reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
//===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines the CFG and CFGBuilder classes for representing and
//  building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_ANALYSIS_CFG_H
#define LLVM_CLANG_ANALYSIS_CFG_H

#include "clang/Analysis/Support/BumpVector.h"
#include "clang/Analysis/ConstructionContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
#include <bitset>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <vector>

namespace clang {

class ASTContext;
class BinaryOperator;
class CFG;
class CXXBaseSpecifier;
class CXXBindTemporaryExpr;
class CXXCtorInitializer;
class CXXDeleteExpr;
class CXXDestructorDecl;
class CXXNewExpr;
class CXXRecordDecl;
class Decl;
class FieldDecl;
class LangOptions;
class VarDecl;

/// Represents a top-level expression in a basic block.
class CFGElement {
public:
  enum Kind {
    // main kind
    Initializer,
    ScopeBegin,
    ScopeEnd,
    NewAllocator,
    LifetimeEnds,
    LoopExit,
    // stmt kind
    Statement,
    Constructor,
    CXXRecordTypedCall,
    STMT_BEGIN = Statement,
    STMT_END = CXXRecordTypedCall,
    // dtor kind
    AutomaticObjectDtor,
    DeleteDtor,
    BaseDtor,
    MemberDtor,
    TemporaryDtor,
    DTOR_BEGIN = AutomaticObjectDtor,
    DTOR_END = TemporaryDtor
  };

protected:
  // The int bits are used to mark the kind.
  llvm::PointerIntPair<void *, 2> Data1;
  llvm::PointerIntPair<void *, 2> Data2;

  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
      : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
        Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
    assert(getKind() == kind);
  }

  CFGElement() = default;

public:
  /// Convert to the specified CFGElement type, asserting that this
  /// CFGElement is of the desired type.
  template<typename T>
  T castAs() const {
    assert(T::isKind(*this));
    T t;
    CFGElement& e = t;
    e = *this;
    return t;
  }

  /// Convert to the specified CFGElement type, returning None if this
  /// CFGElement is not of the desired type.
  template<typename T>
  Optional<T> getAs() const {
    if (!T::isKind(*this))
      return None;
    T t;
    CFGElement& e = t;
    e = *this;
    return t;
  }

  Kind getKind() const {
    unsigned x = Data2.getInt();
    x <<= 2;
    x |= Data1.getInt();
    return (Kind) x;
  }

  void dumpToStream(llvm::raw_ostream &OS) const;

  void dump() const {
    dumpToStream(llvm::errs());
  }
};

class CFGStmt : public CFGElement {
public:
  explicit CFGStmt(Stmt *S, Kind K = Statement) : CFGElement(K, S) {
    assert(isKind(*this));
  }

  const Stmt *getStmt() const {
    return static_cast<const Stmt *>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  static bool isKind(const CFGElement &E) {
    return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END;
  }

protected:
  CFGStmt() = default;
};

/// Represents C++ constructor call. Maintains information necessary to figure
/// out what memory is being initialized by the constructor expression. For now
/// this is only used by the analyzer's CFG.
class CFGConstructor : public CFGStmt {
public:
  explicit CFGConstructor(CXXConstructExpr *CE, const ConstructionContext *C)
      : CFGStmt(CE, Constructor) {
    assert(C);
    Data2.setPointer(const_cast<ConstructionContext *>(C));
  }

  const ConstructionContext *getConstructionContext() const {
    return static_cast<ConstructionContext *>(Data2.getPointer());
  }

private:
  friend class CFGElement;

  CFGConstructor() = default;

  static bool isKind(const CFGElement &E) {
    return E.getKind() == Constructor;
  }
};

/// Represents a function call that returns a C++ object by value. This, like
/// constructor, requires a construction context in order to understand the
/// storage of the returned object . In C such tracking is not necessary because
/// no additional effort is required for destroying the object or modeling copy
/// elision. Like CFGConstructor, this element is for now only used by the
/// analyzer's CFG.
class CFGCXXRecordTypedCall : public CFGStmt {
public:
  /// Returns true when call expression \p CE needs to be represented
  /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt.
  static bool isCXXRecordTypedCall(Expr *E) {
    assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E));
    // There is no such thing as reference-type expression. If the function
    // returns a reference, it'll return the respective lvalue or xvalue
    // instead, and we're only interested in objects.
    return !E->isGLValue() &&
           E->getType().getCanonicalType()->getAsCXXRecordDecl();
  }

  explicit CFGCXXRecordTypedCall(Expr *E, const ConstructionContext *C)
      : CFGStmt(E, CXXRecordTypedCall) {
    assert(isCXXRecordTypedCall(E));
    assert(C && (isa<TemporaryObjectConstructionContext>(C) ||
                 // These are possible in C++17 due to mandatory copy elision.
                 isa<ReturnedValueConstructionContext>(C) ||
                 isa<VariableConstructionContext>(C) ||
                 isa<ConstructorInitializerConstructionContext>(C) ||
                 isa<ArgumentConstructionContext>(C)));
    Data2.setPointer(const_cast<ConstructionContext *>(C));
  }

  const ConstructionContext *getConstructionContext() const {
    return static_cast<ConstructionContext *>(Data2.getPointer());
  }

private:
  friend class CFGElement;

  CFGCXXRecordTypedCall() = default;

  static bool isKind(const CFGElement &E) {
    return E.getKind() == CXXRecordTypedCall;
  }
};

/// Represents C++ base or member initializer from constructor's initialization
/// list.
class CFGInitializer : public CFGElement {
public:
  explicit CFGInitializer(CXXCtorInitializer *initializer)
      : CFGElement(Initializer, initializer) {}

  CXXCtorInitializer* getInitializer() const {
    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  CFGInitializer() = default;

  static bool isKind(const CFGElement &E) {
    return E.getKind() == Initializer;
  }
};

