reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
//===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains two checkers. One helps the static analyzer core to track
// types, the other does type inference on Obj-C generics and report type
// errors.
//
// Dynamic Type Propagation:
// This checker defines the rules for dynamic type gathering and propagation.
//
// Generics Checker for Objective-C:
// This checker tries to find type errors that the compiler is not able to catch
// due to the implicit conversions that were introduced for backward
// compatibility.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"

using namespace clang;
using namespace ento;

// ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
// an auxiliary map that tracks more information about generic types, because in
// some cases the most derived type is not the most informative one about the
// type parameters. This types that are stored for each symbol in this map must
// be specialized.
// TODO: In some case the type stored in this map is exactly the same that is
// stored in DynamicTypeMap. We should no store duplicated information in those
// cases.
REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
                               const ObjCObjectPointerType *)

namespace {
class DynamicTypePropagation:
    public Checker< check::PreCall,
                    check::PostCall,
                    check::DeadSymbols,
                    check::PostStmt<CastExpr>,
                    check::PostStmt<CXXNewExpr>,
                    check::PreObjCMessage,
                    check::PostObjCMessage > {
  const ObjCObjectType *getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
                                                    CheckerContext &C) const;

  /// Return a better dynamic type if one can be derived from the cast.
  const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
                                                 CheckerContext &C) const;

  ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
                                              ProgramStateRef &State,
                                              CheckerContext &C) const;

  mutable std::unique_ptr<BugType> ObjCGenericsBugType;
  void initBugType() const {
    if (!ObjCGenericsBugType)
      ObjCGenericsBugType.reset(
          new BugType(this, "Generics", categories::CoreFoundationObjectiveC));
  }

  class GenericsBugVisitor : public BugReporterVisitor {
  public:
    GenericsBugVisitor(SymbolRef S) : Sym(S) {}

    void Profile(llvm::FoldingSetNodeID &ID) const override {
      static int X = 0;
      ID.AddPointer(&X);
      ID.AddPointer(Sym);
    }

    PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
                                     BugReporterContext &BRC,
                                     PathSensitiveBugReport &BR) override;

  private:
    // The tracked symbol.
    SymbolRef Sym;
  };

  void reportGenericsBug(const ObjCObjectPointerType *From,
                         const ObjCObjectPointerType *To, ExplodedNode *N,
                         SymbolRef Sym, CheckerContext &C,
                         const Stmt *ReportedNode = nullptr) const;

public:
  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
  void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
  void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
  void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;

  /// This value is set to true, when the Generics checker is turned on.
  DefaultBool CheckGenerics;
};
} // end anonymous namespace

void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
                                              CheckerContext &C) const {
  ProgramStateRef State = removeDeadTypes(C.getState(), SR);

  MostSpecializedTypeArgsMapTy TyArgMap =
      State->get<MostSpecializedTypeArgsMap>();
  for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
                                              E = TyArgMap.end();
       I != E; ++I) {
    if (SR.isDead(I->first)) {
      State = State->remove<MostSpecializedTypeArgsMap>(I->first);
    }
  }

  C.addTransition(State);
}

static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
                            CheckerContext &C) {
  assert(Region);
  assert(MD);

  ASTContext &Ctx = C.getASTContext();
  QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));

  ProgramStateRef State = C.getState();
  State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
  C.addTransition(State);
}

void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
                                          CheckerContext &C) const {
  if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
    // C++11 [class.cdtor]p4: When a virtual function is called directly or
    //   indirectly from a constructor or from a destructor, including during
    //   the construction or destruction of the class's non-static data members,
    //   and the object to which the call applies is the object under
    //   construction or destruction, the function called is the final overrider
    //   in the constructor's or destructor's class and not one overriding it in
    //   a more-derived class.

