reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
//===- CoreEngine.h - Path-Sensitive Dataflow Engine ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines a generic engine for intraprocedural, path-sensitive,
//  dataflow analysis via graph reachability.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H

#include "clang/AST/Stmt.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <memory>
#include <utility>
#include <vector>

namespace clang {

class AnalyzerOptions;
class CXXBindTemporaryExpr;
class Expr;
class LabelDecl;

namespace ento {

class FunctionSummariesTy;
class SubEngine;

//===----------------------------------------------------------------------===//
/// CoreEngine - Implements the core logic of the graph-reachability
///   analysis. It traverses the CFG and generates the ExplodedGraph.
///   Program "states" are treated as opaque void pointers.
///   The template class CoreEngine (which subclasses CoreEngine)
///   provides the matching component to the engine that knows the actual types
///   for states.  Note that this engine only dispatches to transfer functions
///   at the statement and block-level.  The analyses themselves must implement
///   any transfer function logic and the sub-expression level (if any).
class CoreEngine {
  friend class CommonNodeBuilder;
  friend class EndOfFunctionNodeBuilder;
  friend class ExprEngine;
  friend class IndirectGotoNodeBuilder;
  friend class NodeBuilder;
  friend struct NodeBuilderContext;
  friend class SwitchNodeBuilder;

public:
  using BlocksExhausted =
      std::vector<std::pair<BlockEdge, const ExplodedNode *>>;

  using BlocksAborted =
      std::vector<std::pair<const CFGBlock *, const ExplodedNode *>>;

private:
  SubEngine &SubEng;

  /// G - The simulation graph.  Each node is a (location,state) pair.
  mutable ExplodedGraph G;

  /// WList - A set of queued nodes that need to be processed by the
  ///  worklist algorithm.  It is up to the implementation of WList to decide
  ///  the order that nodes are processed.
  std::unique_ptr<WorkList> WList;

  /// BCounterFactory - A factory object for created BlockCounter objects.
  ///   These are used to record for key nodes in the ExplodedGraph the
  ///   number of times different CFGBlocks have been visited along a path.
  BlockCounter::Factory BCounterFactory;

  /// The locations where we stopped doing work because we visited a location
  ///  too many times.
  BlocksExhausted blocksExhausted;

  /// The locations where we stopped because the engine aborted analysis,
  /// usually because it could not reason about something.
  BlocksAborted blocksAborted;

  /// The information about functions shared by the whole translation unit.
  /// (This data is owned by AnalysisConsumer.)
  FunctionSummariesTy *FunctionSummaries;

  /// Add path note tags along the path when we see that something interesting
  /// is happening. This field is the allocator for such tags.
  NoteTag::Factory NoteTags;

  void generateNode(const ProgramPoint &Loc,
                    ProgramStateRef State,
                    ExplodedNode *Pred);

  void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
  void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
  void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);

  void HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred);

  void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);

  void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
                    ExplodedNode *Pred);
  void HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
                                    const CFGBlock *B, ExplodedNode *Pred);

  /// Handle conditional logic for running static initializers.
  void HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
                        ExplodedNode *Pred);

  void HandleVirtualBaseBranch(const CFGBlock *B, ExplodedNode *Pred);

private:
  ExplodedNode *generateCallExitBeginNode(ExplodedNode *N,
                                          const ReturnStmt *RS);

public:
  /// Construct a CoreEngine object to analyze the provided CFG.
  CoreEngine(SubEngine &subengine,
             FunctionSummariesTy *FS,
             AnalyzerOptions &Opts);

  CoreEngine(const CoreEngine &) = delete;
  CoreEngine &operator=(const CoreEngine &) = delete;

  /// getGraph - Returns the exploded graph.
  ExplodedGraph &getGraph() { return G; }

  /// ExecuteWorkList - Run the worklist algorithm for a maximum number of
  ///  steps.  Returns true if there is still simulation state on the worklist.
  bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
                       ProgramStateRef InitState);