/// Represents C++ allocator call.
class CFGNewAllocator : public CFGElement {
public:
  explicit CFGNewAllocator(const CXXNewExpr *S)
    : CFGElement(NewAllocator, S) {}

  // Get the new expression.
  const CXXNewExpr *getAllocatorExpr() const {
    return static_cast<CXXNewExpr *>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  CFGNewAllocator() = default;

  static bool isKind(const CFGElement &elem) {
    return elem.getKind() == NewAllocator;
  }
};

/// Represents the point where a loop ends.
/// This element is is only produced when building the CFG for the static
/// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag.
///
/// Note: a loop exit element can be reached even when the loop body was never
/// entered.
class CFGLoopExit : public CFGElement {
public:
  explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {}

  const Stmt *getLoopStmt() const {
    return static_cast<Stmt *>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  CFGLoopExit() = default;

  static bool isKind(const CFGElement &elem) {
    return elem.getKind() == LoopExit;
  }
};

/// Represents the point where the lifetime of an automatic object ends
class CFGLifetimeEnds : public CFGElement {
public:
  explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt)
      : CFGElement(LifetimeEnds, var, stmt) {}

  const VarDecl *getVarDecl() const {
    return static_cast<VarDecl *>(Data1.getPointer());
  }

  const Stmt *getTriggerStmt() const {
    return static_cast<Stmt *>(Data2.getPointer());
  }

private:
  friend class CFGElement;

  CFGLifetimeEnds() = default;

  static bool isKind(const CFGElement &elem) {
    return elem.getKind() == LifetimeEnds;
  }
};

/// Represents beginning of a scope implicitly generated
/// by the compiler on encountering a CompoundStmt
class CFGScopeBegin : public CFGElement {
public:
  CFGScopeBegin() {}
  CFGScopeBegin(const VarDecl *VD, const Stmt *S)
      : CFGElement(ScopeBegin, VD, S) {}

  // Get statement that triggered a new scope.
  const Stmt *getTriggerStmt() const {
    return static_cast<Stmt*>(Data2.getPointer());
  }

  // Get VD that triggered a new scope.
  const VarDecl *getVarDecl() const {
    return static_cast<VarDecl *>(Data1.getPointer());
  }

private:
  friend class CFGElement;
  static bool isKind(const CFGElement &E) {
    Kind kind = E.getKind();
    return kind == ScopeBegin;
  }
};

/// Represents end of a scope implicitly generated by
/// the compiler after the last Stmt in a CompoundStmt's body
class CFGScopeEnd : public CFGElement {
public:
  CFGScopeEnd() {}
  CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {}

  const VarDecl *getVarDecl() const {
    return static_cast<VarDecl *>(Data1.getPointer());
  }

  const Stmt *getTriggerStmt() const {
    return static_cast<Stmt *>(Data2.getPointer());
  }

private:
  friend class CFGElement;
  static bool isKind(const CFGElement &E) {
    Kind kind = E.getKind();
    return kind == ScopeEnd;
  }
};

/// Represents C++ object destructor implicitly generated by compiler on various
/// occasions.
class CFGImplicitDtor : public CFGElement {
protected:
  CFGImplicitDtor() = default;

  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
    : CFGElement(kind, data1, data2) {
    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
  }

public:
  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
  bool isNoReturn(ASTContext &astContext) const;

private:
  friend class CFGElement;

  static bool isKind(const CFGElement &E) {
    Kind kind = E.getKind();
    return kind >= DTOR_BEGIN && kind <= DTOR_END;
  }
};

/// Represents C++ object destructor implicitly generated for automatic object
/// or temporary bound to const reference at the point of leaving its local
/// scope.
class CFGAutomaticObjDtor: public CFGImplicitDtor {
public:
  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}

  const VarDecl *getVarDecl() const {
    return static_cast<VarDecl*>(Data1.getPointer());
  }

  // Get statement end of which triggered the destructor call.
  const Stmt *getTriggerStmt() const {
    return static_cast<Stmt*>(Data2.getPointer());
  }

private:
  friend class CFGElement;

  CFGAutomaticObjDtor() = default;

  static bool isKind(const CFGElement &elem) {
    return elem.getKind() == AutomaticObjectDtor;
  }
};

/// Represents C++ object destructor generated from a call to delete.
class CFGDeleteDtor : public CFGImplicitDtor {
public:
  CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
      : CFGImplicitDtor(DeleteDtor, RD, DE) {}

  const CXXRecordDecl *getCXXRecordDecl() const {
    return static_cast<CXXRecordDecl*>(Data1.getPointer());
  }

  // Get Delete expression which triggered the destructor call.
  const CXXDeleteExpr *getDeleteExpr() const {
    return static_cast<CXXDeleteExpr *>(Data2.getPointer());
  }

private:
  friend class CFGElement;

  CFGDeleteDtor() = default;

  static bool isKind(const CFGElement &elem) {
    return elem.getKind() == DeleteDtor;
  }
};

/// Represents C++ object destructor implicitly generated for base object in
/// destructor.
class CFGBaseDtor : public CFGImplicitDtor {
public:
  CFGBaseDtor(const CXXBaseSpecifier *base)
      : CFGImplicitDtor(BaseDtor, base) {}

  const CXXBaseSpecifier *getBaseSpecifier() const {
    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  CFGBaseDtor() = default;

  static bool isKind(const CFGElement &E) {
    return E.getKind() == BaseDtor;
  }
};

/// Represents C++ object destructor implicitly generated for member object in
/// destructor.
class CFGMemberDtor : public CFGImplicitDtor {
public:
  CFGMemberDtor(const FieldDecl *field)
      : CFGImplicitDtor(MemberDtor, field, nullptr) {}

  const FieldDecl *getFieldDecl() const {
    return static_cast<const FieldDecl*>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  CFGMemberDtor() = default;

  static bool isKind(const CFGElement &E) {
    return E.getKind() == MemberDtor;
  }
};

