reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for CUDA constructs.
///
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/Cuda.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;

void Sema::PushForceCUDAHostDevice() {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  ForceCUDAHostDeviceDepth++;
}

bool Sema::PopForceCUDAHostDevice() {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  if (ForceCUDAHostDeviceDepth == 0)
    return false;
  ForceCUDAHostDeviceDepth--;
  return true;
}

ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
                                         MultiExprArg ExecConfig,
                                         SourceLocation GGGLoc) {
  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
  if (!ConfigDecl)
    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
                     << getCudaConfigureFuncName());
  QualType ConfigQTy = ConfigDecl->getType();

  DeclRefExpr *ConfigDR = new (Context)
      DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
  MarkFunctionReferenced(LLLLoc, ConfigDecl);

  return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
                       /*IsExecConfig=*/true);
}

Sema::CUDAFunctionTarget
Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
  bool HasHostAttr = false;
  bool HasDeviceAttr = false;
  bool HasGlobalAttr = false;
  bool HasInvalidTargetAttr = false;
  for (const ParsedAttr &AL : Attrs) {
    switch (AL.getKind()) {
    case ParsedAttr::AT_CUDAGlobal:
      HasGlobalAttr = true;
      break;
    case ParsedAttr::AT_CUDAHost:
      HasHostAttr = true;
      break;
    case ParsedAttr::AT_CUDADevice:
      HasDeviceAttr = true;
      break;
    case ParsedAttr::AT_CUDAInvalidTarget:
      HasInvalidTargetAttr = true;
      break;
    default:
      break;
    }
  }

  if (HasInvalidTargetAttr)
    return CFT_InvalidTarget;

  if (HasGlobalAttr)
    return CFT_Global;

  if (HasHostAttr && HasDeviceAttr)
    return CFT_HostDevice;

  if (HasDeviceAttr)
    return CFT_Device;

  return CFT_Host;
}

template <typename A>
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
           return isa<A>(Attribute) &&
                  !(IgnoreImplicitAttr && Attribute->isImplicit());
         });
}

/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
                                                  bool IgnoreImplicitHDAttr) {
  // Code that lives outside a function is run on the host.
  if (D == nullptr)
    return CFT_Host;

  if (D->hasAttr<CUDAInvalidTargetAttr>())
    return CFT_InvalidTarget;

  if (D->hasAttr<CUDAGlobalAttr>())
    return CFT_Global;

  if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
    if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
      return CFT_HostDevice;
    return CFT_Device;
  } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
    return CFT_Host;
  } else if (D->isImplicit() && !IgnoreImplicitHDAttr) {
    // Some implicit declarations (like intrinsic functions) are not marked.
    // Set the most lenient target on them for maximal flexibility.
    return CFT_HostDevice;
  }

  return CFT_Host;
}

// * CUDA Call preference table
//
// F - from,
// T - to
// Ph - preference in host mode
// Pd - preference in device mode
// H  - handled in (x)
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
//
// | F  | T  | Ph  | Pd  |  H  |
// |----+----+-----+-----+-----+
// | d  | d  | N   | N   | (c) |
// | d  | g  | --  | --  | (a) |
// | d  | h  | --  | --  | (e) |
// | d  | hd | HD  | HD  | (b) |
// | g  | d  | N   | N   | (c) |
// | g  | g  | --  | --  | (a) |
// | g  | h  | --  | --  | (e) |
// | g  | hd | HD  | HD  | (b) |
// | h  | d  | --  | --  | (e) |
// | h  | g  | N   | N   | (c) |
// | h  | h  | N   | N   | (c) |
// | h  | hd | HD  | HD  | (b) |
// | hd | d  | WS  | SS  | (d) |
// | hd | g  | SS  | --  |(d/a)|
// | hd | h  | SS  | WS  | (d) |
// | hd | hd | HD  | HD  | (b) |

Sema::CUDAFunctionPreference
Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
                             const FunctionDecl *Callee) {
  assert(Callee && "Callee must be valid.");
  CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
  CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);

  // If one of the targets is invalid, the check always fails, no matter what
  // the other target is.
  if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
    return CFP_Never;

  // (a) Can't call global from some contexts until we support CUDA's
  // dynamic parallelism.
  if (CalleeTarget == CFT_Global &&
      (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
    return CFP_Never;

  // (b) Calling HostDevice is OK for everyone.
  if (CalleeTarget == CFT_HostDevice)
    return CFP_HostDevice;

  // (c) Best case scenarios
  if (CalleeTarget == CallerTarget ||
      (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
      (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
    return CFP_Native;

