reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Rewrite call/invoke instructions so as to make potential relocations
// performed by the garbage collector explicit in the IR.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <set>
#include <string>
#include <utility>
#include <vector>

#define DEBUG_TYPE "rewrite-statepoints-for-gc"

using namespace llvm;

// Print the liveset found at the insert location
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
                                  cl::init(false));
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
                                      cl::init(false));

// Print out the base pointers for debugging
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
                                       cl::init(false));

// Cost threshold measuring when it is profitable to rematerialize value instead
// of relocating it
static cl::opt<unsigned>
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
                           cl::init(6));

#ifdef EXPENSIVE_CHECKS
static bool ClobberNonLive = true;
#else
static bool ClobberNonLive = false;
#endif

static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
                                                  cl::location(ClobberNonLive),
                                                  cl::Hidden);

static cl::opt<bool>
    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
                                   cl::Hidden, cl::init(true));

/// The IR fed into RewriteStatepointsForGC may have had attributes and
/// metadata implying dereferenceability that are no longer valid/correct after
/// RewriteStatepointsForGC has run. This is because semantically, after
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
/// heap. stripNonValidData (conservatively) restores
/// correctness by erasing all attributes in the module that externally imply
/// dereferenceability. Similar reasoning also applies to the noalias
/// attributes and metadata. gc.statepoint can touch the entire heap including
/// noalias objects.
/// Apart from attributes and metadata, we also remove instructions that imply
/// constant physical memory: llvm.invariant.start.
static void stripNonValidData(Module &M);

static bool shouldRewriteStatepointsIn(Function &F);

PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
                                               ModuleAnalysisManager &AM) {
  bool Changed = false;
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  for (Function &F : M) {
    // Nothing to do for declarations.
    if (F.isDeclaration() || F.empty())
      continue;

    // Policy choice says not to rewrite - the most common reason is that we're
    // compiling code without a GCStrategy.
    if (!shouldRewriteStatepointsIn(F))
      continue;

    auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
    auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
    auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
    Changed |= runOnFunction(F, DT, TTI, TLI);
  }
  if (!Changed)
    return PreservedAnalyses::all();

  // stripNonValidData asserts that shouldRewriteStatepointsIn
  // returns true for at least one function in the module.  Since at least
  // one function changed, we know that the precondition is satisfied.
  stripNonValidData(M);

  PreservedAnalyses PA;
  PA.preserve<TargetIRAnalysis>();
  PA.preserve<TargetLibraryAnalysis>();
  return PA;
}

namespace {

class RewriteStatepointsForGCLegacyPass : public ModulePass {
  RewriteStatepointsForGC Impl;

public:
  static char ID; // Pass identification, replacement for typeid

  RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
    initializeRewriteStatepointsForGCLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    bool Changed = false;
    for (Function &F : M) {
      // Nothing to do for declarations.
      if (F.isDeclaration() || F.empty())
        continue;

      // Policy choice says not to rewrite - the most common reason is that
      // we're compiling code without a GCStrategy.
      if (!shouldRewriteStatepointsIn(F))
        continue;

      TargetTransformInfo &TTI =
          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
      const TargetLibraryInfo &TLI =
          getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
      auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();

      Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
    }

    if (!Changed)
      return false;

    // stripNonValidData asserts that shouldRewriteStatepointsIn
    // returns true for at least one function in the module.  Since at least
    // one function changed, we know that the precondition is satisfied.
    stripNonValidData(M);
    return true;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // We add and rewrite a bunch of instructions, but don't really do much
    // else.  We could in theory preserve a lot more analyses here.
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }
};

} // end anonymous namespace

char RewriteStatepointsForGCLegacyPass::ID = 0;

ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
  return new RewriteStatepointsForGCLegacyPass();
}

INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
                      "rewrite-statepoints-for-gc",
                      "Make relocations explicit at statepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
                    "rewrite-statepoints-for-gc",
                    "Make relocations explicit at statepoints", false, false)

namespace {

struct GCPtrLivenessData {
  /// Values defined in this block.
  MapVector<BasicBlock *, SetVector<Value *>> KillSet;