/// Represents C++ object destructor implicitly generated at the end of full
/// expression for temporary object.
class CFGTemporaryDtor : public CFGImplicitDtor {
public:
  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
      : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}

  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
  }

private:
  friend class CFGElement;

  CFGTemporaryDtor() = default;

  static bool isKind(const CFGElement &E) {
    return E.getKind() == TemporaryDtor;
  }
};

/// Represents CFGBlock terminator statement.
///
class CFGTerminator {
public:
  enum Kind {
    /// A branch that corresponds to a statement in the code,
    /// such as an if-statement.
    StmtBranch,
    /// A branch in control flow of destructors of temporaries. In this case
    /// terminator statement is the same statement that branches control flow
    /// in evaluation of matching full expression.
    TemporaryDtorsBranch,
    /// A shortcut around virtual base initializers. It gets taken when
    /// virtual base classes have already been initialized by the constructor
    /// of the most derived class while we're in the base class.
    VirtualBaseBranch,

    /// Number of different kinds, for sanity checks. We subtract 1 so that
    /// to keep receiving compiler warnings when we don't cover all enum values
    /// in a switch.
    NumKindsMinusOne = VirtualBaseBranch
  };

private:
  static constexpr int KindBits = 2;
  static_assert((1 << KindBits) > NumKindsMinusOne,
                "Not enough room for kind!");
  llvm::PointerIntPair<Stmt *, KindBits> Data;

public:
  CFGTerminator() { assert(!isValid()); }
  CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {}

  bool isValid() const { return Data.getOpaqueValue() != nullptr; }
  Stmt *getStmt() { return Data.getPointer(); }
  const Stmt *getStmt() const { return Data.getPointer(); }
  Kind getKind() const { return static_cast<Kind>(Data.getInt()); }

  bool isStmtBranch() const {
    return getKind() == StmtBranch;
  }
  bool isTemporaryDtorsBranch() const {
    return getKind() == TemporaryDtorsBranch;
  }
  bool isVirtualBaseBranch() const {
    return getKind() == VirtualBaseBranch;
  }
};

/// Represents a single basic block in a source-level CFG.
///  It consists of:
///
///  (1) A set of statements/expressions (which may contain subexpressions).
///  (2) A "terminator" statement (not in the set of statements).
///  (3) A list of successors and predecessors.
///
/// Terminator: The terminator represents the type of control-flow that occurs
/// at the end of the basic block.  The terminator is a Stmt* referring to an
/// AST node that has control-flow: if-statements, breaks, loops, etc.
/// If the control-flow is conditional, the condition expression will appear
/// within the set of statements in the block (usually the last statement).
///
/// Predecessors: the order in the set of predecessors is arbitrary.
///
/// Successors: the order in the set of successors is NOT arbitrary.  We
///  currently have the following orderings based on the terminator:
///
///     Terminator     |   Successor Ordering
///  ------------------|------------------------------------
///       if           |  Then Block;  Else Block
///     ? operator     |  LHS expression;  RHS expression
///     logical and/or |  expression that consumes the op, RHS
///     vbase inits    |  already handled by the most derived class; not yet
///
/// But note that any of that may be NULL in case of optimized-out edges.
class CFGBlock {
  class ElementList {
    using ImplTy = BumpVector<CFGElement>;

    ImplTy Impl;

  public:
    ElementList(BumpVectorContext &C) : Impl(C, 4) {}

    using iterator = std::reverse_iterator<ImplTy::iterator>;
    using const_iterator = std::reverse_iterator<ImplTy::const_iterator>;
    using reverse_iterator = ImplTy::iterator;
    using const_reverse_iterator = ImplTy::const_iterator;
    using const_reference = ImplTy::const_reference;

    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }

    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
        BumpVectorContext &C) {
      return Impl.insert(I, Cnt, E, C);
    }

    const_reference front() const { return Impl.back(); }
    const_reference back() const { return Impl.front(); }

    iterator begin() { return Impl.rbegin(); }
    iterator end() { return Impl.rend(); }
    const_iterator begin() const { return Impl.rbegin(); }
    const_iterator end() const { return Impl.rend(); }
    reverse_iterator rbegin() { return Impl.begin(); }
    reverse_iterator rend() { return Impl.end(); }
    const_reverse_iterator rbegin() const { return Impl.begin(); }
    const_reverse_iterator rend() const { return Impl.end(); }

    CFGElement operator[](size_t i) const  {
      assert(i < Impl.size());
      return Impl[Impl.size() - 1 - i];
    }

    size_t size() const { return Impl.size(); }
    bool empty() const { return Impl.empty(); }
  };

  /// A convenience class for comparing CFGElements, since methods of CFGBlock
  /// like operator[] return CFGElements by value. This is practically a wrapper
  /// around a (CFGBlock, Index) pair.
  template <bool IsConst> class ElementRefImpl {

    template <bool IsOtherConst> friend class ElementRefImpl;

    using CFGBlockPtr =
        typename std::conditional<IsConst, const CFGBlock *, CFGBlock *>::type;

    using CFGElementPtr = typename std::conditional<IsConst, const CFGElement *,
                                                    CFGElement *>::type;

  protected:
    CFGBlockPtr Parent;
    size_t Index;

  public:
    ElementRefImpl(CFGBlockPtr Parent, size_t Index)
        : Parent(Parent), Index(Index) {}

    template <bool IsOtherConst>
    ElementRefImpl(ElementRefImpl<IsOtherConst> Other)
        : ElementRefImpl(Other.Parent, Other.Index) {}

