1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
| //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains two checkers. One helps the static analyzer core to track
// types, the other does type inference on Obj-C generics and report type
// errors.
//
// Dynamic Type Propagation:
// This checker defines the rules for dynamic type gathering and propagation.
//
// Generics Checker for Objective-C:
// This checker tries to find type errors that the compiler is not able to catch
// due to the implicit conversions that were introduced for backward
// compatibility.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
using namespace ento;
// ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
// an auxiliary map that tracks more information about generic types, because in
// some cases the most derived type is not the most informative one about the
// type parameters. This types that are stored for each symbol in this map must
// be specialized.
// TODO: In some case the type stored in this map is exactly the same that is
// stored in DynamicTypeMap. We should no store duplicated information in those
// cases.
REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
const ObjCObjectPointerType *)
namespace {
class DynamicTypePropagation:
public Checker< check::PreCall,
check::PostCall,
check::DeadSymbols,
check::PostStmt<CastExpr>,
check::PostStmt<CXXNewExpr>,
check::PreObjCMessage,
check::PostObjCMessage > {
const ObjCObjectType *getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
CheckerContext &C) const;
/// Return a better dynamic type if one can be derived from the cast.
const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
CheckerContext &C) const;
ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
ProgramStateRef &State,
CheckerContext &C) const;
mutable std::unique_ptr<BugType> ObjCGenericsBugType;
void initBugType() const {
if (!ObjCGenericsBugType)
ObjCGenericsBugType.reset(
new BugType(this, "Generics", categories::CoreFoundationObjectiveC));
}
class GenericsBugVisitor : public BugReporterVisitor {
public:
GenericsBugVisitor(SymbolRef S) : Sym(S) {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int X = 0;
ID.AddPointer(&X);
ID.AddPointer(Sym);
}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override;
private:
// The tracked symbol.
SymbolRef Sym;
};
void reportGenericsBug(const ObjCObjectPointerType *From,
const ObjCObjectPointerType *To, ExplodedNode *N,
SymbolRef Sym, CheckerContext &C,
const Stmt *ReportedNode = nullptr) const;
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
/// This value is set to true, when the Generics checker is turned on.
DefaultBool CheckGenerics;
};
} // end anonymous namespace
void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
ProgramStateRef State = removeDeadTypes(C.getState(), SR);
MostSpecializedTypeArgsMapTy TyArgMap =
State->get<MostSpecializedTypeArgsMap>();
for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
E = TyArgMap.end();
I != E; ++I) {
if (SR.isDead(I->first)) {
State = State->remove<MostSpecializedTypeArgsMap>(I->first);
}
}
C.addTransition(State);
}
static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
CheckerContext &C) {
assert(Region);
assert(MD);
ASTContext &Ctx = C.getASTContext();
QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
ProgramStateRef State = C.getState();
State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
C.addTransition(State);
}
void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
// C++11 [class.cdtor]p4: When a virtual function is called directly or
// indirectly from a constructor or from a destructor, including during
// the construction or destruction of the class's non-static data members,
// and the object to which the call applies is the object under
// construction or destruction, the function called is the final overrider
// in the constructor's or destructor's class and not one overriding it in
// a more-derived class.
switch (Ctor->getOriginExpr()->getConstructionKind()) {
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
// No additional type info necessary.
return;
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
recordFixedType(Target, Ctor->getDecl(), C);
return;
}
return;
}
if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
// C++11 [class.cdtor]p4 (see above)
if (!Dtor->isBaseDestructor())
return;
const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
if (!Target)
return;
const Decl *D = Dtor->getDecl();
if (!D)
return;
recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
return;
}
}
void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// We can obtain perfect type info for return values from some calls.
if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
// Get the returned value if it's a region.
const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
if (!RetReg)
return;
ProgramStateRef State = C.getState();
const ObjCMethodDecl *D = Msg->getDecl();
if (D && D->hasRelatedResultType()) {
switch (Msg->getMethodFamily()) {
default:
break;
// We assume that the type of the object returned by alloc and new are the
// pointer to the object of the class specified in the receiver of the
// message.
