I) {
      SNodeId SI(I + 1);
      const Node &N = getNode(SI);
      NumLeaves += N.isLeaf();
      assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
             "Postorder traversal in subtree should correspond to traversal in "
             "the root tree by a constant offset.");
      LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
                                       getPostorderOffset());
    }
    return NumLeaves;
  }
  void computeKeyRoots(int Leaves) {
    KeyRoots.resize(Leaves);
    std::unordered_set<int> Visited;
    int K = Leaves - 1;
    for (SNodeId I(getSize()); I > 0; --I) {
      SNodeId LeftDesc = getLeftMostDescendant(I);
      if (Visited.count(LeftDesc))
        continue;
      assert(K >= 0 && "K should be non-negative");
      KeyRoots[K] = I;
      Visited.insert(LeftDesc);
      --K;
    }
  }
};

/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
/// Computes an optimal mapping between two trees using only insertion,
/// deletion and update as edit actions (similar to the Levenshtein distance).
class ZhangShashaMatcher {
  const ASTDiff::Impl &DiffImpl;
  Subtree S1;
  Subtree S2;
  std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;

public:
  ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
                     const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
      : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
    TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
        size_t(S1.getSize()) + 1);
    ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
        size_t(S1.getSize()) + 1);
    for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
      TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
      ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
    }
  }

  std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
    std::vector<std::pair<NodeId, NodeId>> Matches;
    std::vector<std::pair<SNodeId, SNodeId>> TreePairs;

    computeTreeDist();

    bool RootNodePair = true;

    TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));

    while (!TreePairs.empty()) {
      SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
      std::tie(LastRow, LastCol) = TreePairs.back();
      TreePairs.pop_back();

      if (!RootNodePair) {
        computeForestDist(LastRow, LastCol);
      }

      RootNodePair = false;

      FirstRow = S1.getLeftMostDescendant(LastRow);
      FirstCol = S2.getLeftMostDescendant(LastCol);

      Row = LastRow;
      Col = LastCol;

      while (Row > FirstRow || Col > FirstCol) {
        if (Row > FirstRow &&
            ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
          --Row;
        } else if (Col > FirstCol &&
                   ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
          --Col;
        } else {
          SNodeId LMD1 = S1.getLeftMostDescendant(Row);
          SNodeId LMD2 = S2.getLeftMostDescendant(Col);
          if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
              LMD2 == S2.getLeftMostDescendant(LastCol)) {
            NodeId Id1 = S1.getIdInRoot(Row);
            NodeId Id2 = S2.getIdInRoot(Col);
            assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
                   "These nodes must not be matched.");
            Matches.emplace_back(Id1, Id2);
            --Row;
            --Col;
          } else {
            TreePairs.emplace_back(Row, Col);
            Row = LMD1;
            Col = LMD2;
          }
        }
      }
    }
    return Matches;
  }

private:
  /// We use a simple cost model for edit actions, which seems good enough.
  /// Simple cost model for edit actions. This seems to make the matching
  /// algorithm perform reasonably well.
  /// The values range between 0 and 1, or infinity if this edit action should
  /// always be avoided.
  static constexpr double DeletionCost = 1;
  static constexpr double InsertionCost = 1;

  double getUpdateCost(SNodeId Id1, SNodeId Id2) {
    if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
      return std::numeric_limits<double>::max();
    return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
  }

  void computeTreeDist() {
    for (SNodeId Id1 : S1.KeyRoots)
      for (SNodeId Id2 : S2.KeyRoots)
        computeForestDist(Id1, Id2);
  }

  void computeForestDist(SNodeId Id1, SNodeId Id2) {
    assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
    SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
    SNodeId LMD2 = S2.getLeftMostDescendant(Id2);

    ForestDist[LMD1][LMD2] = 0;
    for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
      ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
      for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
        ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
        SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
        SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
        if (DLMD1 == LMD1 && DLMD2 == LMD2) {
          double UpdateCost = getUpdateCost(D1, D2);
          ForestDist[D1][D2] =
              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
                        ForestDist[D1][D2 - 1] + InsertionCost,
                        ForestDist[D1 - 1][D2 - 1] + UpdateCost});
          TreeDist[D1][D2] = ForestDist[D1][D2];
        } else {
          ForestDist[D1][D2] =
              std::min({ForestDist[D1 - 1][D2] + DeletionCost,
                        ForestDist[D1][D2 - 1] + InsertionCost,
                        ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
        }
      }
    }
  }
};

ast_type_traits::ASTNodeKind Node::getType() const {
  return ASTNode.getNodeKind();
}