  /// Values used in this block (and thus live); does not included values
  /// killed within this block.
  MapVector<BasicBlock *, SetVector<Value *>> LiveSet;

  /// Values live into this basic block (i.e. used by any
  /// instruction in this basic block or ones reachable from here)
  MapVector<BasicBlock *, SetVector<Value *>> LiveIn;

  /// Values live out of this basic block (i.e. live into
  /// any successor block)
  MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
};

// The type of the internal cache used inside the findBasePointers family
// of functions.  From the callers perspective, this is an opaque type and
// should not be inspected.
//
// In the actual implementation this caches two relations:
// - The base relation itself (i.e. this pointer is based on that one)
// - The base defining value relation (i.e. before base_phi insertion)
// Generally, after the execution of a full findBasePointer call, only the
// base relation will remain.  Internally, we add a mixture of the two
// types, then update all the second type to the first type
using DefiningValueMapTy = MapVector<Value *, Value *>;
using StatepointLiveSetTy = SetVector<Value *>;
using RematerializedValueMapTy =
    MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;

struct PartiallyConstructedSafepointRecord {
  /// The set of values known to be live across this safepoint
  StatepointLiveSetTy LiveSet;

  /// Mapping from live pointers to a base-defining-value
  MapVector<Value *, Value *> PointerToBase;

  /// The *new* gc.statepoint instruction itself.  This produces the token
  /// that normal path gc.relocates and the gc.result are tied to.
  Instruction *StatepointToken;

  /// Instruction to which exceptional gc relocates are attached
  /// Makes it easier to iterate through them during relocationViaAlloca.
  Instruction *UnwindToken;

  /// Record live values we are rematerialized instead of relocating.
  /// They are not included into 'LiveSet' field.
  /// Maps rematerialized copy to it's original value.
  RematerializedValueMapTy RematerializedValues;
};

} // end anonymous namespace

static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
  Optional<OperandBundleUse> DeoptBundle =
      Call->getOperandBundle(LLVMContext::OB_deopt);

  if (!DeoptBundle.hasValue()) {
    assert(AllowStatepointWithNoDeoptInfo &&
           "Found non-leaf call without deopt info!");
    return None;
  }

  return DeoptBundle.getValue().Inputs;
}

/// Compute the live-in set for every basic block in the function
static void computeLiveInValues(DominatorTree &DT, Function &F,
                                GCPtrLivenessData &Data);

/// Given results from the dataflow liveness computation, find the set of live
/// Values at a particular instruction.
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
                              StatepointLiveSetTy &out);

// TODO: Once we can get to the GCStrategy, this becomes
// Optional<bool> isGCManagedPointer(const Type *Ty) const override {

static bool isGCPointerType(Type *T) {
  if (auto *PT = dyn_cast<PointerType>(T))
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    // GC managed heap.  We know that a pointer into this heap needs to be
    // updated and that no other pointer does.
    return PT->getAddressSpace() == 1;
  return false;
}

// Return true if this type is one which a) is a gc pointer or contains a GC
// pointer and b) is of a type this code expects to encounter as a live value.
// (The insertion code will assert that a type which matches (a) and not (b)
// is not encountered.)
static bool isHandledGCPointerType(Type *T) {
  // We fully support gc pointers
  if (isGCPointerType(T))
    return true;
  // We partially support vectors of gc pointers. The code will assert if it
  // can't handle something.
  if (auto VT = dyn_cast<VectorType>(T))
    if (isGCPointerType(VT->getElementType()))
      return true;
  return false;
}

#ifndef NDEBUG
/// Returns true if this type contains a gc pointer whether we know how to
/// handle that type or not.
static bool containsGCPtrType(Type *Ty) {
  if (isGCPointerType(Ty))
    return true;
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
    return isGCPointerType(VT->getScalarType());
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    return containsGCPtrType(AT->getElementType());
  if (StructType *ST = dyn_cast<StructType>(Ty))
    return llvm::any_of(ST->elements(), containsGCPtrType);
  return false;
}