case OMF_alloc:
case OMF_new: {
// Get the type of object that will get created.
const ObjCMessageExpr *MsgE = Msg->getOriginExpr();
const ObjCObjectType *ObjTy = getObjectTypeForAllocAndNew(MsgE, C);
if (!ObjTy)
return;
QualType DynResTy =
C.getASTContext().getObjCObjectPointerType(QualType(ObjTy, 0));
C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
break;
}
case OMF_init: {
// Assume, the result of the init method has the same dynamic type as
// the receiver and propagate the dynamic type info.
const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
if (!RecReg)
return;
DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
break;
}
}
}
return;
}
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
// We may need to undo the effects of our pre-call check.
switch (Ctor->getOriginExpr()->getConstructionKind()) {
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
// No additional work necessary.
// Note: This will leave behind the actual type of the object for
// complete constructors, but arguably that's a good thing, since it
// means the dynamic type info will be correct even for objects
// constructed with operator new.
return;
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
// We just finished a base constructor. Now we can use the subclass's
// type when resolving virtual calls.
const LocationContext *LCtx = C.getLocationContext();
// FIXME: In C++17 classes with non-virtual bases may be treated as
// aggregates, and in such case no top-frame constructor will be called.
// Figure out if we need to do anything in this case.
// FIXME: Instead of relying on the ParentMap, we should have the
// trigger-statement (InitListExpr in this case) available in this
// callback, ideally as part of CallEvent.
if (dyn_cast_or_null<InitListExpr>(
LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
return;
recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
}
return;
}
}
}
/// TODO: Handle explicit casts.
/// Handle C++ casts.
///
/// Precondition: the cast is between ObjCObjectPointers.
ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
// We only track type info for regions.
const MemRegion *ToR = C.getSVal(CE).getAsRegion();
if (!ToR)
return C.getPredecessor();
if (isa<ExplicitCastExpr>(CE))
return C.getPredecessor();
if (const Type *NewTy = getBetterObjCType(CE, C)) {
State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
return C.addTransition(State);
}
return C.getPredecessor();
}
void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
CheckerContext &C) const {
if (NewE->isArray())
return;
// We only track dynamic type info for regions.
const MemRegion *MR = C.getSVal(NewE).getAsRegion();
if (!MR)
return;
C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
/*CanBeSubClassed=*/false));
}
const ObjCObjectType *
DynamicTypePropagation::getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
CheckerContext &C) const {
if (MsgE->getReceiverKind() == ObjCMessageExpr::Class) {
if (const ObjCObjectType *ObjTy
= MsgE->getClassReceiver()->getAs<ObjCObjectType>())
return ObjTy;
}
if (MsgE->getReceiverKind() == ObjCMessageExpr::SuperClass) {
if (const ObjCObjectType *ObjTy
= MsgE->getSuperType()->getAs<ObjCObjectType>())
return ObjTy;
}
const Expr *RecE = MsgE->getInstanceReceiver();
if (!RecE)
return nullptr;
RecE= RecE->IgnoreParenImpCasts();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(RecE)) {
const StackFrameContext *SFCtx = C.getStackFrame();
// Are we calling [self alloc]? If this is self, get the type of the
// enclosing ObjC class.
if (DRE->getDecl() == SFCtx->getSelfDecl()) {
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(SFCtx->getDecl()))
if (const ObjCObjectType *ObjTy =
dyn_cast<ObjCObjectType>(MD->getClassInterface()->getTypeForDecl()))
return ObjTy;
}
}
return nullptr;
}
// Return a better dynamic type if one can be derived from the cast.