    switch (Ctor->getOriginExpr()->getConstructionKind()) {
    case CXXConstructExpr::CK_Complete:
    case CXXConstructExpr::CK_Delegating:
      // No additional type info necessary.
      return;
    case CXXConstructExpr::CK_NonVirtualBase:
    case CXXConstructExpr::CK_VirtualBase:
      if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
        recordFixedType(Target, Ctor->getDecl(), C);
      return;
    }

    return;
  }

  if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
    // C++11 [class.cdtor]p4 (see above)
    if (!Dtor->isBaseDestructor())
      return;

    const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
    if (!Target)
      return;

    const Decl *D = Dtor->getDecl();
    if (!D)
      return;

    recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
    return;
  }
}

void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
                                           CheckerContext &C) const {
  // We can obtain perfect type info for return values from some calls.
  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {

    // Get the returned value if it's a region.
    const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
    if (!RetReg)
      return;

    ProgramStateRef State = C.getState();
    const ObjCMethodDecl *D = Msg->getDecl();

    if (D && D->hasRelatedResultType()) {
      switch (Msg->getMethodFamily()) {
      default:
        break;

      // We assume that the type of the object returned by alloc and new are the
      // pointer to the object of the class specified in the receiver of the
      // message.
      case OMF_alloc:
      case OMF_new: {
        // Get the type of object that will get created.
        const ObjCMessageExpr *MsgE = Msg->getOriginExpr();
        const ObjCObjectType *ObjTy = getObjectTypeForAllocAndNew(MsgE, C);
        if (!ObjTy)
          return;
        QualType DynResTy =
                 C.getASTContext().getObjCObjectPointerType(QualType(ObjTy, 0));
        C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
        break;
      }
      case OMF_init: {
        // Assume, the result of the init method has the same dynamic type as
        // the receiver and propagate the dynamic type info.
        const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
        if (!RecReg)
          return;
        DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
        C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
        break;
      }
      }
    }
    return;
  }

  if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
    // We may need to undo the effects of our pre-call check.
    switch (Ctor->getOriginExpr()->getConstructionKind()) {
    case CXXConstructExpr::CK_Complete:
    case CXXConstructExpr::CK_Delegating:
      // No additional work necessary.
      // Note: This will leave behind the actual type of the object for
      // complete constructors, but arguably that's a good thing, since it
      // means the dynamic type info will be correct even for objects
      // constructed with operator new.
      return;
    case CXXConstructExpr::CK_NonVirtualBase:
    case CXXConstructExpr::CK_VirtualBase:
      if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
        // We just finished a base constructor. Now we can use the subclass's
        // type when resolving virtual calls.
        const LocationContext *LCtx = C.getLocationContext();

        // FIXME: In C++17 classes with non-virtual bases may be treated as
        // aggregates, and in such case no top-frame constructor will be called.
        // Figure out if we need to do anything in this case.
        // FIXME: Instead of relying on the ParentMap, we should have the
        // trigger-statement (InitListExpr in this case) available in this
        // callback, ideally as part of CallEvent.
        if (dyn_cast_or_null<InitListExpr>(
                LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
          return;

        recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
      }
      return;
    }
  }
}

/// TODO: Handle explicit casts.
///       Handle C++ casts.
///
/// Precondition: the cast is between ObjCObjectPointers.
ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
    const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
  // We only track type info for regions.
  const MemRegion *ToR = C.getSVal(CE).getAsRegion();
  if (!ToR)
    return C.getPredecessor();

  if (isa<ExplicitCastExpr>(CE))
    return C.getPredecessor();

  if (const Type *NewTy = getBetterObjCType(CE, C)) {
    State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
    return C.addTransition(State);
  }
  return C.getPredecessor();
}

void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
                                           CheckerContext &C) const {
  if (NewE->isArray())
    return;

  // We only track dynamic type info for regions.
  const MemRegion *MR = C.getSVal(NewE).getAsRegion();
  if (!MR)
    return;