StringRef Node::getTypeLabel() const { return getType().asStringRef(); }

llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
  if (auto *ND = ASTNode.get<NamedDecl>()) {
    if (ND->getDeclName().isIdentifier())
      return ND->getQualifiedNameAsString();
  }
  return llvm::None;
}

llvm::Optional<StringRef> Node::getIdentifier() const {
  if (auto *ND = ASTNode.get<NamedDecl>()) {
    if (ND->getDeclName().isIdentifier())
      return ND->getName();
  }
  return llvm::None;
}

namespace {
// Compares nodes by their depth.
struct HeightLess {
  const SyntaxTree::Impl &Tree;
  HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
  bool operator()(NodeId Id1, NodeId Id2) const {
    return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
  }
};
} // end anonymous namespace

namespace {
// Priority queue for nodes, sorted descendingly by their height.
class PriorityList {
  const SyntaxTree::Impl &Tree;
  HeightLess Cmp;
  std::vector<NodeId> Container;
  PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;

public:
  PriorityList(const SyntaxTree::Impl &Tree)
      : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}

  void push(NodeId id) { List.push(id); }

  std::vector<NodeId> pop() {
    int Max = peekMax();
    std::vector<NodeId> Result;
    if (Max == 0)
      return Result;
    while (peekMax() == Max) {
      Result.push_back(List.top());
      List.pop();
    }
    // TODO this is here to get a stable output, not a good heuristic
    llvm::sort(Result);
    return Result;
  }
  int peekMax() const {
    if (List.empty())
      return 0;
    return Tree.getNode(List.top()).Height;
  }
  void open(NodeId Id) {
    for (NodeId Child : Tree.getNode(Id).Children)
      push(Child);
  }
};
} // end anonymous namespace

bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
  const Node &N1 = T1.getNode(Id1);
  const Node &N2 = T2.getNode(Id2);
  if (N1.Children.size() != N2.Children.size() ||
      !isMatchingPossible(Id1, Id2) ||
      T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
    return false;
  for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
    if (!identical(N1.Children[Id], N2.Children[Id]))
      return false;
  return true;
}

bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
  return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
}

bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
                                    NodeId Id2) const {
  NodeId P1 = T1.getNode(Id1).Parent;
  NodeId P2 = T2.getNode(Id2).Parent;
  return (P1.isInvalid() && P2.isInvalid()) ||
         (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
}

void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
                                      NodeId Id2) const {
  if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
      Options.MaxSize)
    return;
  ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
  std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
  for (const auto Tuple : R) {
    NodeId Src = Tuple.first;
    NodeId Dst = Tuple.second;
    if (!M.hasSrc(Src) && !M.hasDst(Dst))
      M.link(Src, Dst);
  }
}

double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
                                           NodeId Id2) const {
  int CommonDescendants = 0;
  const Node &N1 = T1.getNode(Id1);
  // Count the common descendants, excluding the subtree root.
  for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
    NodeId Dst = M.getDst(Src);
    CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
  }
  // We need to subtract 1 to get the number of descendants excluding the root.
  double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
                       T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
  // CommonDescendants is less than the size of one subtree.
  assert(Denominator >= 0 && "Expected non-negative denominator.");
  if (Denominator == 0)
    return 0;
  return CommonDescendants / Denominator;
}

NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
  NodeId Candidate;
  double HighestSimilarity = 0.0;
  for (NodeId Id2 : T2) {
    if (!isMatchingPossible(Id1, Id2))
      continue;
    if (M.hasDst(Id2))
      continue;
    double Similarity = getJaccardSimilarity(M, Id1, Id2);
    if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
      HighestSimilarity = Similarity;
      Candidate = Id2;
    }
  }
  return Candidate;
}

void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
  std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
  for (NodeId Id1 : Postorder) {
    if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
        !M.hasDst(T2.getRootId())) {
      if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
        M.link(T1.getRootId(), T2.getRootId());
        addOptimalMapping(M, T1.getRootId(), T2.getRootId());
      }
      break;
    }
    bool Matched = M.hasSrc(Id1);
    const Node &N1 = T1.getNode(Id1);
    bool MatchedChildren = llvm::any_of(
        N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
    if (Matched || !MatchedChildren)
      continue;
    NodeId Id2 = findCandidate(M, Id1);
    if (Id2.isValid()) {
      M.link(Id1, Id2);
      addOptimalMapping(M, Id1, Id2);
    }
  }
}