    size_t getIndexInBlock() const { return Index; }

    CFGBlockPtr getParent() { return Parent; }
    CFGBlockPtr getParent() const { return Parent; }

    bool operator<(ElementRefImpl Other) const {
      return std::make_pair(Parent, Index) <
             std::make_pair(Other.Parent, Other.Index);
    }

    bool operator==(ElementRefImpl Other) const {
      return Parent == Other.Parent && Index == Other.Index;
    }

    bool operator!=(ElementRefImpl Other) const { return !(*this == Other); }
    CFGElement operator*() const { return (*Parent)[Index]; }
    CFGElementPtr operator->() const { return &*(Parent->begin() + Index); }

    void dumpToStream(llvm::raw_ostream &OS) const {
      OS << getIndexInBlock() + 1 << ": ";
      (*this)->dumpToStream(OS);
    }

    void dump() const {
      dumpToStream(llvm::errs());
    }
  };

  template <bool IsReverse, bool IsConst> class ElementRefIterator {

    template <bool IsOtherReverse, bool IsOtherConst>
    friend class ElementRefIterator;

    using CFGBlockRef =
        typename std::conditional<IsConst, const CFGBlock *, CFGBlock *>::type;

    using UnderlayingIteratorTy = typename std::conditional<
        IsConst,
        typename std::conditional<IsReverse,
                                  ElementList::const_reverse_iterator,
                                  ElementList::const_iterator>::type,
        typename std::conditional<IsReverse, ElementList::reverse_iterator,
                                  ElementList::iterator>::type>::type;

    using IteratorTraits = typename std::iterator_traits<UnderlayingIteratorTy>;
    using ElementRef = typename CFGBlock::ElementRefImpl<IsConst>;

  public:
    using difference_type = typename IteratorTraits::difference_type;
    using value_type = ElementRef;
    using pointer = ElementRef *;
    using iterator_category = typename IteratorTraits::iterator_category;

  private:
    CFGBlockRef Parent;
    UnderlayingIteratorTy Pos;

  public:
    ElementRefIterator(CFGBlockRef Parent, UnderlayingIteratorTy Pos)
        : Parent(Parent), Pos(Pos) {}

    template <bool IsOtherConst>
    ElementRefIterator(ElementRefIterator<false, IsOtherConst> E)
        : ElementRefIterator(E.Parent, E.Pos.base()) {}

    template <bool IsOtherConst>
    ElementRefIterator(ElementRefIterator<true, IsOtherConst> E)
        : ElementRefIterator(E.Parent, llvm::make_reverse_iterator(E.Pos)) {}

    bool operator<(ElementRefIterator Other) const {
      assert(Parent == Other.Parent);
      return Pos < Other.Pos;
    }

    bool operator==(ElementRefIterator Other) const {
      return Parent == Other.Parent && Pos == Other.Pos;
    }

    bool operator!=(ElementRefIterator Other) const {
      return !(*this == Other);
    }

  private:
    template <bool IsOtherConst>
    static size_t
    getIndexInBlock(CFGBlock::ElementRefIterator<true, IsOtherConst> E) {
      return E.Parent->size() - (E.Pos - E.Parent->rbegin()) - 1;
    }

    template <bool IsOtherConst>
    static size_t
    getIndexInBlock(CFGBlock::ElementRefIterator<false, IsOtherConst> E) {
      return E.Pos - E.Parent->begin();
    }

  public:
    value_type operator*() { return {Parent, getIndexInBlock(*this)}; }

    difference_type operator-(ElementRefIterator Other) const {
      return Pos - Other.Pos;
    }

    ElementRefIterator operator++() {
      ++this->Pos;
      return *this;
    }
    ElementRefIterator operator++(int) {
      ElementRefIterator Ret = *this;
      ++*this;
      return Ret;
    }
    ElementRefIterator operator+(size_t count) {
      this->Pos += count;
      return *this;
    }
    ElementRefIterator operator-(size_t count) {
      this->Pos -= count;
      return *this;
    }
  };

public:
  /// The set of statements in the basic block.
  ElementList Elements;

  /// An (optional) label that prefixes the executable statements in the block.
  /// When this variable is non-NULL, it is either an instance of LabelStmt,
  /// SwitchCase or CXXCatchStmt.
  Stmt *Label = nullptr;

  /// The terminator for a basic block that indicates the type of control-flow
  /// that occurs between a block and its successors.
  CFGTerminator Terminator;

  /// Some blocks are used to represent the "loop edge" to the start of a loop
  /// from within the loop body. This Stmt* will be refer to the loop statement
  /// for such blocks (and be null otherwise).
  const Stmt *LoopTarget = nullptr;

  /// A numerical ID assigned to a CFGBlock during construction of the CFG.
  unsigned BlockID;

public:
  /// This class represents a potential adjacent block in the CFG.  It encodes
  /// whether or not the block is actually reachable, or can be proved to be
  /// trivially unreachable.  For some cases it allows one to encode scenarios
  /// where a block was substituted because the original (now alternate) block
  /// is unreachable.
  class AdjacentBlock {
    enum Kind {
      AB_Normal,
      AB_Unreachable,
      AB_Alternate
    };

    CFGBlock *ReachableBlock;
    llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock;

  public:
    /// Construct an AdjacentBlock with a possibly unreachable block.
    AdjacentBlock(CFGBlock *B, bool IsReachable);

    /// Construct an AdjacentBlock with a reachable block and an alternate
    /// unreachable block.
    AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);

    /// Get the reachable block, if one exists.
    CFGBlock *getReachableBlock() const {
      return ReachableBlock;
    }

    /// Get the potentially unreachable block.
    CFGBlock *getPossiblyUnreachableBlock() const {
      return UnreachableBlock.getPointer();
    }

    /// Provide an implicit conversion to CFGBlock* so that
    /// AdjacentBlock can be substituted for CFGBlock*.
    operator CFGBlock*() const {
      return getReachableBlock();
    }