// Returns true if this is a type which a) is a gc pointer or contains a GC
// pointer and b) is of a type which the code doesn't expect (i.e. first class
// aggregates).  Used to trip assertions.
static bool isUnhandledGCPointerType(Type *Ty) {
  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
}
#endif

// Return the name of the value suffixed with the provided value, or if the
// value didn't have a name, the default value specified.
static std::string suffixed_name_or(Value *V, StringRef Suffix,
                                    StringRef DefaultName) {
  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
}

// Conservatively identifies any definitions which might be live at the
// given instruction. The  analysis is performed immediately before the
// given instruction. Values defined by that instruction are not considered
// live.  Values used by that instruction are considered live.
static void analyzeParsePointLiveness(
    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
    PartiallyConstructedSafepointRecord &Result) {
  StatepointLiveSetTy LiveSet;
  findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);

  if (PrintLiveSet) {
    dbgs() << "Live Variables:\n";
    for (Value *V : LiveSet)
      dbgs() << " " << V->getName() << " " << *V << "\n";
  }
  if (PrintLiveSetSize) {
    dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
    dbgs() << "Number live values: " << LiveSet.size() << "\n";
  }
  Result.LiveSet = LiveSet;
}

static bool isKnownBaseResult(Value *V);

namespace {

/// A single base defining value - An immediate base defining value for an
/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
/// For instructions which have multiple pointer [vector] inputs or that
/// transition between vector and scalar types, there is no immediate base
/// defining value.  The 'base defining value' for 'Def' is the transitive
/// closure of this relation stopping at the first instruction which has no
/// immediate base defining value.  The b.d.v. might itself be a base pointer,
/// but it can also be an arbitrary derived pointer.
struct BaseDefiningValueResult {
  /// Contains the value which is the base defining value.
  Value * const BDV;

  /// True if the base defining value is also known to be an actual base
  /// pointer.
  const bool IsKnownBase;

  BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
    : BDV(BDV), IsKnownBase(IsKnownBase) {
#ifndef NDEBUG
    // Check consistency between new and old means of checking whether a BDV is
    // a base.
    bool MustBeBase = isKnownBaseResult(BDV);
    assert(!MustBeBase || MustBeBase == IsKnownBase);
#endif
  }
};

} // end anonymous namespace

static BaseDefiningValueResult findBaseDefiningValue(Value *I);

/// Return a base defining value for the 'Index' element of the given vector
/// instruction 'I'.  If Index is null, returns a BDV for the entire vector
/// 'I'.  As an optimization, this method will try to determine when the
/// element is known to already be a base pointer.  If this can be established,
/// the second value in the returned pair will be true.  Note that either a
/// vector or a pointer typed value can be returned.  For the former, the
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
/// If the later, the return pointer is a BDV (or possibly a base) for the
/// particular element in 'I'.
static BaseDefiningValueResult
findBaseDefiningValueOfVector(Value *I) {
  // Each case parallels findBaseDefiningValue below, see that code for
  // detailed motivation.

  if (isa<Argument>(I))
    // An incoming argument to the function is a base pointer
    return BaseDefiningValueResult(I, true);

  if (isa<Constant>(I))
    // Base of constant vector consists only of constant null pointers.
    // For reasoning see similar case inside 'findBaseDefiningValue' function.
    return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
                                   true);

  if (isa<LoadInst>(I))
    return BaseDefiningValueResult(I, true);

  if (isa<InsertElementInst>(I))
    // We don't know whether this vector contains entirely base pointers or
    // not.  To be conservatively correct, we treat it as a BDV and will
    // duplicate code as needed to construct a parallel vector of bases.
    return BaseDefiningValueResult(I, false);

  if (isa<ShuffleVectorInst>(I))
    // We don't know whether this vector contains entirely base pointers or
    // not.  To be conservatively correct, we treat it as a BDV and will
    // duplicate code as needed to construct a parallel vector of bases.
    // TODO: There a number of local optimizations which could be applied here
    // for particular sufflevector patterns.
    return BaseDefiningValueResult(I, false);