// Compare the current dynamic type of the region and the new type to which we
// are casting. If the new type is lower in the inheritance hierarchy, pick it.
const ObjCObjectPointerType *
DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
CheckerContext &C) const {
const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
assert(ToR);
// Get the old and new types.
const ObjCObjectPointerType *NewTy =
CastE->getType()->getAs<ObjCObjectPointerType>();
if (!NewTy)
return nullptr;
QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
if (OldDTy.isNull()) {
return NewTy;
}
const ObjCObjectPointerType *OldTy =
OldDTy->getAs<ObjCObjectPointerType>();
if (!OldTy)
return nullptr;
// Id the old type is 'id', the new one is more precise.
if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
return NewTy;
// Return new if it's a subclass of old.
const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
if (ToI && FromI && FromI->isSuperClassOf(ToI))
return NewTy;
return nullptr;
}
static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
// Checking if from and to are the same classes modulo specialization.
if (From->getInterfaceDecl()->getCanonicalDecl() ==
To->getInterfaceDecl()->getCanonicalDecl()) {
if (To->isSpecialized()) {
assert(MostInformativeCandidate->isSpecialized());
return MostInformativeCandidate;
}
return From;
}
if (To->getObjectType()->getSuperClassType().isNull()) {
// If To has no super class and From and To aren't the same then
// To was not actually a descendent of From. In this case the best we can
// do is 'From'.
return From;
}
const auto *SuperOfTo =
To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
assert(SuperOfTo);
QualType SuperPtrOfToQual =
C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
if (To->isUnspecialized())
return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
C);
else
return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
MostInformativeCandidate, C);
}
/// A downcast may loose specialization information. E. g.:
/// MutableMap<T, U> : Map
/// The downcast to MutableMap looses the information about the types of the
/// Map (due to the type parameters are not being forwarded to Map), and in
/// general there is no way to recover that information from the
/// declaration. In order to have to most information, lets find the most
/// derived type that has all the type parameters forwarded.
///
/// Get the a subclass of \p From (which has a lower bound \p To) that do not
/// loose information about type parameters. \p To has to be a subclass of
/// \p From. From has to be specialized.
static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
const ObjCObjectPointerType *To, ASTContext &C) {
return getMostInformativeDerivedClassImpl(From, To, To, C);
}
/// Inputs:
/// \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
/// bound might be the subclass of this type.
/// \param StaticUpperBound A static upper bound for a symbol.
/// \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
/// \param Current The type that was inferred for a symbol in a previous
/// context. Might be null when this is the first time that inference happens.
/// Precondition:
/// \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
/// is not null, it is specialized.
/// Possible cases:
/// (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
/// (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
/// (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
/// (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
/// Effect:
/// Use getMostInformativeDerivedClass with the upper and lower bound of the
/// set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
/// lower bound must be specialized. If the result differs from \p Current or
/// \p Current is null, store the result.
static bool
storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
const ObjCObjectPointerType *const *Current,
const ObjCObjectPointerType *StaticLowerBound,
const ObjCObjectPointerType *StaticUpperBound,
ASTContext &C) {
// TODO: The above 4 cases are not exhaustive. In particular, it is possible
// for Current to be incomparable with StaticLowerBound, StaticUpperBound,
// or both.
//
// For example, suppose Foo<T> and Bar<T> are unrelated types.
//
// Foo<T> *f = ...
// Bar<T> *b = ...
//
// id t1 = b;
// f = t1;
// id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
//
// We should either constrain the callers of this function so that the stated
// preconditions hold (and assert it) or rewrite the function to expicitly
// handle the additional cases.
// Precondition
assert(StaticUpperBound->isSpecialized() ||
StaticLowerBound->isSpecialized());
assert(!Current || (*Current)->isSpecialized());
// Case (1)
if (!Current) {
if (StaticUpperBound->isUnspecialized()) {
State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
return true;
}
// Upper bound is specialized.
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
return true;
}
// Case (3)
if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
return false;
}
// Case (4)
if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
// The type arguments might not be forwarded at any point of inheritance.