  C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
                                     /*CanBeSubClassed=*/false));
}

const ObjCObjectType *
DynamicTypePropagation::getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
                                                    CheckerContext &C) const {
  if (MsgE->getReceiverKind() == ObjCMessageExpr::Class) {
    if (const ObjCObjectType *ObjTy
          = MsgE->getClassReceiver()->getAs<ObjCObjectType>())
    return ObjTy;
  }

  if (MsgE->getReceiverKind() == ObjCMessageExpr::SuperClass) {
    if (const ObjCObjectType *ObjTy
          = MsgE->getSuperType()->getAs<ObjCObjectType>())
      return ObjTy;
  }

  const Expr *RecE = MsgE->getInstanceReceiver();
  if (!RecE)
    return nullptr;

  RecE= RecE->IgnoreParenImpCasts();
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(RecE)) {
    const StackFrameContext *SFCtx = C.getStackFrame();
    // Are we calling [self alloc]? If this is self, get the type of the
    // enclosing ObjC class.
    if (DRE->getDecl() == SFCtx->getSelfDecl()) {
      if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(SFCtx->getDecl()))
        if (const ObjCObjectType *ObjTy =
            dyn_cast<ObjCObjectType>(MD->getClassInterface()->getTypeForDecl()))
          return ObjTy;
    }
  }
  return nullptr;
}

// Return a better dynamic type if one can be derived from the cast.
// Compare the current dynamic type of the region and the new type to which we
// are casting. If the new type is lower in the inheritance hierarchy, pick it.
const ObjCObjectPointerType *
DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
                                          CheckerContext &C) const {
  const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
  assert(ToR);

  // Get the old and new types.
  const ObjCObjectPointerType *NewTy =
      CastE->getType()->getAs<ObjCObjectPointerType>();
  if (!NewTy)
    return nullptr;
  QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
  if (OldDTy.isNull()) {
    return NewTy;
  }
  const ObjCObjectPointerType *OldTy =
    OldDTy->getAs<ObjCObjectPointerType>();
  if (!OldTy)
    return nullptr;

  // Id the old type is 'id', the new one is more precise.
  if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
    return NewTy;

  // Return new if it's a subclass of old.
  const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
  const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
  if (ToI && FromI && FromI->isSuperClassOf(ToI))
    return NewTy;

  return nullptr;
}

static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
    const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
    const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
  // Checking if from and to are the same classes modulo specialization.
  if (From->getInterfaceDecl()->getCanonicalDecl() ==
      To->getInterfaceDecl()->getCanonicalDecl()) {
    if (To->isSpecialized()) {
      assert(MostInformativeCandidate->isSpecialized());
      return MostInformativeCandidate;
    }
    return From;
  }

  if (To->getObjectType()->getSuperClassType().isNull()) {
    // If To has no super class and From and To aren't the same then
    // To was not actually a descendent of From. In this case the best we can
    // do is 'From'.
    return From;
  }

  const auto *SuperOfTo =
      To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
  assert(SuperOfTo);
  QualType SuperPtrOfToQual =
      C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
  const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
  if (To->isUnspecialized())
    return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
                                              C);
  else
    return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
                                              MostInformativeCandidate, C);
}

/// A downcast may loose specialization information. E. g.:
///   MutableMap<T, U> : Map
/// The downcast to MutableMap looses the information about the types of the
/// Map (due to the type parameters are not being forwarded to Map), and in
/// general there is no way to recover that information from the
/// declaration. In order to have to most information, lets find the most
/// derived type that has all the type parameters forwarded.
///
/// Get the a subclass of \p From (which has a lower bound \p To) that do not
/// loose information about type parameters. \p To has to be a subclass of
/// \p From. From has to be specialized.
static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
                               const ObjCObjectPointerType *To, ASTContext &C) {
  return getMostInformativeDerivedClassImpl(From, To, To, C);
}