  // The behavior of getelementptr instructions is the same for vector and
  // non-vector data types.
  if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
    return findBaseDefiningValue(GEP->getPointerOperand());

  // If the pointer comes through a bitcast of a vector of pointers to
  // a vector of another type of pointer, then look through the bitcast
  if (auto *BC = dyn_cast<BitCastInst>(I))
    return findBaseDefiningValue(BC->getOperand(0));

  // We assume that functions in the source language only return base
  // pointers.  This should probably be generalized via attributes to support
  // both source language and internal functions.
  if (isa<CallInst>(I) || isa<InvokeInst>(I))
    return BaseDefiningValueResult(I, true);

  // A PHI or Select is a base defining value.  The outer findBasePointer
  // algorithm is responsible for constructing a base value for this BDV.
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
         "unknown vector instruction - no base found for vector element");
  return BaseDefiningValueResult(I, false);
}

/// Helper function for findBasePointer - Will return a value which either a)
/// defines the base pointer for the input, b) blocks the simple search
/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
/// from pointer to vector type or back.
static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
  assert(I->getType()->isPtrOrPtrVectorTy() &&
         "Illegal to ask for the base pointer of a non-pointer type");

  if (I->getType()->isVectorTy())
    return findBaseDefiningValueOfVector(I);

  if (isa<Argument>(I))
    // An incoming argument to the function is a base pointer
    // We should have never reached here if this argument isn't an gc value
    return BaseDefiningValueResult(I, true);

  if (isa<Constant>(I)) {
    // We assume that objects with a constant base (e.g. a global) can't move
    // and don't need to be reported to the collector because they are always
    // live. Besides global references, all kinds of constants (e.g. undef,
    // constant expressions, null pointers) can be introduced by the inliner or
    // the optimizer, especially on dynamically dead paths.
    // Here we treat all of them as having single null base. By doing this we
    // trying to avoid problems reporting various conflicts in a form of
    // "phi (const1, const2)" or "phi (const, regular gc ptr)".
    // See constant.ll file for relevant test cases.

    return BaseDefiningValueResult(
        ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
  }

  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value *Def = CI->stripPointerCasts();
    // If stripping pointer casts changes the address space there is an
    // addrspacecast in between.
    assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
               cast<PointerType>(CI->getType())->getAddressSpace() &&
           "unsupported addrspacecast");
    // If we find a cast instruction here, it means we've found a cast which is
    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
    // handle int->ptr conversion.
    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
    return findBaseDefiningValue(Def);
  }

  if (isa<LoadInst>(I))
    // The value loaded is an gc base itself
    return BaseDefiningValueResult(I, true);

  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    // The base of this GEP is the base
    return findBaseDefiningValue(GEP->getPointerOperand());

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default:
      // fall through to general call handling
      break;
    case Intrinsic::experimental_gc_statepoint:
      llvm_unreachable("statepoints don't produce pointers");
    case Intrinsic::experimental_gc_relocate:
      // Rerunning safepoint insertion after safepoints are already
      // inserted is not supported.  It could probably be made to work,
      // but why are you doing this?  There's no good reason.
      llvm_unreachable("repeat safepoint insertion is not supported");
    case Intrinsic::gcroot:
      // Currently, this mechanism hasn't been extended to work with gcroot.
      // There's no reason it couldn't be, but I haven't thought about the
      // implications much.
      llvm_unreachable(
          "interaction with the gcroot mechanism is not supported");
    }
  }
  // We assume that functions in the source language only return base
  // pointers.  This should probably be generalized via attributes to support
  // both source language and internal functions.
  if (isa<CallInst>(I) || isa<InvokeInst>(I))
    return BaseDefiningValueResult(I, true);

  // TODO: I have absolutely no idea how to implement this part yet.  It's not
  // necessarily hard, I just haven't really looked at it yet.
  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");

  if (isa<AtomicCmpXchgInst>(I))
    // A CAS is effectively a atomic store and load combined under a
    // predicate.  From the perspective of base pointers, we just treat it
    // like a load.
    return BaseDefiningValueResult(I, true);