  // (d) HostDevice behavior depends on compilation mode.
  if (CallerTarget == CFT_HostDevice) {
    // It's OK to call a compilation-mode matching function from an HD one.
    if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
        (!getLangOpts().CUDAIsDevice &&
         (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
      return CFP_SameSide;

    // Calls from HD to non-mode-matching functions (i.e., to host functions
    // when compiling in device mode or to device functions when compiling in
    // host mode) are allowed at the sema level, but eventually rejected if
    // they're ever codegened.  TODO: Reject said calls earlier.
    return CFP_WrongSide;
  }

  // (e) Calling across device/host boundary is not something you should do.
  if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
      (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
      (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
    return CFP_Never;

  llvm_unreachable("All cases should've been handled by now.");
}

void Sema::EraseUnwantedCUDAMatches(
    const FunctionDecl *Caller,
    SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
  if (Matches.size() <= 1)
    return;

  using Pair = std::pair<DeclAccessPair, FunctionDecl*>;

  // Gets the CUDA function preference for a call from Caller to Match.
  auto GetCFP = [&](const Pair &Match) {
    return IdentifyCUDAPreference(Caller, Match.second);
  };

  // Find the best call preference among the functions in Matches.
  CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
      Matches.begin(), Matches.end(),
      [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));

  // Erase all functions with lower priority.
  llvm::erase_if(Matches,
                 [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
}

/// When an implicitly-declared special member has to invoke more than one
/// base/field special member, conflicts may occur in the targets of these
/// members. For example, if one base's member __host__ and another's is
/// __device__, it's a conflict.
/// This function figures out if the given targets \param Target1 and
/// \param Target2 conflict, and if they do not it fills in
/// \param ResolvedTarget with a target that resolves for both calls.
/// \return true if there's a conflict, false otherwise.
static bool
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
                                Sema::CUDAFunctionTarget Target2,
                                Sema::CUDAFunctionTarget *ResolvedTarget) {
  // Only free functions and static member functions may be global.
  assert(Target1 != Sema::CFT_Global);
  assert(Target2 != Sema::CFT_Global);

  if (Target1 == Sema::CFT_HostDevice) {
    *ResolvedTarget = Target2;
  } else if (Target2 == Sema::CFT_HostDevice) {
    *ResolvedTarget = Target1;
  } else if (Target1 != Target2) {
    return true;
  } else {
    *ResolvedTarget = Target1;
  }

  return false;
}

bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
                                                   CXXSpecialMember CSM,
                                                   CXXMethodDecl *MemberDecl,
                                                   bool ConstRHS,
                                                   bool Diagnose) {
  // If the defaulted special member is defined lexically outside of its
  // owning class, or the special member already has explicit device or host
  // attributes, do not infer.
  bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
  bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
  bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
  bool HasExplicitAttr =
      (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
      (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
  if (!InClass || HasExplicitAttr)
    return false;

  llvm::Optional<CUDAFunctionTarget> InferredTarget;

  // We're going to invoke special member lookup; mark that these special
  // members are called from this one, and not from its caller.
  ContextRAII MethodContext(*this, MemberDecl);

  // Look for special members in base classes that should be invoked from here.
  // Infer the target of this member base on the ones it should call.
  // Skip direct and indirect virtual bases for abstract classes.
  llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
  for (const auto &B : ClassDecl->bases()) {
    if (!B.isVirtual()) {
      Bases.push_back(&B);
    }
  }

  if (!ClassDecl->isAbstract()) {
    for (const auto &VB : ClassDecl->vbases()) {
      Bases.push_back(&VB);
    }
  }

  for (const auto *B : Bases) {
    const RecordType *BaseType = B->getType()->getAs<RecordType>();
    if (!BaseType) {
      continue;
    }

    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
    Sema::SpecialMemberOverloadResult SMOR =
        LookupSpecialMember(BaseClassDecl, CSM,
                            /* ConstArg */ ConstRHS,
                            /* VolatileArg */ false,
                            /* RValueThis */ false,
                            /* ConstThis */ false,
                            /* VolatileThis */ false);

    if (!SMOR.getMethod())
      continue;

    CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
    if (!InferredTarget.hasValue()) {
      InferredTarget = BaseMethodTarget;
    } else {
      bool ResolutionError = resolveCalleeCUDATargetConflict(
          InferredTarget.getValue(), BaseMethodTarget,
          InferredTarget.getPointer());
      if (ResolutionError) {
        if (Diagnose) {
          Diag(ClassDecl->getLocation(),
               diag::note_implicit_member_target_infer_collision)
              << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
        }
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
        return true;
      }
    }
  }