    CFGBlock& operator *() const {
      return *getReachableBlock();
    }

    CFGBlock* operator ->() const {
      return getReachableBlock();
    }

    bool isReachable() const {
      Kind K = (Kind) UnreachableBlock.getInt();
      return K == AB_Normal || K == AB_Alternate;
    }
  };

private:
  /// Keep track of the predecessor / successor CFG blocks.
  using AdjacentBlocks = BumpVector<AdjacentBlock>;
  AdjacentBlocks Preds;
  AdjacentBlocks Succs;

  /// This bit is set when the basic block contains a function call
  /// or implicit destructor that is attributed as 'noreturn'. In that case,
  /// control cannot technically ever proceed past this block. All such blocks
  /// will have a single immediate successor: the exit block. This allows them
  /// to be easily reached from the exit block and using this bit quickly
  /// recognized without scanning the contents of the block.
  ///
  /// Optimization Note: This bit could be profitably folded with Terminator's
  /// storage if the memory usage of CFGBlock becomes an issue.
  unsigned HasNoReturnElement : 1;

  /// The parent CFG that owns this CFGBlock.
  CFG *Parent;

public:
  explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
      : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1),
        Succs(C, 1), HasNoReturnElement(false), Parent(parent) {}

  // Statement iterators
  using iterator = ElementList::iterator;
  using const_iterator = ElementList::const_iterator;
  using reverse_iterator = ElementList::reverse_iterator;
  using const_reverse_iterator = ElementList::const_reverse_iterator;

  size_t getIndexInCFG() const;

  CFGElement                 front()       const { return Elements.front();   }
  CFGElement                 back()        const { return Elements.back();    }

  iterator                   begin()             { return Elements.begin();   }
  iterator                   end()               { return Elements.end();     }
  const_iterator             begin()       const { return Elements.begin();   }
  const_iterator             end()         const { return Elements.end();     }

  reverse_iterator           rbegin()            { return Elements.rbegin();  }
  reverse_iterator           rend()              { return Elements.rend();    }
  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
  const_reverse_iterator     rend()        const { return Elements.rend();    }

  using CFGElementRef = ElementRefImpl<false>;
  using ConstCFGElementRef = ElementRefImpl<true>;

  using ref_iterator = ElementRefIterator<false, false>;
  using ref_iterator_range = llvm::iterator_range<ref_iterator>;
  using const_ref_iterator = ElementRefIterator<false, true>;
  using const_ref_iterator_range = llvm::iterator_range<const_ref_iterator>;

  using reverse_ref_iterator = ElementRefIterator<true, false>;
  using reverse_ref_iterator_range = llvm::iterator_range<reverse_ref_iterator>;

  using const_reverse_ref_iterator = ElementRefIterator<true, true>;
  using const_reverse_ref_iterator_range =
      llvm::iterator_range<const_reverse_ref_iterator>;

  ref_iterator ref_begin() { return {this, begin()}; }
  ref_iterator ref_end() { return {this, end()}; }
  const_ref_iterator ref_begin() const { return {this, begin()}; }
  const_ref_iterator ref_end() const { return {this, end()}; }

  reverse_ref_iterator rref_begin() { return {this, rbegin()}; }
  reverse_ref_iterator rref_end() { return {this, rend()}; }
  const_reverse_ref_iterator rref_begin() const { return {this, rbegin()}; }
  const_reverse_ref_iterator rref_end() const { return {this, rend()}; }

  ref_iterator_range refs() { return {ref_begin(), ref_end()}; }
  const_ref_iterator_range refs() const { return {ref_begin(), ref_end()}; }
  reverse_ref_iterator_range rrefs() { return {rref_begin(), rref_end()}; }
  const_reverse_ref_iterator_range rrefs() const {
    return {rref_begin(), rref_end()};
  }

  unsigned                   size()        const { return Elements.size();    }
  bool                       empty()       const { return Elements.empty();   }

  CFGElement operator[](size_t i) const  { return Elements[i]; }

  // CFG iterators
  using pred_iterator = AdjacentBlocks::iterator;
  using const_pred_iterator = AdjacentBlocks::const_iterator;
  using pred_reverse_iterator = AdjacentBlocks::reverse_iterator;
  using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
  using pred_range = llvm::iterator_range<pred_iterator>;
  using pred_const_range = llvm::iterator_range<const_pred_iterator>;

  using succ_iterator = AdjacentBlocks::iterator;
  using const_succ_iterator = AdjacentBlocks::const_iterator;
  using succ_reverse_iterator = AdjacentBlocks::reverse_iterator;
  using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
  using succ_range = llvm::iterator_range<succ_iterator>;
  using succ_const_range = llvm::iterator_range<const_succ_iterator>;

  pred_iterator                pred_begin()        { return Preds.begin();   }
  pred_iterator                pred_end()          { return Preds.end();     }
  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
  const_pred_iterator          pred_end()    const { return Preds.end();     }

  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }

  pred_range preds() {
    return pred_range(pred_begin(), pred_end());
  }

  pred_const_range preds() const {
    return pred_const_range(pred_begin(), pred_end());
  }

  succ_iterator                succ_begin()        { return Succs.begin();   }
  succ_iterator                succ_end()          { return Succs.end();     }
  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
  const_succ_iterator          succ_end()    const { return Succs.end();     }

  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }

  succ_range succs() {
    return succ_range(succ_begin(), succ_end());
  }

  succ_const_range succs() const {
    return succ_const_range(succ_begin(), succ_end());
  }

  unsigned                     succ_size()   const { return Succs.size();    }
  bool                         succ_empty()  const { return Succs.empty();   }

  unsigned                     pred_size()   const { return Preds.size();    }
  bool                         pred_empty()  const { return Preds.empty();   }


  class FilterOptions {
  public:
    unsigned IgnoreNullPredecessors : 1;
    unsigned IgnoreDefaultsWithCoveredEnums : 1;