  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
                                   "binary ops which don't apply to pointers");

  // The aggregate ops.  Aggregates can either be in the heap or on the
  // stack, but in either case, this is simply a field load.  As a result,
  // this is a defining definition of the base just like a load is.
  if (isa<ExtractValueInst>(I))
    return BaseDefiningValueResult(I, true);

  // We should never see an insert vector since that would require we be
  // tracing back a struct value not a pointer value.
  assert(!isa<InsertValueInst>(I) &&
         "Base pointer for a struct is meaningless");

  // An extractelement produces a base result exactly when it's input does.
  // We may need to insert a parallel instruction to extract the appropriate
  // element out of the base vector corresponding to the input. Given this,
  // it's analogous to the phi and select case even though it's not a merge.
  if (isa<ExtractElementInst>(I))
    // Note: There a lot of obvious peephole cases here.  This are deliberately
    // handled after the main base pointer inference algorithm to make writing
    // test cases to exercise that code easier.
    return BaseDefiningValueResult(I, false);

  // The last two cases here don't return a base pointer.  Instead, they
  // return a value which dynamically selects from among several base
  // derived pointers (each with it's own base potentially).  It's the job of
  // the caller to resolve these.
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
         "missing instruction case in findBaseDefiningValing");
  return BaseDefiningValueResult(I, false);
}

/// Returns the base defining value for this value.
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
  Value *&Cached = Cache[I];
  if (!Cached) {
    Cached = findBaseDefiningValue(I).BDV;
    LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
                      << Cached->getName() << "\n");
  }
  assert(Cache[I] != nullptr);
  return Cached;
}

/// Return a base pointer for this value if known.  Otherwise, return it's
/// base defining value.
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
  Value *Def = findBaseDefiningValueCached(I, Cache);
  auto Found = Cache.find(Def);
  if (Found != Cache.end()) {
    // Either a base-of relation, or a self reference.  Caller must check.
    return Found->second;
  }
  // Only a BDV available
  return Def;
}

/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
/// is it known to be a base pointer?  Or do we need to continue searching.
static bool isKnownBaseResult(Value *V) {
  if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
      !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
      !isa<ShuffleVectorInst>(V)) {
    // no recursion possible
    return true;
  }
  if (isa<Instruction>(V) &&
      cast<Instruction>(V)->getMetadata("is_base_value")) {
    // This is a previously inserted base phi or select.  We know
    // that this is a base value.
    return true;
  }

  // We need to keep searching
  return false;
}

namespace {

/// Models the state of a single base defining value in the findBasePointer
/// algorithm for determining where a new instruction is needed to propagate
/// the base of this BDV.
class BDVState {
public:
  enum Status { Unknown, Base, Conflict };

  BDVState() : BaseValue(nullptr) {}

  explicit BDVState(Status Status, Value *BaseValue = nullptr)
      : Status(Status), BaseValue(BaseValue) {
    assert(Status != Base || BaseValue);
  }

  explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}

  Status getStatus() const { return Status; }
  Value *getBaseValue() const { return BaseValue; }

  bool isBase() const { return getStatus() == Base; }
  bool isUnknown() const { return getStatus() == Unknown; }
  bool isConflict() const { return getStatus() == Conflict; }

  bool operator==(const BDVState &Other) const {
    return BaseValue == Other.BaseValue && Status == Other.Status;
  }

  bool operator!=(const BDVState &other) const { return !(*this == other); }

  LLVM_DUMP_METHOD
  void dump() const {
    print(dbgs());
    dbgs() << '\n';
  }

  void print(raw_ostream &OS) const {
    switch (getStatus()) {
    case Unknown:
      OS << "U";
      break;
    case Base:
      OS << "B";
      break;
    case Conflict:
      OS << "C";
      break;
    }
    OS << " (" << getBaseValue() << " - "
       << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
  }

private:
  Status Status = Unknown;
  AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
};