/// Inputs:
///   \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
///   bound might be the subclass of this type.
///   \param StaticUpperBound A static upper bound for a symbol.
///   \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
///   \param Current The type that was inferred for a symbol in a previous
///   context. Might be null when this is the first time that inference happens.
/// Precondition:
///   \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
///   is not null, it is specialized.
/// Possible cases:
///   (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
///   (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
///   (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
///   (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
/// Effect:
///   Use getMostInformativeDerivedClass with the upper and lower bound of the
///   set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
///   lower bound must be specialized. If the result differs from \p Current or
///   \p Current is null, store the result.
static bool
storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
                         const ObjCObjectPointerType *const *Current,
                         const ObjCObjectPointerType *StaticLowerBound,
                         const ObjCObjectPointerType *StaticUpperBound,
                         ASTContext &C) {
  // TODO: The above 4 cases are not exhaustive. In particular, it is possible
  // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
  // or both.
  //
  // For example, suppose Foo<T> and Bar<T> are unrelated types.
  //
  //  Foo<T> *f = ...
  //  Bar<T> *b = ...
  //
  //  id t1 = b;
  //  f = t1;
  //  id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
  //
  // We should either constrain the callers of this function so that the stated
  // preconditions hold (and assert it) or rewrite the function to expicitly
  // handle the additional cases.

  // Precondition
  assert(StaticUpperBound->isSpecialized() ||
         StaticLowerBound->isSpecialized());
  assert(!Current || (*Current)->isSpecialized());

  // Case (1)
  if (!Current) {
    if (StaticUpperBound->isUnspecialized()) {
      State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
      return true;
    }
    // Upper bound is specialized.
    const ObjCObjectPointerType *WithMostInfo =
        getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
    State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
    return true;
  }

  // Case (3)
  if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
    return false;
  }

  // Case (4)
  if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
    // The type arguments might not be forwarded at any point of inheritance.
    const ObjCObjectPointerType *WithMostInfo =
        getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
    WithMostInfo =
        getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
    if (WithMostInfo == *Current)
      return false;
    State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
    return true;
  }

  // Case (2)
  const ObjCObjectPointerType *WithMostInfo =
      getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
  if (WithMostInfo != *Current) {
    State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
    return true;
  }

  return false;
}

/// Type inference based on static type information that is available for the
/// cast and the tracked type information for the given symbol. When the tracked
/// symbol and the destination type of the cast are unrelated, report an error.
void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
                                           CheckerContext &C) const {
  if (CE->getCastKind() != CK_BitCast)
    return;

  QualType OriginType = CE->getSubExpr()->getType();
  QualType DestType = CE->getType();

  const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
  const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();

  if (!OrigObjectPtrType || !DestObjectPtrType)
    return;

  ProgramStateRef State = C.getState();
  ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);

  ASTContext &ASTCtxt = C.getASTContext();

  // This checker detects the subtyping relationships using the assignment
  // rules. In order to be able to do this the kindofness must be stripped
  // first. The checker treats every type as kindof type anyways: when the
  // tracked type is the subtype of the static type it tries to look up the
  // methods in the tracked type first.
  OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
  DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);

  if (OrigObjectPtrType->isUnspecialized() &&
      DestObjectPtrType->isUnspecialized())
    return;

  SymbolRef Sym = C.getSVal(CE).getAsSymbol();
  if (!Sym)
    return;

  const ObjCObjectPointerType *const *TrackedType =
      State->get<MostSpecializedTypeArgsMap>(Sym);

  if (isa<ExplicitCastExpr>(CE)) {
    // Treat explicit casts as an indication from the programmer that the
    // Objective-C type system is not rich enough to express the needed
    // invariant. In such cases, forget any existing information inferred
    // about the type arguments. We don't assume the casted-to specialized
    // type here because the invariant the programmer specifies in the cast
    // may only hold at this particular program point and not later ones.
    // We don't want a suppressing cast to require a cascade of casts down the
    // line.
    if (TrackedType) {
      State = State->remove<MostSpecializedTypeArgsMap>(Sym);
      C.addTransition(State, AfterTypeProp);
    }
    return;
  }