    FilterOptions()
        : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {}
  };

  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
       const CFGBlock *Dst);

  template <typename IMPL, bool IsPred>
  class FilteredCFGBlockIterator {
  private:
    IMPL I, E;
    const FilterOptions F;
    const CFGBlock *From;

  public:
    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
                                      const CFGBlock *from,
                                      const FilterOptions &f)
        : I(i), E(e), F(f), From(from) {
      while (hasMore() && Filter(*I))
        ++I;
    }

    bool hasMore() const { return I != E; }

    FilteredCFGBlockIterator &operator++() {
      do { ++I; } while (hasMore() && Filter(*I));
      return *this;
    }

    const CFGBlock *operator*() const { return *I; }

  private:
    bool Filter(const CFGBlock *To) {
      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
    }
  };

  using filtered_pred_iterator =
      FilteredCFGBlockIterator<const_pred_iterator, true>;

  using filtered_succ_iterator =
      FilteredCFGBlockIterator<const_succ_iterator, false>;

  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
  }

  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
  }

  // Manipulation of block contents

  void setTerminator(CFGTerminator Term) { Terminator = Term; }
  void setLabel(Stmt *Statement) { Label = Statement; }
  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
  void setHasNoReturnElement() { HasNoReturnElement = true; }

  /// Returns true if the block would eventually end with a sink (a noreturn
  /// node).
  bool isInevitablySinking() const;

  CFGTerminator getTerminator() const { return Terminator; }

  Stmt *getTerminatorStmt() { return Terminator.getStmt(); }
  const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); }

  /// \returns the last (\c rbegin()) condition, e.g. observe the following code
  /// snippet:
  ///   if (A && B && C)
  /// A block would be created for \c A, \c B, and \c C. For the latter,
  /// \c getTerminatorStmt() would retrieve the entire condition, rather than
  /// C itself, while this method would only return C.
  const Expr *getLastCondition() const;

  Stmt *getTerminatorCondition(bool StripParens = true);

  const Stmt *getTerminatorCondition(bool StripParens = true) const {
    return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
  }

  const Stmt *getLoopTarget() const { return LoopTarget; }

  Stmt *getLabel() { return Label; }
  const Stmt *getLabel() const { return Label; }

  bool hasNoReturnElement() const { return HasNoReturnElement; }

  unsigned getBlockID() const { return BlockID; }

  CFG *getParent() const { return Parent; }

  void dump() const;

  void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
             bool ShowColors) const;

  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
  void printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
                           bool AddQuotes) const;

  void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
    OS << "BB#" << getBlockID();
  }

  /// Adds a (potentially unreachable) successor block to the current block.
  void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);

  void appendStmt(Stmt *statement, BumpVectorContext &C) {
    Elements.push_back(CFGStmt(statement), C);
  }

  void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC,
                         BumpVectorContext &C) {
    Elements.push_back(CFGConstructor(CE, CC), C);
  }

  void appendCXXRecordTypedCall(Expr *E,
                                const ConstructionContext *CC,
                                BumpVectorContext &C) {
    Elements.push_back(CFGCXXRecordTypedCall(E, CC), C);
  }

  void appendInitializer(CXXCtorInitializer *initializer,
                        BumpVectorContext &C) {
    Elements.push_back(CFGInitializer(initializer), C);
  }

  void appendNewAllocator(CXXNewExpr *NE,
                          BumpVectorContext &C) {
    Elements.push_back(CFGNewAllocator(NE), C);
  }

  void appendScopeBegin(const VarDecl *VD, const Stmt *S,
                        BumpVectorContext &C) {
    Elements.push_back(CFGScopeBegin(VD, S), C);
  }

  void prependScopeBegin(const VarDecl *VD, const Stmt *S,
                         BumpVectorContext &C) {
    Elements.insert(Elements.rbegin(), 1, CFGScopeBegin(VD, S), C);
  }

  void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
    Elements.push_back(CFGScopeEnd(VD, S), C);
  }

  void prependScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
    Elements.insert(Elements.rbegin(), 1, CFGScopeEnd(VD, S), C);
  }

  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
    Elements.push_back(CFGBaseDtor(BS), C);
  }

  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
    Elements.push_back(CFGMemberDtor(FD), C);
  }

  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
    Elements.push_back(CFGTemporaryDtor(E), C);
  }

  void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
    Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
  }

  void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
    Elements.push_back(CFGLifetimeEnds(VD, S), C);
  }

  void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) {
    Elements.push_back(CFGLoopExit(LoopStmt), C);
  }

  void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
    Elements.push_back(CFGDeleteDtor(RD, DE), C);
  }

  // Destructors must be inserted in reversed order. So insertion is in two
  // steps. First we prepare space for some number of elements, then we insert
  // the elements beginning at the last position in prepared space.
  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
      BumpVectorContext &C) {
    return iterator(Elements.insert(I.base(), Cnt,
                                    CFGAutomaticObjDtor(nullptr, nullptr), C));
  }
  iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
    *I = CFGAutomaticObjDtor(VD, S);
    return ++I;
  }

  // Scope leaving must be performed in reversed order. So insertion is in two
  // steps. First we prepare space for some number of elements, then we insert
  // the elements beginning at the last position in prepared space.
  iterator beginLifetimeEndsInsert(iterator I, size_t Cnt,
                                   BumpVectorContext &C) {
    return iterator(
        Elements.insert(I.base(), Cnt, CFGLifetimeEnds(nullptr, nullptr), C));
  }
  iterator insertLifetimeEnds(iterator I, VarDecl *VD, Stmt *S) {
    *I = CFGLifetimeEnds(VD, S);
    return ++I;
  }