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
WithMostInfo =
getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
if (WithMostInfo == *Current)
return false;
State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
return true;
}
// Case (2)
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
if (WithMostInfo != *Current) {
State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
return true;
}
return false;
}
/// Type inference based on static type information that is available for the
/// cast and the tracked type information for the given symbol. When the tracked
/// symbol and the destination type of the cast are unrelated, report an error.
void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
CheckerContext &C) const {
if (CE->getCastKind() != CK_BitCast)
return;
QualType OriginType = CE->getSubExpr()->getType();
QualType DestType = CE->getType();
const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
if (!OrigObjectPtrType || !DestObjectPtrType)
return;
ProgramStateRef State = C.getState();
ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
ASTContext &ASTCtxt = C.getASTContext();
// This checker detects the subtyping relationships using the assignment
// rules. In order to be able to do this the kindofness must be stripped
// first. The checker treats every type as kindof type anyways: when the
// tracked type is the subtype of the static type it tries to look up the
// methods in the tracked type first.
OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
if (OrigObjectPtrType->isUnspecialized() &&
DestObjectPtrType->isUnspecialized())
return;
SymbolRef Sym = C.getSVal(CE).getAsSymbol();
if (!Sym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<MostSpecializedTypeArgsMap>(Sym);
if (isa<ExplicitCastExpr>(CE)) {
// Treat explicit casts as an indication from the programmer that the
// Objective-C type system is not rich enough to express the needed
// invariant. In such cases, forget any existing information inferred
// about the type arguments. We don't assume the casted-to specialized
// type here because the invariant the programmer specifies in the cast
// may only hold at this particular program point and not later ones.
// We don't want a suppressing cast to require a cascade of casts down the
// line.
if (TrackedType) {
State = State->remove<MostSpecializedTypeArgsMap>(Sym);
C.addTransition(State, AfterTypeProp);
}
return;
}
// Check which assignments are legal.
bool OrigToDest =
ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
bool DestToOrig =
ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
// The tracked type should be the sub or super class of the static destination
// type. When an (implicit) upcast or a downcast happens according to static
// types, and there is no subtyping relationship between the tracked and the
// static destination types, it indicates an error.
if (TrackedType &&
!ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
!ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
return;
}
// Handle downcasts and upcasts.
const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
if (OrigToDest && !DestToOrig)
std::swap(LowerBound, UpperBound);
// The id type is not a real bound. Eliminate it.
LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
ASTCtxt)) {
C.addTransition(State, AfterTypeProp);
}
}
static const Expr *stripCastsAndSugar(const Expr *E) {
E = E->IgnoreParenImpCasts();
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
E = POE->getSyntacticForm()->IgnoreParenImpCasts();
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
E = OVE->getSourceExpr()->IgnoreParenImpCasts();
return E;
}
static bool isObjCTypeParamDependent(QualType Type) {
// It is illegal to typedef parameterized types inside an interface. Therefore
// an Objective-C type can only be dependent on a type parameter when the type
// parameter structurally present in the type itself.
class IsObjCTypeParamDependentTypeVisitor
: public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
public:
IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
Result = true;
return false;
}
return true;
}
bool Result;
};
IsObjCTypeParamDependentTypeVisitor Visitor;
Visitor.TraverseType(Type);
return Visitor.Result;
}
/// A method might not be available in the interface indicated by the static
/// type. However it might be available in the tracked type. In order to
/// properly substitute the type parameters we need the declaration context of
/// the method. The more specialized the enclosing class of the method is, the
/// more likely that the parameter substitution will be successful.
static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr *MessageExpr,
const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
const ObjCMethodDecl *Method = nullptr;
QualType ReceiverType = MessageExpr->getReceiverType();
const auto *ReceiverObjectPtrType =
ReceiverType->getAs<ObjCObjectPointerType>();
// Do this "devirtualization" on instance and class methods only. Trust the
// static type on super and super class calls.
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
// When the receiver type is id, Class, or some super class of the tracked
// type, look up the method in the tracked type, not in the receiver type.
// This way we preserve more information.
if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
// The method might not be found.