  // Check which assignments are legal.
  bool OrigToDest =
      ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
  bool DestToOrig =
      ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);

  // The tracked type should be the sub or super class of the static destination
  // type. When an (implicit) upcast or a downcast happens according to static
  // types, and there is no subtyping relationship between the tracked and the
  // static destination types, it indicates an error.
  if (TrackedType &&
      !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
      !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
    static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
    ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
    reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
    return;
  }

  // Handle downcasts and upcasts.

  const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
  const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
  if (OrigToDest && !DestToOrig)
    std::swap(LowerBound, UpperBound);

  // The id type is not a real bound. Eliminate it.
  LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
  UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;

  if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
                               ASTCtxt)) {
    C.addTransition(State, AfterTypeProp);
  }
}

static const Expr *stripCastsAndSugar(const Expr *E) {
  E = E->IgnoreParenImpCasts();
  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
    E = POE->getSyntacticForm()->IgnoreParenImpCasts();
  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
    E = OVE->getSourceExpr()->IgnoreParenImpCasts();
  return E;
}

static bool isObjCTypeParamDependent(QualType Type) {
  // It is illegal to typedef parameterized types inside an interface. Therefore
  // an Objective-C type can only be dependent on a type parameter when the type
  // parameter structurally present in the type itself.
  class IsObjCTypeParamDependentTypeVisitor
      : public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
  public:
    IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
    bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
      if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
        Result = true;
        return false;
      }
      return true;
    }

    bool Result;
  };

  IsObjCTypeParamDependentTypeVisitor Visitor;
  Visitor.TraverseType(Type);
  return Visitor.Result;
}

/// A method might not be available in the interface indicated by the static
/// type. However it might be available in the tracked type. In order to
/// properly substitute the type parameters we need the declaration context of
/// the method. The more specialized the enclosing class of the method is, the
/// more likely that the parameter substitution will be successful.
static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr *MessageExpr,
               const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
  const ObjCMethodDecl *Method = nullptr;

  QualType ReceiverType = MessageExpr->getReceiverType();
  const auto *ReceiverObjectPtrType =
      ReceiverType->getAs<ObjCObjectPointerType>();

  // Do this "devirtualization" on instance and class methods only. Trust the
  // static type on super and super class calls.
  if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
      MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
    // When the receiver type is id, Class, or some super class of the tracked
    // type, look up the method in the tracked type, not in the receiver type.
    // This way we preserve more information.
    if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
        ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
      const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
      // The method might not be found.
      Selector Sel = MessageExpr->getSelector();
      Method = InterfaceDecl->lookupInstanceMethod(Sel);
      if (!Method)
        Method = InterfaceDecl->lookupClassMethod(Sel);
    }
  }

  // Fallback to statick method lookup when the one based on the tracked type
  // failed.
  return Method ? Method : MessageExpr->getMethodDecl();
}

/// Get the returned ObjCObjectPointerType by a method based on the tracked type
/// information, or null pointer when the returned type is not an
/// ObjCObjectPointerType.
static QualType getReturnTypeForMethod(
    const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
    const ObjCObjectPointerType *SelfType, ASTContext &C) {
  QualType StaticResultType = Method->getReturnType();

  // Is the return type declared as instance type?
  if (StaticResultType == C.getObjCInstanceType())
    return QualType(SelfType, 0);

  // Check whether the result type depends on a type parameter.
  if (!isObjCTypeParamDependent(StaticResultType))
    return QualType();

  QualType ResultType = StaticResultType.substObjCTypeArgs(
      C, TypeArgs, ObjCSubstitutionContext::Result);

  return ResultType;
}

/// When the receiver has a tracked type, use that type to validate the
/// argumments of the message expression and the return value.
void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
                                                 CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
  if (!Sym)
    return;

  const ObjCObjectPointerType *const *TrackedType =
      State->get<MostSpecializedTypeArgsMap>(Sym);
  if (!TrackedType)
    return;

  // Get the type arguments from tracked type and substitute type arguments
  // before do the semantic check.