  // Same as for bases, but now for special members of fields.
  for (const auto *F : ClassDecl->fields()) {
    if (F->isInvalidDecl()) {
      continue;
    }

    const RecordType *FieldType =
        Context.getBaseElementType(F->getType())->getAs<RecordType>();
    if (!FieldType) {
      continue;
    }

    CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
    Sema::SpecialMemberOverloadResult SMOR =
        LookupSpecialMember(FieldRecDecl, CSM,
                            /* ConstArg */ ConstRHS && !F->isMutable(),
                            /* VolatileArg */ false,
                            /* RValueThis */ false,
                            /* ConstThis */ false,
                            /* VolatileThis */ false);

    if (!SMOR.getMethod())
      continue;

    CUDAFunctionTarget FieldMethodTarget =
        IdentifyCUDATarget(SMOR.getMethod());
    if (!InferredTarget.hasValue()) {
      InferredTarget = FieldMethodTarget;
    } else {
      bool ResolutionError = resolveCalleeCUDATargetConflict(
          InferredTarget.getValue(), FieldMethodTarget,
          InferredTarget.getPointer());
      if (ResolutionError) {
        if (Diagnose) {
          Diag(ClassDecl->getLocation(),
               diag::note_implicit_member_target_infer_collision)
              << (unsigned)CSM << InferredTarget.getValue()
              << FieldMethodTarget;
        }
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
        return true;
      }
    }
  }


  // If no target was inferred, mark this member as __host__ __device__;
  // it's the least restrictive option that can be invoked from any target.
  bool NeedsH = true, NeedsD = true;
  if (InferredTarget.hasValue()) {
    if (InferredTarget.getValue() == CFT_Device)
      NeedsH = false;
    else if (InferredTarget.getValue() == CFT_Host)
      NeedsD = false;
  }

  // We either setting attributes first time, or the inferred ones must match
  // previously set ones.
  if (NeedsD && !HasD)
    MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
  if (NeedsH && !HasH)
    MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));

  return false;
}

bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
  if (!CD->isDefined() && CD->isTemplateInstantiation())
    InstantiateFunctionDefinition(Loc, CD->getFirstDecl());

  // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
  // empty at a point in the translation unit, if it is either a
  // trivial constructor
  if (CD->isTrivial())
    return true;

  // ... or it satisfies all of the following conditions:
  // The constructor function has been defined.
  // The constructor function has no parameters,
  // and the function body is an empty compound statement.
  if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
    return false;

  // Its class has no virtual functions and no virtual base classes.
  if (CD->getParent()->isDynamicClass())
    return false;

  // The only form of initializer allowed is an empty constructor.
  // This will recursively check all base classes and member initializers
  if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
        if (const CXXConstructExpr *CE =
                dyn_cast<CXXConstructExpr>(CI->getInit()))
          return isEmptyCudaConstructor(Loc, CE->getConstructor());
        return false;
      }))
    return false;

  return true;
}

bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
  // No destructor -> no problem.
  if (!DD)
    return true;

  if (!DD->isDefined() && DD->isTemplateInstantiation())
    InstantiateFunctionDefinition(Loc, DD->getFirstDecl());

  // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
  // empty at a point in the translation unit, if it is either a
  // trivial constructor
  if (DD->isTrivial())
    return true;

  // ... or it satisfies all of the following conditions:
  // The destructor function has been defined.
  // and the function body is an empty compound statement.
  if (!DD->hasTrivialBody())
    return false;

  const CXXRecordDecl *ClassDecl = DD->getParent();

  // Its class has no virtual functions and no virtual base classes.
  if (ClassDecl->isDynamicClass())
    return false;

  // Only empty destructors are allowed. This will recursively check
  // destructors for all base classes...
  if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
        if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
        return true;
      }))
    return false;

  // ... and member fields.
  if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
        if (CXXRecordDecl *RD = Field->getType()
                                    ->getBaseElementTypeUnsafe()
                                    ->getAsCXXRecordDecl())
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
        return true;
      }))
    return false;

  return true;
}

void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
  if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
    return;
  const Expr *Init = VD->getInit();
  if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
      VD->hasAttr<CUDASharedAttr>()) {
    if (LangOpts.GPUAllowDeviceInit)
      return;
    assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
    bool AllowedInit = false;
    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
      AllowedInit =
          isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
    // We'll allow constant initializers even if it's a non-empty
    // constructor according to CUDA rules. This deviates from NVCC,
    // but allows us to handle things like constexpr constructors.
    if (!AllowedInit &&
        (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
      AllowedInit = VD->getInit()->isConstantInitializer(
          Context, VD->getType()->isReferenceType());