} // end anonymous namespace

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
  State.print(OS);
  return OS;
}
#endif

static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
  switch (LHS.getStatus()) {
  case BDVState::Unknown:
    return RHS;

  case BDVState::Base:
    assert(LHS.getBaseValue() && "can't be null");
    if (RHS.isUnknown())
      return LHS;

    if (RHS.isBase()) {
      if (LHS.getBaseValue() == RHS.getBaseValue()) {
        assert(LHS == RHS && "equality broken!");
        return LHS;
      }
      return BDVState(BDVState::Conflict);
    }
    assert(RHS.isConflict() && "only three states!");
    return BDVState(BDVState::Conflict);

  case BDVState::Conflict:
    return LHS;
  }
  llvm_unreachable("only three states!");
}

// Values of type BDVState form a lattice, and this function implements the meet
// operation.
static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
  BDVState Result = meetBDVStateImpl(LHS, RHS);
  assert(Result == meetBDVStateImpl(RHS, LHS) &&
         "Math is wrong: meet does not commute!");
  return Result;
}

/// For a given value or instruction, figure out what base ptr its derived from.
/// For gc objects, this is simply itself.  On success, returns a value which is
/// the base pointer.  (This is reliable and can be used for relocation.)  On
/// failure, returns nullptr.
static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
  Value *Def = findBaseOrBDV(I, Cache);

  if (isKnownBaseResult(Def))
    return Def;

  // Here's the rough algorithm:
  // - For every SSA value, construct a mapping to either an actual base
  //   pointer or a PHI which obscures the base pointer.
  // - Construct a mapping from PHI to unknown TOP state.  Use an
  //   optimistic algorithm to propagate base pointer information.  Lattice
  //   looks like:
  //   UNKNOWN
  //   b1 b2 b3 b4
  //   CONFLICT
  //   When algorithm terminates, all PHIs will either have a single concrete
  //   base or be in a conflict state.
  // - For every conflict, insert a dummy PHI node without arguments.  Add
  //   these to the base[Instruction] = BasePtr mapping.  For every
  //   non-conflict, add the actual base.
  //  - For every conflict, add arguments for the base[a] of each input
  //   arguments.
  //
  // Note: A simpler form of this would be to add the conflict form of all
  // PHIs without running the optimistic algorithm.  This would be
  // analogous to pessimistic data flow and would likely lead to an
  // overall worse solution.

#ifndef NDEBUG
  auto isExpectedBDVType = [](Value *BDV) {
    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
           isa<ShuffleVectorInst>(BDV);
  };
#endif

  // Once populated, will contain a mapping from each potentially non-base BDV
  // to a lattice value (described above) which corresponds to that BDV.
  // We use the order of insertion (DFS over the def/use graph) to provide a
  // stable deterministic ordering for visiting DenseMaps (which are unordered)
  // below.  This is important for deterministic compilation.
  MapVector<Value *, BDVState> States;

  // Recursively fill in all base defining values reachable from the initial
  // one for which we don't already know a definite base value for
  /* scope */ {
    SmallVector<Value*, 16> Worklist;
    Worklist.push_back(Def);
    States.insert({Def, BDVState()});
    while (!Worklist.empty()) {
      Value *Current = Worklist.pop_back_val();
      assert(!isKnownBaseResult(Current) && "why did it get added?");

      auto visitIncomingValue = [&](Value *InVal) {
        Value *Base = findBaseOrBDV(InVal, Cache);
        if (isKnownBaseResult(Base))
          // Known bases won't need new instructions introduced and can be
          // ignored safely
          return;
        assert(isExpectedBDVType(Base) && "the only non-base values "
               "we see should be base defining values");
        if (States.insert(std::make_pair(Base, BDVState())).second)
          Worklist.push_back(Base);
      };
      if (PHINode *PN = dyn_cast<PHINode>(Current)) {
        for (Value *InVal : PN->incoming_values())
          visitIncomingValue(InVal);
      } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
        visitIncomingValue(SI->getTrueValue());
        visitIncomingValue(SI->getFalseValue());
      } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
        visitIncomingValue(EE->getVectorOperand());
      } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
        visitIncomingValue(IE->getOperand(0)); // vector operand
        visitIncomingValue(IE->getOperand(1)); // scalar operand
      } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
        visitIncomingValue(SV->getOperand(0));
        visitIncomingValue(SV->getOperand(1));
      }
      else {
        llvm_unreachable("Unimplemented instruction case");
      }
    }
  }