  /// Returns true if there is still simulation state on the worklist.
  bool ExecuteWorkListWithInitialState(const LocationContext *L,
                                       unsigned Steps,
                                       ProgramStateRef InitState,
                                       ExplodedNodeSet &Dst);

  /// Dispatch the work list item based on the given location information.
  /// Use Pred parameter as the predecessor state.
  void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
                        const WorkListUnit& WU);

  // Functions for external checking of whether we have unfinished work
  bool wasBlockAborted() const { return !blocksAborted.empty(); }
  bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
  bool hasWorkRemaining() const { return wasBlocksExhausted() ||
                                         WList->hasWork() ||
                                         wasBlockAborted(); }

  /// Inform the CoreEngine that a basic block was aborted because
  /// it could not be completely analyzed.
  void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
    blocksAborted.push_back(std::make_pair(block, node));
  }

  WorkList *getWorkList() const { return WList.get(); }

  BlocksExhausted::const_iterator blocks_exhausted_begin() const {
    return blocksExhausted.begin();
  }

  BlocksExhausted::const_iterator blocks_exhausted_end() const {
    return blocksExhausted.end();
  }

  BlocksAborted::const_iterator blocks_aborted_begin() const {
    return blocksAborted.begin();
  }

  BlocksAborted::const_iterator blocks_aborted_end() const {
    return blocksAborted.end();
  }

  /// Enqueue the given set of nodes onto the work list.
  void enqueue(ExplodedNodeSet &Set);

  /// Enqueue nodes that were created as a result of processing
  /// a statement onto the work list.
  void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);

  /// enqueue the nodes corresponding to the end of function onto the
  /// end of path / work list.
  void enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS);

  /// Enqueue a single node created as a result of statement processing.
  void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);

  NoteTag::Factory &getNoteTags() { return NoteTags; }
};

// TODO: Turn into a class.
struct NodeBuilderContext {
  const CoreEngine &Eng;
  const CFGBlock *Block;
  const LocationContext *LC;

  NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
      : Eng(E), Block(B), LC(N->getLocationContext()) { assert(B); }

  /// Return the CFGBlock associated with this builder.
  const CFGBlock *getBlock() const { return Block; }

  /// Returns the number of times the current basic block has been
  /// visited on the exploded graph path.
  unsigned blockCount() const {
    return Eng.WList->getBlockCounter().getNumVisited(
                    LC->getStackFrame(),
                    Block->getBlockID());
  }
};

/// \class NodeBuilder
/// This is the simplest builder which generates nodes in the
/// ExplodedGraph.
///
/// The main benefit of the builder is that it automatically tracks the
/// frontier nodes (or destination set). This is the set of nodes which should
/// be propagated to the next step / builder. They are the nodes which have been
/// added to the builder (either as the input node set or as the newly
/// constructed nodes) but did not have any outgoing transitions added.
class NodeBuilder {
  virtual void anchor();

protected:
  const NodeBuilderContext &C;

  /// Specifies if the builder results have been finalized. For example, if it
  /// is set to false, autotransitions are yet to be generated.
  bool Finalized;

  bool HasGeneratedNodes = false;

  /// The frontier set - a set of nodes which need to be propagated after
  /// the builder dies.
  ExplodedNodeSet &Frontier;

  /// Checks if the results are ready.
  virtual bool checkResults() {
    return Finalized;
  }

  bool hasNoSinksInFrontier() {
    for (const auto  I : Frontier)
      if (I->isSink())
        return false;
    return true;
  }

  /// Allow subclasses to finalize results before result_begin() is executed.
  virtual void finalizeResults() {}

  ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
                                 ProgramStateRef State,
                                 ExplodedNode *Pred,
                                 bool MarkAsSink = false);

public:
  NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
              const NodeBuilderContext &Ctx, bool F = true)
      : C(Ctx), Finalized(F), Frontier(DstSet) {
    Frontier.Add(SrcNode);
  }

  NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
              const NodeBuilderContext &Ctx, bool F = true)
      : C(Ctx), Finalized(F), Frontier(DstSet) {
    Frontier.insert(SrcSet);
    assert(hasNoSinksInFrontier());
  }

  virtual ~NodeBuilder() = default;