    // Also make sure that destructor, if there is one, is empty.
    if (AllowedInit)
      if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
        AllowedInit =
            isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());

    if (!AllowedInit) {
      Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
                                  ? diag::err_shared_var_init
                                  : diag::err_dynamic_var_init)
          << Init->getSourceRange();
      VD->setInvalidDecl();
    }
  } else {
    // This is a host-side global variable.  Check that the initializer is
    // callable from the host side.
    const FunctionDecl *InitFn = nullptr;
    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
      InitFn = CE->getConstructor();
    } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
      InitFn = CE->getDirectCallee();
    }
    if (InitFn) {
      CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
      if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
        Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
            << InitFnTarget << InitFn;
        Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
        VD->setInvalidDecl();
      }
    }
  }
}

// With -fcuda-host-device-constexpr, an unattributed constexpr function is
// treated as implicitly __host__ __device__, unless:
//  * it is a variadic function (device-side variadic functions are not
//    allowed), or
//  * a __device__ function with this signature was already declared, in which
//    case in which case we output an error, unless the __device__ decl is in a
//    system header, in which case we leave the constexpr function unattributed.
//
// In addition, all function decls are treated as __host__ __device__ when
// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
//   #pragma clang force_cuda_host_device_begin/end
// pair).
void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
                                       const LookupResult &Previous) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");

  if (ForceCUDAHostDeviceDepth > 0) {
    if (!NewD->hasAttr<CUDAHostAttr>())
      NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
    if (!NewD->hasAttr<CUDADeviceAttr>())
      NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
    return;
  }

  if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
      NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
      NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
    return;

  // Is D a __device__ function with the same signature as NewD, ignoring CUDA
  // attributes?
  auto IsMatchingDeviceFn = [&](NamedDecl *D) {
    if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
      D = Using->getTargetDecl();
    FunctionDecl *OldD = D->getAsFunction();
    return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
           !OldD->hasAttr<CUDAHostAttr>() &&
           !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
                       /* ConsiderCudaAttrs = */ false);
  };
  auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
  if (It != Previous.end()) {
    // We found a __device__ function with the same name and signature as NewD
    // (ignoring CUDA attrs).  This is an error unless that function is defined
    // in a system header, in which case we simply return without making NewD
    // host+device.
    NamedDecl *Match = *It;
    if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
      Diag(NewD->getLocation(),
           diag::err_cuda_unattributed_constexpr_cannot_overload_device)
          << NewD;
      Diag(Match->getLocation(),
           diag::note_cuda_conflicting_device_function_declared_here);
    }
    return;
  }

  NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
  NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
}

Sema::DeviceDiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
                                                   unsigned DiagID) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  DeviceDiagBuilder::Kind DiagKind = [this] {
    switch (CurrentCUDATarget()) {
    case CFT_Global:
    case CFT_Device:
      return DeviceDiagBuilder::K_Immediate;
    case CFT_HostDevice:
      // An HD function counts as host code if we're compiling for host, and
      // device code if we're compiling for device.  Defer any errors in device
      // mode until the function is known-emitted.
      if (getLangOpts().CUDAIsDevice) {
        return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
                FunctionEmissionStatus::Emitted)
                   ? DeviceDiagBuilder::K_ImmediateWithCallStack
                   : DeviceDiagBuilder::K_Deferred;
      }
      return DeviceDiagBuilder::K_Nop;

    default:
      return DeviceDiagBuilder::K_Nop;
    }
  }();
  return DeviceDiagBuilder(DiagKind, Loc, DiagID,
                           dyn_cast<FunctionDecl>(CurContext), *this);
}

Sema::DeviceDiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
                                                 unsigned DiagID) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  DeviceDiagBuilder::Kind DiagKind = [this] {
    switch (CurrentCUDATarget()) {
    case CFT_Host:
      return DeviceDiagBuilder::K_Immediate;
    case CFT_HostDevice:
      // An HD function counts as host code if we're compiling for host, and
      // device code if we're compiling for device.  Defer any errors in device
      // mode until the function is known-emitted.
      if (getLangOpts().CUDAIsDevice)
        return DeviceDiagBuilder::K_Nop;

      return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
              FunctionEmissionStatus::Emitted)
                 ? DeviceDiagBuilder::K_ImmediateWithCallStack
                 : DeviceDiagBuilder::K_Deferred;
    default:
      return DeviceDiagBuilder::K_Nop;
    }
  }();
  return DeviceDiagBuilder(DiagKind, Loc, DiagID,
                           dyn_cast<FunctionDecl>(CurContext), *this);
}

bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  assert(Callee && "Callee may not be null.");

  auto &ExprEvalCtx = ExprEvalContexts.back();
  if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
    return true;