  // Scope leaving must be performed in reversed order. So insertion is in two
  // steps. First we prepare space for some number of elements, then we insert
  // the elements beginning at the last position in prepared space.
  iterator beginScopeEndInsert(iterator I, size_t Cnt, BumpVectorContext &C) {
    return iterator(
        Elements.insert(I.base(), Cnt, CFGScopeEnd(nullptr, nullptr), C));
  }
  iterator insertScopeEnd(iterator I, VarDecl *VD, Stmt *S) {
    *I = CFGScopeEnd(VD, S);
    return ++I;
  }
};

/// CFGCallback defines methods that should be called when a logical
/// operator error is found when building the CFG.
class CFGCallback {
public:
  CFGCallback() = default;
  virtual ~CFGCallback() = default;

  virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
  virtual void compareBitwiseEquality(const BinaryOperator *B,
                                      bool isAlwaysTrue) {}
  virtual void compareBitwiseOr(const BinaryOperator *B) {}
};

/// Represents a source-level, intra-procedural CFG that represents the
///  control-flow of a Stmt.  The Stmt can represent an entire function body,
///  or a single expression.  A CFG will always contain one empty block that
///  represents the Exit point of the CFG.  A CFG will also contain a designated
///  Entry block.  The CFG solely represents control-flow; it consists of
///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
///  was constructed from.
class CFG {
public:
  //===--------------------------------------------------------------------===//
  // CFG Construction & Manipulation.
  //===--------------------------------------------------------------------===//

  class BuildOptions {
    std::bitset<Stmt::lastStmtConstant> alwaysAddMask;

  public:
    using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>;

    ForcedBlkExprs **forcedBlkExprs = nullptr;
    CFGCallback *Observer = nullptr;
    bool PruneTriviallyFalseEdges = true;
    bool AddEHEdges = false;
    bool AddInitializers = false;
    bool AddImplicitDtors = false;
    bool AddLifetime = false;
    bool AddLoopExit = false;
    bool AddTemporaryDtors = false;
    bool AddScopes = false;
    bool AddStaticInitBranches = false;
    bool AddCXXNewAllocator = false;
    bool AddCXXDefaultInitExprInCtors = false;
    bool AddRichCXXConstructors = false;
    bool MarkElidedCXXConstructors = false;
    bool AddVirtualBaseBranches = false;

    BuildOptions() = default;

    bool alwaysAdd(const Stmt *stmt) const {
      return alwaysAddMask[stmt->getStmtClass()];
    }

    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
      alwaysAddMask[stmtClass] = val;
      return *this;
    }

    BuildOptions &setAllAlwaysAdd() {
      alwaysAddMask.set();
      return *this;
    }
  };

  /// Builds a CFG from an AST.
  static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
                                       const BuildOptions &BO);

  /// Create a new block in the CFG. The CFG owns the block; the caller should
  /// not directly free it.
  CFGBlock *createBlock();

  /// Set the entry block of the CFG. This is typically used only during CFG
  /// construction. Most CFG clients expect that the entry block has no
  /// predecessors and contains no statements.
  void setEntry(CFGBlock *B) { Entry = B; }

  /// Set the block used for indirect goto jumps. This is typically used only
  /// during CFG construction.
  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }

  //===--------------------------------------------------------------------===//
  // Block Iterators
  //===--------------------------------------------------------------------===//

  using CFGBlockListTy = BumpVector<CFGBlock *>;
  using iterator = CFGBlockListTy::iterator;
  using const_iterator = CFGBlockListTy::const_iterator;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;

  CFGBlock &                front()                { return *Blocks.front(); }
  CFGBlock &                back()                 { return *Blocks.back(); }

  iterator                  begin()                { return Blocks.begin(); }
  iterator                  end()                  { return Blocks.end(); }
  const_iterator            begin()       const    { return Blocks.begin(); }
  const_iterator            end()         const    { return Blocks.end(); }

  iterator nodes_begin() { return iterator(Blocks.begin()); }
  iterator nodes_end() { return iterator(Blocks.end()); }
  const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); }
  const_iterator nodes_end() const { return const_iterator(Blocks.end()); }

  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
  reverse_iterator          rend()                 { return Blocks.rend(); }
  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
  const_reverse_iterator    rend()        const    { return Blocks.rend(); }

  CFGBlock &                getEntry()             { return *Entry; }
  const CFGBlock &          getEntry()    const    { return *Entry; }
  CFGBlock &                getExit()              { return *Exit; }
  const CFGBlock &          getExit()     const    { return *Exit; }

  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }

  using try_block_iterator = std::vector<const CFGBlock *>::const_iterator;

  try_block_iterator try_blocks_begin() const {
    return TryDispatchBlocks.begin();
  }

  try_block_iterator try_blocks_end() const {
    return TryDispatchBlocks.end();
  }

  void addTryDispatchBlock(const CFGBlock *block) {
    TryDispatchBlocks.push_back(block);
  }

  /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
  ///
  /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
  /// multiple decls.
  void addSyntheticDeclStmt(const DeclStmt *Synthetic,
                            const DeclStmt *Source) {
    assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
    assert(Synthetic != Source && "Don't include original DeclStmts in map");
    assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
    SyntheticDeclStmts[Synthetic] = Source;
  }

  using synthetic_stmt_iterator =
      llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator;
  using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>;

  /// Iterates over synthetic DeclStmts in the CFG.
  ///
  /// Each element is a (synthetic statement, source statement) pair.
  ///
  /// \sa addSyntheticDeclStmt
  synthetic_stmt_iterator synthetic_stmt_begin() const {
    return SyntheticDeclStmts.begin();
  }

  /// \sa synthetic_stmt_begin
  synthetic_stmt_iterator synthetic_stmt_end() const {
    return SyntheticDeclStmts.end();
  }