Selector Sel = MessageExpr->getSelector();
Method = InterfaceDecl->lookupInstanceMethod(Sel);
if (!Method)
Method = InterfaceDecl->lookupClassMethod(Sel);
}
}
// Fallback to statick method lookup when the one based on the tracked type
// failed.
return Method ? Method : MessageExpr->getMethodDecl();
}
/// Get the returned ObjCObjectPointerType by a method based on the tracked type
/// information, or null pointer when the returned type is not an
/// ObjCObjectPointerType.
static QualType getReturnTypeForMethod(
const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
const ObjCObjectPointerType *SelfType, ASTContext &C) {
QualType StaticResultType = Method->getReturnType();
// Is the return type declared as instance type?
if (StaticResultType == C.getObjCInstanceType())
return QualType(SelfType, 0);
// Check whether the result type depends on a type parameter.
if (!isObjCTypeParamDependent(StaticResultType))
return QualType();
QualType ResultType = StaticResultType.substObjCTypeArgs(
C, TypeArgs, ObjCSubstitutionContext::Result);
return ResultType;
}
/// When the receiver has a tracked type, use that type to validate the
/// argumments of the message expression and the return value.
void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
if (!Sym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<MostSpecializedTypeArgsMap>(Sym);
if (!TrackedType)
return;
// Get the type arguments from tracked type and substitute type arguments
// before do the semantic check.
ASTContext &ASTCtxt = C.getASTContext();
const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
const ObjCMethodDecl *Method =
findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
// It is possible to call non-existent methods in Obj-C.
if (!Method)
return;
// If the method is declared on a class that has a non-invariant
// type parameter, don't warn about parameter mismatches after performing
// substitution. This prevents warning when the programmer has purposely
// casted the receiver to a super type or unspecialized type but the analyzer
// has a more precise tracked type than the programmer intends at the call
// site.
//
// For example, consider NSArray (which has a covariant type parameter)
// and NSMutableArray (a subclass of NSArray where the type parameter is
// invariant):
// NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
//
// [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
// NSArray<NSObject *> *other = [a arrayByAddingObject:number] // Safe
//
// [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
//
const ObjCInterfaceDecl *Interface = Method->getClassInterface();
if (!Interface)
return;
ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
if (!TypeParams)
return;
for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
return;
}
Optional<ArrayRef<QualType>> TypeArgs =
(*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
// This case might happen when there is an unspecialized override of a
// specialized method.
if (!TypeArgs)
return;
for (unsigned i = 0; i < Method->param_size(); i++) {
const Expr *Arg = MessageExpr->getArg(i);
const ParmVarDecl *Param = Method->parameters()[i];
QualType OrigParamType = Param->getType();
if (!isObjCTypeParamDependent(OrigParamType))
continue;
QualType ParamType = OrigParamType.substObjCTypeArgs(
ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
// Check if it can be assigned
const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
const auto *ArgObjectPtrType =
stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
if (!ParamObjectPtrType || !ArgObjectPtrType)
continue;
// Check if we have more concrete tracked type that is not a super type of
// the static argument type.
SVal ArgSVal = M.getArgSVal(i);
SymbolRef ArgSym = ArgSVal.getAsSymbol();
if (ArgSym) {
const ObjCObjectPointerType *const *TrackedArgType =
State->get<MostSpecializedTypeArgsMap>(ArgSym);
if (TrackedArgType &&
ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
ArgObjectPtrType = *TrackedArgType;
}
}
// Warn when argument is incompatible with the parameter.
if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
ArgObjectPtrType)) {
static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
ExplodedNode *N = C.addTransition(State, &Tag);
reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
return;
}
}
}
/// This callback is used to infer the types for Class variables. This info is
/// used later to validate messages that sent to classes. Class variables are
/// initialized with by invoking the 'class' method on a class.
/// This method is also used to infer the type information for the return
/// types.
// TODO: right now it only tracks generic types. Extend this to track every
// type in the DynamicTypeMap and diagnose type errors!
void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
SymbolRef RetSym = M.getReturnValue().getAsSymbol();
if (!RetSym)
return;
Selector Sel = MessageExpr->getSelector();
ProgramStateRef State = C.getState();
// Inference for class variables.