  // FIXME: Is bailing out early correct here?  Should we instead assume that
  // the caller is a global initializer?
  FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
  if (!Caller)
    return true;

  // If the caller is known-emitted, mark the callee as known-emitted.
  // Otherwise, mark the call in our call graph so we can traverse it later.
  bool CallerKnownEmitted =
      getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
  if (CallerKnownEmitted) {
    // Host-side references to a __global__ function refer to the stub, so the
    // function itself is never emitted and therefore should not be marked.
    if (!shouldIgnoreInHostDeviceCheck(Callee))
      markKnownEmitted(
          *this, Caller, Callee, Loc, [](Sema &S, FunctionDecl *FD) {
            return S.getEmissionStatus(FD) == FunctionEmissionStatus::Emitted;
          });
  } else {
    // If we have
    //   host fn calls kernel fn calls host+device,
    // the HD function does not get instantiated on the host.  We model this by
    // omitting at the call to the kernel from the callgraph.  This ensures
    // that, when compiling for host, only HD functions actually called from the
    // host get marked as known-emitted.
    if (!shouldIgnoreInHostDeviceCheck(Callee))
      DeviceCallGraph[Caller].insert({Callee, Loc});
  }

  DeviceDiagBuilder::Kind DiagKind = [this, Caller, Callee,
                                      CallerKnownEmitted] {
    switch (IdentifyCUDAPreference(Caller, Callee)) {
    case CFP_Never:
      return DeviceDiagBuilder::K_Immediate;
    case CFP_WrongSide:
      assert(Caller && "WrongSide calls require a non-null caller");
      // If we know the caller will be emitted, we know this wrong-side call
      // will be emitted, so it's an immediate error.  Otherwise, defer the
      // error until we know the caller is emitted.
      return CallerKnownEmitted ? DeviceDiagBuilder::K_ImmediateWithCallStack
                                : DeviceDiagBuilder::K_Deferred;
    default:
      return DeviceDiagBuilder::K_Nop;
    }
  }();

  if (DiagKind == DeviceDiagBuilder::K_Nop)
    return true;

  // Avoid emitting this error twice for the same location.  Using a hashtable
  // like this is unfortunate, but because we must continue parsing as normal
  // after encountering a deferred error, it's otherwise very tricky for us to
  // ensure that we only emit this deferred error once.
  if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
    return true;

  DeviceDiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
      << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
  DeviceDiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
                    Caller, *this)
      << Callee;
  return DiagKind != DeviceDiagBuilder::K_Immediate &&
         DiagKind != DeviceDiagBuilder::K_ImmediateWithCallStack;
}

void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
    return;
  FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
  if (!CurFn)
    return;
  CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
  if (Target == CFT_Global || Target == CFT_Device) {
    Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
  } else if (Target == CFT_HostDevice) {
    Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
    Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
  }
}

void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
                                   const LookupResult &Previous) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
  for (NamedDecl *OldND : Previous) {
    FunctionDecl *OldFD = OldND->getAsFunction();
    if (!OldFD)
      continue;

    CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
    // Don't allow HD and global functions to overload other functions with the
    // same signature.  We allow overloading based on CUDA attributes so that
    // functions can have different implementations on the host and device, but
    // HD/global functions "exist" in some sense on both the host and device, so
    // should have the same implementation on both sides.
    if (NewTarget != OldTarget &&
        ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
         (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
        !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
                    /* ConsiderCudaAttrs = */ false)) {
      Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
          << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
      Diag(OldFD->getLocation(), diag::note_previous_declaration);
      NewFD->setInvalidDecl();
      break;
    }
  }
}

template <typename AttrTy>
static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
                              const FunctionDecl &TemplateFD) {
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
    AttrTy *Clone = Attribute->clone(S.Context);
    Clone->setInherited(true);
    FD->addAttr(Clone);
  }
}

void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
                                  const FunctionTemplateDecl &TD) {
  const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
  copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
  copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
  copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
}

std::string Sema::getCudaConfigureFuncName() const {
  if (getLangOpts().HIP)
    return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
                                            : "hipConfigureCall";

  // New CUDA kernel launch sequence.
  if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
                         CudaFeature::CUDA_USES_NEW_LAUNCH))
    return "__cudaPushCallConfiguration";

  // Legacy CUDA kernel configuration call
  return "cudaConfigureCall";
}