  /// Generates a node in the ExplodedGraph.
  ExplodedNode *generateNode(const ProgramPoint &PP,
                             ProgramStateRef State,
                             ExplodedNode *Pred) {
    return generateNodeImpl(PP, State, Pred, false);
  }

  /// Generates a sink in the ExplodedGraph.
  ///
  /// When a node is marked as sink, the exploration from the node is stopped -
  /// the node becomes the last node on the path and certain kinds of bugs are
  /// suppressed.
  ExplodedNode *generateSink(const ProgramPoint &PP,
                             ProgramStateRef State,
                             ExplodedNode *Pred) {
    return generateNodeImpl(PP, State, Pred, true);
  }

  const ExplodedNodeSet &getResults() {
    finalizeResults();
    assert(checkResults());
    return Frontier;
  }

  using iterator = ExplodedNodeSet::iterator;

  /// Iterators through the results frontier.
  iterator begin() {
    finalizeResults();
    assert(checkResults());
    return Frontier.begin();
  }

  iterator end() {
    finalizeResults();
    return Frontier.end();
  }

  const NodeBuilderContext &getContext() { return C; }
  bool hasGeneratedNodes() { return HasGeneratedNodes; }

  void takeNodes(const ExplodedNodeSet &S) {
    for (const auto I : S)
      Frontier.erase(I);
  }

  void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
  void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
  void addNodes(ExplodedNode *N) { Frontier.Add(N); }
};

/// \class NodeBuilderWithSinks
/// This node builder keeps track of the generated sink nodes.
class NodeBuilderWithSinks: public NodeBuilder {
  void anchor() override;

protected:
  SmallVector<ExplodedNode*, 2> sinksGenerated;
  ProgramPoint &Location;

public:
  NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
                       const NodeBuilderContext &Ctx, ProgramPoint &L)
      : NodeBuilder(Pred, DstSet, Ctx), Location(L) {}

  ExplodedNode *generateNode(ProgramStateRef State,
                             ExplodedNode *Pred,
                             const ProgramPointTag *Tag = nullptr) {
    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
    return NodeBuilder::generateNode(LocalLoc, State, Pred);
  }

  ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
                             const ProgramPointTag *Tag = nullptr) {
    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
    ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
    if (N && N->isSink())
      sinksGenerated.push_back(N);
    return N;
  }

  const SmallVectorImpl<ExplodedNode*> &getSinks() const {
    return sinksGenerated;
  }
};

/// \class StmtNodeBuilder
/// This builder class is useful for generating nodes that resulted from
/// visiting a statement. The main difference from its parent NodeBuilder is
/// that it creates a statement specific ProgramPoint.
class StmtNodeBuilder: public NodeBuilder {
  NodeBuilder *EnclosingBldr;

public:
  /// Constructs a StmtNodeBuilder. If the builder is going to process
  /// nodes currently owned by another builder(with larger scope), use
  /// Enclosing builder to transfer ownership.
  StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
                  const NodeBuilderContext &Ctx,
                  NodeBuilder *Enclosing = nullptr)
      : NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
    if (EnclosingBldr)
      EnclosingBldr->takeNodes(SrcNode);
  }

  StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
                  const NodeBuilderContext &Ctx,
                  NodeBuilder *Enclosing = nullptr)
      : NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
    if (EnclosingBldr)
      for (const auto I : SrcSet)
        EnclosingBldr->takeNodes(I);
  }

  ~StmtNodeBuilder() override;

  using NodeBuilder::generateNode;
  using NodeBuilder::generateSink;

  ExplodedNode *generateNode(const Stmt *S,
                             ExplodedNode *Pred,
                             ProgramStateRef St,
                             const ProgramPointTag *tag = nullptr,
                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
                                  Pred->getLocationContext(), tag);
    return NodeBuilder::generateNode(L, St, Pred);
  }

  ExplodedNode *generateSink(const Stmt *S,
                             ExplodedNode *Pred,
                             ProgramStateRef St,
                             const ProgramPointTag *tag = nullptr,
                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
                                  Pred->getLocationContext(), tag);
    return NodeBuilder::generateSink(L, St, Pred);
  }
};