// We are only interested in cases where the class method is invoked on a
// class. This method is provided by the runtime and available on all classes.
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class &&
Sel.getAsString() == "class") {
QualType ReceiverType = MessageExpr->getClassReceiver();
const auto *ReceiverClassType = ReceiverType->castAs<ObjCObjectType>();
if (!ReceiverClassType->isSpecialized())
return;
QualType ReceiverClassPointerType =
C.getASTContext().getObjCObjectPointerType(
QualType(ReceiverClassType, 0));
const auto *InferredType =
ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
C.addTransition(State);
return;
}
// Tracking for return types.
SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
if (!RecSym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<MostSpecializedTypeArgsMap>(RecSym);
if (!TrackedType)
return;
ASTContext &ASTCtxt = C.getASTContext();
const ObjCMethodDecl *Method =
findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
if (!Method)
return;
Optional<ArrayRef<QualType>> TypeArgs =
(*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
if (!TypeArgs)
return;
QualType ResultType =
getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
// The static type is the same as the deduced type.
if (ResultType.isNull())
return;
const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
ExplodedNode *Pred = C.getPredecessor();
// When there is an entry available for the return symbol in DynamicTypeMap,
// the call was inlined, and the information in the DynamicTypeMap is should
// be precise.
if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
// TODO: we have duplicated information in DynamicTypeMap and
// MostSpecializedTypeArgsMap. We should only store anything in the later if
// the stored data differs from the one stored in the former.
State = setDynamicTypeInfo(State, RetRegion, ResultType,
/*CanBeSubClassed=*/true);
Pred = C.addTransition(State);
}
const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
if (!ResultPtrType || ResultPtrType->isUnspecialized())
return;
// When the result is a specialized type and it is not tracked yet, track it
// for the result symbol.
if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
C.addTransition(State, Pred);
}
}
void DynamicTypePropagation::reportGenericsBug(
const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
const Stmt *ReportedNode) const {
if (!CheckGenerics)
return;
initBugType();
SmallString<192> Buf;
llvm::raw_svector_ostream OS(Buf);
OS << "Conversion from value of type '";
QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
OS << "' to incompatible type '";
QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
OS << "'";
auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
OS.str(), N);
R->markInteresting(Sym);
R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
if (ReportedNode)
R->addRange(ReportedNode->getSourceRange());
C.emitReport(std::move(R));
}
PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
const ExplodedNode *N, BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
ProgramStateRef state = N->getState();
ProgramStateRef statePrev = N->getFirstPred()->getState();
const ObjCObjectPointerType *const *TrackedType =
state->get<MostSpecializedTypeArgsMap>(Sym);
const ObjCObjectPointerType *const *TrackedTypePrev =
statePrev->get<MostSpecializedTypeArgsMap>(Sym);
if (!TrackedType)
return nullptr;
if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
return nullptr;
// Retrieve the associated statement.
const Stmt *S = N->getStmtForDiagnostics();
if (!S)
return nullptr;
const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
SmallString<256> Buf;
llvm::raw_svector_ostream OS(Buf);
OS << "Type '";
QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' is inferred from ";
if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
OS << "explicit cast (from '";
QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' to '";
QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
LangOpts, llvm::Twine());
OS << "')";
} else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
OS << "implicit cast (from '";
QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' to '";
QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
LangOpts, llvm::Twine());
OS << "')";
} else {
OS << "this context";
}
// Generate the extra diagnostic.
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
N->getLocationContext());
return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
}
/// Register checkers.
void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
checker->CheckGenerics = true;
}
bool ento::shouldRegisterObjCGenericsChecker(const LangOptions &LO) {
return true;
}
void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
mgr.registerChecker<DynamicTypePropagation>();
}
bool ento::shouldRegisterDynamicTypePropagation(const LangOptions &LO) {
return true;
}
|