Mapping ASTDiff::Impl::matchTopDown() const {
  PriorityList L1(T1);
  PriorityList L2(T2);

  Mapping M(T1.getSize() + T2.getSize());

  L1.push(T1.getRootId());
  L2.push(T2.getRootId());

  int Max1, Max2;
  while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
         Options.MinHeight) {
    if (Max1 > Max2) {
      for (NodeId Id : L1.pop())
        L1.open(Id);
      continue;
    }
    if (Max2 > Max1) {
      for (NodeId Id : L2.pop())
        L2.open(Id);
      continue;
    }
    std::vector<NodeId> H1, H2;
    H1 = L1.pop();
    H2 = L2.pop();
    for (NodeId Id1 : H1) {
      for (NodeId Id2 : H2) {
        if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
          for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
            M.link(Id1 + I, Id2 + I);
        }
      }
    }
    for (NodeId Id1 : H1) {
      if (!M.hasSrc(Id1))
        L1.open(Id1);
    }
    for (NodeId Id2 : H2) {
      if (!M.hasDst(Id2))
        L2.open(Id2);
    }
  }
  return M;
}

ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
                    const ComparisonOptions &Options)
    : T1(T1), T2(T2), Options(Options) {
  computeMapping();
  computeChangeKinds(TheMapping);
}

void ASTDiff::Impl::computeMapping() {
  TheMapping = matchTopDown();
  if (Options.StopAfterTopDown)
    return;
  matchBottomUp(TheMapping);
}

void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
  for (NodeId Id1 : T1) {
    if (!M.hasSrc(Id1)) {
      T1.getMutableNode(Id1).Change = Delete;
      T1.getMutableNode(Id1).Shift -= 1;
    }
  }
  for (NodeId Id2 : T2) {
    if (!M.hasDst(Id2)) {
      T2.getMutableNode(Id2).Change = Insert;
      T2.getMutableNode(Id2).Shift -= 1;
    }
  }
  for (NodeId Id1 : T1.NodesBfs) {
    NodeId Id2 = M.getDst(Id1);
    if (Id2.isInvalid())
      continue;
    if (!haveSameParents(M, Id1, Id2) ||
        T1.findPositionInParent(Id1, true) !=
            T2.findPositionInParent(Id2, true)) {
      T1.getMutableNode(Id1).Shift -= 1;
      T2.getMutableNode(Id2).Shift -= 1;
    }
  }
  for (NodeId Id2 : T2.NodesBfs) {
    NodeId Id1 = M.getSrc(Id2);
    if (Id1.isInvalid())
      continue;
    Node &N1 = T1.getMutableNode(Id1);
    Node &N2 = T2.getMutableNode(Id2);
    if (Id1.isInvalid())
      continue;
    if (!haveSameParents(M, Id1, Id2) ||
        T1.findPositionInParent(Id1, true) !=
            T2.findPositionInParent(Id2, true)) {
      N1.Change = N2.Change = Move;
    }
    if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
      N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
    }
  }
}

ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
                 const ComparisonOptions &Options)
    : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}

ASTDiff::~ASTDiff() = default;

NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
  return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
}

SyntaxTree::SyntaxTree(ASTContext &AST)
    : TreeImpl(std::make_unique<SyntaxTree::Impl>(
          this, AST.getTranslationUnitDecl(), AST)) {}

SyntaxTree::~SyntaxTree() = default;

const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }

const Node &SyntaxTree::getNode(NodeId Id) const {
  return TreeImpl->getNode(Id);
}

int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
SyntaxTree::PreorderIterator SyntaxTree::begin() const {
  return TreeImpl->begin();
}
SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }

int SyntaxTree::findPositionInParent(NodeId Id) const {
  return TreeImpl->findPositionInParent(Id);
}

std::pair<unsigned, unsigned>
SyntaxTree::getSourceRangeOffsets(const Node &N) const {
  const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
  SourceRange Range = N.ASTNode.getSourceRange();
  SourceLocation BeginLoc = Range.getBegin();
  SourceLocation EndLoc = Lexer::getLocForEndOfToken(
      Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
  if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
    if (ThisExpr->isImplicit())
      EndLoc = BeginLoc;
  }
  unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
  unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
  return {Begin, End};
}

std::string SyntaxTree::getNodeValue(NodeId Id) const {
  return TreeImpl->getNodeValue(Id);
}

std::string SyntaxTree::getNodeValue(const Node &N) const {
  return TreeImpl->getNodeValue(N);
}

} // end namespace diff
} // end namespace clang