  ASTContext &ASTCtxt = C.getASTContext();
  const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
  const ObjCMethodDecl *Method =
      findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);

  // It is possible to call non-existent methods in Obj-C.
  if (!Method)
    return;

  // If the method is declared on a class that has a non-invariant
  // type parameter, don't warn about parameter mismatches after performing
  // substitution. This prevents warning when the programmer has purposely
  // casted the receiver to a super type or unspecialized type but the analyzer
  // has a more precise tracked type than the programmer intends at the call
  // site.
  //
  // For example, consider NSArray (which has a covariant type parameter)
  // and NSMutableArray (a subclass of NSArray where the type parameter is
  // invariant):
  // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
  //
  // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
  // NSArray<NSObject *> *other = [a arrayByAddingObject:number]  // Safe
  //
  // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
  //

  const ObjCInterfaceDecl *Interface = Method->getClassInterface();
  if (!Interface)
    return;

  ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
  if (!TypeParams)
    return;

  for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
    if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
      return;
  }

  Optional<ArrayRef<QualType>> TypeArgs =
      (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
  // This case might happen when there is an unspecialized override of a
  // specialized method.
  if (!TypeArgs)
    return;

  for (unsigned i = 0; i < Method->param_size(); i++) {
    const Expr *Arg = MessageExpr->getArg(i);
    const ParmVarDecl *Param = Method->parameters()[i];

    QualType OrigParamType = Param->getType();
    if (!isObjCTypeParamDependent(OrigParamType))
      continue;

    QualType ParamType = OrigParamType.substObjCTypeArgs(
        ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
    // Check if it can be assigned
    const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
    const auto *ArgObjectPtrType =
        stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
    if (!ParamObjectPtrType || !ArgObjectPtrType)
      continue;

    // Check if we have more concrete tracked type that is not a super type of
    // the static argument type.
    SVal ArgSVal = M.getArgSVal(i);
    SymbolRef ArgSym = ArgSVal.getAsSymbol();
    if (ArgSym) {
      const ObjCObjectPointerType *const *TrackedArgType =
          State->get<MostSpecializedTypeArgsMap>(ArgSym);
      if (TrackedArgType &&
          ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
        ArgObjectPtrType = *TrackedArgType;
      }
    }

    // Warn when argument is incompatible with the parameter.
    if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
                                         ArgObjectPtrType)) {
      static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
      ExplodedNode *N = C.addTransition(State, &Tag);
      reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
      return;
    }
  }
}

/// This callback is used to infer the types for Class variables. This info is
/// used later to validate messages that sent to classes. Class variables are
/// initialized with by invoking the 'class' method on a class.
/// This method is also used to infer the type information for the return
/// types.
// TODO: right now it only tracks generic types. Extend this to track every
// type in the DynamicTypeMap and diagnose type errors!
void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
                                                  CheckerContext &C) const {
  const ObjCMessageExpr *MessageExpr = M.getOriginExpr();

  SymbolRef RetSym = M.getReturnValue().getAsSymbol();
  if (!RetSym)
    return;

  Selector Sel = MessageExpr->getSelector();
  ProgramStateRef State = C.getState();
  // Inference for class variables.
  // We are only interested in cases where the class method is invoked on a
  // class. This method is provided by the runtime and available on all classes.
  if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class &&
      Sel.getAsString() == "class") {
    QualType ReceiverType = MessageExpr->getClassReceiver();
    const auto *ReceiverClassType = ReceiverType->castAs<ObjCObjectType>();
    if (!ReceiverClassType->isSpecialized())
      return;

    QualType ReceiverClassPointerType =
        C.getASTContext().getObjCObjectPointerType(
            QualType(ReceiverClassType, 0));
    const auto *InferredType =
        ReceiverClassPointerType->castAs<ObjCObjectPointerType>();

    State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
    C.addTransition(State);
    return;
  }