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "States after initialization:\n");
  for (auto Pair : States) {
    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
  }
#endif

  // Return a phi state for a base defining value.  We'll generate a new
  // base state for known bases and expect to find a cached state otherwise.
  auto getStateForBDV = [&](Value *baseValue) {
    if (isKnownBaseResult(baseValue))
      return BDVState(baseValue);
    auto I = States.find(baseValue);
    assert(I != States.end() && "lookup failed!");
    return I->second;
  };

  bool Progress = true;
  while (Progress) {
#ifndef NDEBUG
    const size_t OldSize = States.size();
#endif
    Progress = false;
    // We're only changing values in this loop, thus safe to keep iterators.
    // Since this is computing a fixed point, the order of visit does not
    // effect the result.  TODO: We could use a worklist here and make this run
    // much faster.
    for (auto Pair : States) {
      Value *BDV = Pair.first;
      assert(!isKnownBaseResult(BDV) && "why did it get added?");

      // Given an input value for the current instruction, return a BDVState
      // instance which represents the BDV of that value.
      auto getStateForInput = [&](Value *V) mutable {
        Value *BDV = findBaseOrBDV(V, Cache);
        return getStateForBDV(BDV);
      };

      BDVState NewState;
      if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
        NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
        NewState =
            meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
      } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
        for (Value *Val : PN->incoming_values())
          NewState = meetBDVState(NewState, getStateForInput(Val));
      } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
        // The 'meet' for an extractelement is slightly trivial, but it's still
        // useful in that it drives us to conflict if our input is.
        NewState =
            meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
      } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
        // Given there's a inherent type mismatch between the operands, will
        // *always* produce Conflict.
        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
      } else {
        // The only instance this does not return a Conflict is when both the
        // vector operands are the same vector.
        auto *SV = cast<ShuffleVectorInst>(BDV);
        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
      }

      BDVState OldState = States[BDV];
      if (OldState != NewState) {
        Progress = true;
        States[BDV] = NewState;
      }
    }

    assert(OldSize == States.size() &&
           "fixed point shouldn't be adding any new nodes to state");
  }

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
  for (auto Pair : States) {
    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
  }
#endif

  // Insert Phis for all conflicts
  // TODO: adjust naming patterns to avoid this order of iteration dependency
  for (auto Pair : States) {
    Instruction *I = cast<Instruction>(Pair.first);
    BDVState State = Pair.second;
    assert(!isKnownBaseResult(I) && "why did it get added?");
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");

    // extractelement instructions are a bit special in that we may need to
    // insert an extract even when we know an exact base for the instruction.
    // The problem is that we need to convert from a vector base to a scalar
    // base for the particular indice we're interested in.
    if (State.isBase() && isa<ExtractElementInst>(I) &&
        isa<VectorType>(State.getBaseValue()->getType())) {
      auto *EE = cast<ExtractElementInst>(I);
      // TODO: In many cases, the new instruction is just EE itself.  We should
      // exploit this, but can't do it here since it would break the invariant
      // about the BDV not being known to be a base.
      auto *BaseInst = ExtractElementInst::Create(
          State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
      States[I] = BDVState(BDVState::Base, BaseInst);
    }

    // Since we're joining a vector and scalar base, they can never be the
    // same.  As a result, we should always see insert element having reached
    // the conflict state.
    assert(!isa<InsertElementInst>(I) || State.isConflict());

    if (!State.isConflict())
      continue;