/// BranchNodeBuilder is responsible for constructing the nodes
/// corresponding to the two branches of the if statement - true and false.
class BranchNodeBuilder: public NodeBuilder {
  const CFGBlock *DstT;
  const CFGBlock *DstF;

  bool InFeasibleTrue;
  bool InFeasibleFalse;

  void anchor() override;

public:
  BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
                    const NodeBuilderContext &C,
                    const CFGBlock *dstT, const CFGBlock *dstF)
      : NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
        InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
    // The branch node builder does not generate autotransitions.
    // If there are no successors it means that both branches are infeasible.
    takeNodes(SrcNode);
  }

  BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
                    const NodeBuilderContext &C,
                    const CFGBlock *dstT, const CFGBlock *dstF)
      : NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
        InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
    takeNodes(SrcSet);
  }

  ExplodedNode *generateNode(ProgramStateRef State, bool branch,
                             ExplodedNode *Pred);

  const CFGBlock *getTargetBlock(bool branch) const {
    return branch ? DstT : DstF;
  }

  void markInfeasible(bool branch) {
    if (branch)
      InFeasibleTrue = true;
    else
      InFeasibleFalse = true;
  }

  bool isFeasible(bool branch) {
    return branch ? !InFeasibleTrue : !InFeasibleFalse;
  }
};

class IndirectGotoNodeBuilder {
  CoreEngine& Eng;
  const CFGBlock *Src;
  const CFGBlock &DispatchBlock;
  const Expr *E;
  ExplodedNode *Pred;

public:
  IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
                    const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
      : Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}

  class iterator {
    friend class IndirectGotoNodeBuilder;

    CFGBlock::const_succ_iterator I;

    iterator(CFGBlock::const_succ_iterator i) : I(i) {}

  public:
    iterator &operator++() { ++I; return *this; }
    bool operator!=(const iterator &X) const { return I != X.I; }

    const LabelDecl *getLabel() const {
      return cast<LabelStmt>((*I)->getLabel())->getDecl();
    }

    const CFGBlock *getBlock() const {
      return *I;
    }
  };

  iterator begin() { return iterator(DispatchBlock.succ_begin()); }
  iterator end() { return iterator(DispatchBlock.succ_end()); }

  ExplodedNode *generateNode(const iterator &I,
                             ProgramStateRef State,
                             bool isSink = false);

  const Expr *getTarget() const { return E; }

  ProgramStateRef getState() const { return Pred->State; }

  const LocationContext *getLocationContext() const {
    return Pred->getLocationContext();
  }
};

class SwitchNodeBuilder {
  CoreEngine& Eng;
  const CFGBlock *Src;
  const Expr *Condition;
  ExplodedNode *Pred;

public:
  SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
                    const Expr *condition, CoreEngine* eng)
      : Eng(*eng), Src(src), Condition(condition), Pred(pred) {}

  class iterator {
    friend class SwitchNodeBuilder;

    CFGBlock::const_succ_reverse_iterator I;

    iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}

  public:
    iterator &operator++() { ++I; return *this; }
    bool operator!=(const iterator &X) const { return I != X.I; }
    bool operator==(const iterator &X) const { return I == X.I; }

    const CaseStmt *getCase() const {
      return cast<CaseStmt>((*I)->getLabel());
    }

    const CFGBlock *getBlock() const {
      return *I;
    }
  };

  iterator begin() { return iterator(Src->succ_rbegin()+1); }
  iterator end() { return iterator(Src->succ_rend()); }

  const SwitchStmt *getSwitch() const {
    return cast<SwitchStmt>(Src->getTerminator());
  }

  ExplodedNode *generateCaseStmtNode(const iterator &I,
                                     ProgramStateRef State);

  ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
                                        bool isSink = false);

  const Expr *getCondition() const { return Condition; }

  ProgramStateRef getState() const { return Pred->State; }

  const LocationContext *getLocationContext() const {
    return Pred->getLocationContext();
  }
};

} // namespace ento

} // namespace clang

#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H