  // Tracking for return types.
  SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
  if (!RecSym)
    return;

  const ObjCObjectPointerType *const *TrackedType =
      State->get<MostSpecializedTypeArgsMap>(RecSym);
  if (!TrackedType)
    return;

  ASTContext &ASTCtxt = C.getASTContext();
  const ObjCMethodDecl *Method =
      findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
  if (!Method)
    return;

  Optional<ArrayRef<QualType>> TypeArgs =
      (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
  if (!TypeArgs)
    return;

  QualType ResultType =
      getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
  // The static type is the same as the deduced type.
  if (ResultType.isNull())
    return;

  const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
  ExplodedNode *Pred = C.getPredecessor();
  // When there is an entry available for the return symbol in DynamicTypeMap,
  // the call was inlined, and the information in the DynamicTypeMap is should
  // be precise.
  if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
    // TODO: we have duplicated information in DynamicTypeMap and
    // MostSpecializedTypeArgsMap. We should only store anything in the later if
    // the stored data differs from the one stored in the former.
    State = setDynamicTypeInfo(State, RetRegion, ResultType,
                               /*CanBeSubClassed=*/true);
    Pred = C.addTransition(State);
  }

  const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();

  if (!ResultPtrType || ResultPtrType->isUnspecialized())
    return;

  // When the result is a specialized type and it is not tracked yet, track it
  // for the result symbol.
  if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
    State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
    C.addTransition(State, Pred);
  }
}

void DynamicTypePropagation::reportGenericsBug(
    const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
    ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
    const Stmt *ReportedNode) const {
  if (!CheckGenerics)
    return;

  initBugType();
  SmallString<192> Buf;
  llvm::raw_svector_ostream OS(Buf);
  OS << "Conversion from value of type '";
  QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
  OS << "' to incompatible type '";
  QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
  OS << "'";
  auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
                                                    OS.str(), N);
  R->markInteresting(Sym);
  R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
  if (ReportedNode)
    R->addRange(ReportedNode->getSourceRange());
  C.emitReport(std::move(R));
}

PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
    const ExplodedNode *N, BugReporterContext &BRC,
    PathSensitiveBugReport &BR) {
  ProgramStateRef state = N->getState();
  ProgramStateRef statePrev = N->getFirstPred()->getState();

  const ObjCObjectPointerType *const *TrackedType =
      state->get<MostSpecializedTypeArgsMap>(Sym);
  const ObjCObjectPointerType *const *TrackedTypePrev =
      statePrev->get<MostSpecializedTypeArgsMap>(Sym);
  if (!TrackedType)
    return nullptr;

  if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
    return nullptr;

  // Retrieve the associated statement.
  const Stmt *S = N->getStmtForDiagnostics();
  if (!S)
    return nullptr;

  const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();

  SmallString<256> Buf;
  llvm::raw_svector_ostream OS(Buf);
  OS << "Type '";
  QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
  OS << "' is inferred from ";

  if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
    OS << "explicit cast (from '";
    QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
                    Qualifiers(), OS, LangOpts, llvm::Twine());
    OS << "' to '";
    QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
                    LangOpts, llvm::Twine());
    OS << "')";
  } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
    OS << "implicit cast (from '";
    QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
                    Qualifiers(), OS, LangOpts, llvm::Twine());
    OS << "' to '";
    QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
                    LangOpts, llvm::Twine());
    OS << "')";
  } else {
    OS << "this context";
  }

  // Generate the extra diagnostic.
  PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
                             N->getLocationContext());
  return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
}

/// Register checkers.
void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
  DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
  checker->CheckGenerics = true;
}

bool ento::shouldRegisterObjCGenericsChecker(const LangOptions &LO) {
  return true;
}

void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
  mgr.registerChecker<DynamicTypePropagation>();
}

bool ento::shouldRegisterDynamicTypePropagation(const LangOptions &LO) {
  return true;
}