  /// \sa synthetic_stmt_begin
  synthetic_stmt_range synthetic_stmts() const {
    return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end());
  }

  //===--------------------------------------------------------------------===//
  // Member templates useful for various batch operations over CFGs.
  //===--------------------------------------------------------------------===//

  template <typename CALLBACK>
  void VisitBlockStmts(CALLBACK& O) const {
    for (const_iterator I = begin(), E = end(); I != E; ++I)
      for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end();
           BI != BE; ++BI) {
        if (Optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
          O(const_cast<Stmt*>(stmt->getStmt()));
      }
  }

  //===--------------------------------------------------------------------===//
  // CFG Introspection.
  //===--------------------------------------------------------------------===//

  /// Returns the total number of BlockIDs allocated (which start at 0).
  unsigned getNumBlockIDs() const { return NumBlockIDs; }

  /// Return the total number of CFGBlocks within the CFG This is simply a
  /// renaming of the getNumBlockIDs(). This is necessary because the dominator
  /// implementation needs such an interface.
  unsigned size() const { return NumBlockIDs; }

  /// Returns true if the CFG has no branches. Usually it boils down to the CFG
  /// having exactly three blocks (entry, the actual code, exit), but sometimes
  /// more blocks appear due to having control flow that can be fully
  /// resolved in compile time.
  bool isLinear() const;

  //===--------------------------------------------------------------------===//
  // CFG Debugging: Pretty-Printing and Visualization.
  //===--------------------------------------------------------------------===//

  void viewCFG(const LangOptions &LO) const;
  void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
  void dump(const LangOptions &LO, bool ShowColors) const;

  //===--------------------------------------------------------------------===//
  // Internal: constructors and data.
  //===--------------------------------------------------------------------===//

  CFG() : Blocks(BlkBVC, 10) {}

  llvm::BumpPtrAllocator& getAllocator() {
    return BlkBVC.getAllocator();
  }

  BumpVectorContext &getBumpVectorContext() {
    return BlkBVC;
  }

private:
  CFGBlock *Entry = nullptr;
  CFGBlock *Exit = nullptr;

  // Special block to contain collective dispatch for indirect gotos
  CFGBlock* IndirectGotoBlock = nullptr;

  unsigned  NumBlockIDs = 0;

  BumpVectorContext BlkBVC;

  CFGBlockListTy Blocks;

  /// C++ 'try' statements are modeled with an indirect dispatch block.
  /// This is the collection of such blocks present in the CFG.
  std::vector<const CFGBlock *> TryDispatchBlocks;

  /// Collects DeclStmts synthesized for this CFG and maps each one back to its
  /// source DeclStmt.
  llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
};

} // namespace clang

//===----------------------------------------------------------------------===//
// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
//===----------------------------------------------------------------------===//

namespace llvm {

/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
/// CFGTerminator to a specific Stmt class.
template <> struct simplify_type< ::clang::CFGTerminator> {
  using SimpleType = ::clang::Stmt *;

  static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
    return Val.getStmt();
  }
};

// Traits for: CFGBlock

template <> struct GraphTraits< ::clang::CFGBlock *> {
  using NodeRef = ::clang::CFGBlock *;
  using ChildIteratorType = ::clang::CFGBlock::succ_iterator;

  static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};

template <> struct GraphTraits<clang::CFGBlock>
    : GraphTraits<clang::CFGBlock *> {};

template <> struct GraphTraits< const ::clang::CFGBlock *> {
  using NodeRef = const ::clang::CFGBlock *;
  using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator;

  static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};

template <> struct GraphTraits<const clang::CFGBlock>
    : GraphTraits<clang::CFGBlock *> {};

template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> {
  using NodeRef = ::clang::CFGBlock *;
  using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;

  static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) {
    return G.Graph;
  }

  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};

template <> struct GraphTraits<Inverse<clang::CFGBlock>>
    : GraphTraits<clang::CFGBlock *> {};

template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> {
  using NodeRef = const ::clang::CFGBlock *;
  using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;

  static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) {
    return G.Graph;
  }

  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};

template <> struct GraphTraits<const Inverse<clang::CFGBlock>>
    : GraphTraits<clang::CFGBlock *> {};

// Traits for: CFG

template <> struct GraphTraits< ::clang::CFG* >
    : public GraphTraits< ::clang::CFGBlock *>  {
  using nodes_iterator = ::clang::CFG::iterator;

  static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); }
  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
  static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
  static unsigned              size(::clang::CFG* F) { return F->size(); }
};

template <> struct GraphTraits<const ::clang::CFG* >
    : public GraphTraits<const ::clang::CFGBlock *>  {
  using nodes_iterator = ::clang::CFG::const_iterator;

  static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); }

  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
    return F->nodes_begin();
  }

  static nodes_iterator nodes_end( const ::clang::CFG* F) {
    return F->nodes_end();
  }

  static unsigned size(const ::clang::CFG* F) {
    return F->size();
  }
};

template <> struct GraphTraits<Inverse< ::clang::CFG *>>
  : public GraphTraits<Inverse< ::clang::CFGBlock *>> {
  using nodes_iterator = ::clang::CFG::iterator;

  static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); }
  static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
  static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
};

template <> struct GraphTraits<Inverse<const ::clang::CFG *>>
  : public GraphTraits<Inverse<const ::clang::CFGBlock *>> {
  using nodes_iterator = ::clang::CFG::const_iterator;

  static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); }

  static nodes_iterator nodes_begin(const ::clang::CFG* F) {
    return F->nodes_begin();
  }

  static nodes_iterator nodes_end(const ::clang::CFG* F) {
    return F->nodes_end();
  }
};

} // namespace llvm

#endif // LLVM_CLANG_ANALYSIS_CFG_H