    /// Create and insert a new instruction which will represent the base of
    /// the given instruction 'I'.
    auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
      if (isa<PHINode>(I)) {
        BasicBlock *BB = I->getParent();
        int NumPreds = pred_size(BB);
        assert(NumPreds > 0 && "how did we reach here");
        std::string Name = suffixed_name_or(I, ".base", "base_phi");
        return PHINode::Create(I->getType(), NumPreds, Name, I);
      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
        // The undef will be replaced later
        UndefValue *Undef = UndefValue::get(SI->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_select");
        return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
        UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_ee");
        return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
                                          EE);
      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
        UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
        UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_ie");
        return InsertElementInst::Create(VecUndef, ScalarUndef,
                                         IE->getOperand(2), Name, IE);
      } else {
        auto *SV = cast<ShuffleVectorInst>(I);
        UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_sv");
        return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
                                     Name, SV);
      }
    };
    Instruction *BaseInst = MakeBaseInstPlaceholder(I);
    // Add metadata marking this as a base value
    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
    States[I] = BDVState(BDVState::Conflict, BaseInst);
  }

  // Returns a instruction which produces the base pointer for a given
  // instruction.  The instruction is assumed to be an input to one of the BDVs
  // seen in the inference algorithm above.  As such, we must either already
  // know it's base defining value is a base, or have inserted a new
  // instruction to propagate the base of it's BDV and have entered that newly
  // introduced instruction into the state table.  In either case, we are
  // assured to be able to determine an instruction which produces it's base
  // pointer.
  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
    Value *BDV = findBaseOrBDV(Input, Cache);
    Value *Base = nullptr;
    if (isKnownBaseResult(BDV)) {
      Base = BDV;
    } else {
      // Either conflict or base.
      assert(States.count(BDV));
      Base = States[BDV].getBaseValue();
    }
    assert(Base && "Can't be null");
    // The cast is needed since base traversal may strip away bitcasts
    if (Base->getType() != Input->getType() && InsertPt)
      Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
    return Base;
  };

  // Fixup all the inputs of the new PHIs.  Visit order needs to be
  // deterministic and predictable because we're naming newly created
  // instructions.
  for (auto Pair : States) {
    Instruction *BDV = cast<Instruction>(Pair.first);
    BDVState State = Pair.second;

    assert(!isKnownBaseResult(BDV) && "why did it get added?");
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
    if (!State.isConflict())
      continue;

    if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
      PHINode *PN = cast<PHINode>(BDV);
      unsigned NumPHIValues = PN->getNumIncomingValues();
      for (unsigned i = 0; i < NumPHIValues; i++) {
        Value *InVal = PN->getIncomingValue(i);
        BasicBlock *InBB = PN->getIncomingBlock(i);

        // If we've already seen InBB, add the same incoming value
        // we added for it earlier.  The IR verifier requires phi
        // nodes with multiple entries from the same basic block
        // to have the same incoming value for each of those
        // entries.  If we don't do this check here and basephi
        // has a different type than base, we'll end up adding two
        // bitcasts (and hence two distinct values) as incoming
        // values for the same basic block.

        int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
        if (BlockIndex != -1) {
          Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
          BasePHI->addIncoming(OldBase, InBB);

#ifndef NDEBUG
          Value *Base = getBaseForInput(InVal, nullptr);
          // In essence this assert states: the only way two values
          // incoming from the same basic block may be different is by
          // being different bitcasts of the same value.  A cleanup
          // that remains TODO is changing findBaseOrBDV to return an
          // llvm::Value of the correct type (and still remain pure).
          // This will remove the need to add bitcasts.
          assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
                 "Sanity -- findBaseOrBDV should be pure!");
#endif
          continue;
        }

        // Find the instruction which produces the base for each input.  We may
        // need to insert a bitcast in the incoming block.
        // TODO: Need to split critical edges if insertion is needed
        Value *Base = getBaseForInput(InVal, InBB->getTerminator());
        BasePHI->addIncoming(Base, InBB);
      }
      assert(BasePHI->getNumIncomingValues() == NumPHIValues);
    } else if (SelectInst *BaseSI =
                   dyn_cast<SelectInst>(State.getBaseValue())) {
      SelectInst *SI = cast<SelectInst>(BDV);

      // Find the instruction which produces the base for each input.
      // We may need to insert a bitcast.
      BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
      BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
    } else if (auto *BaseEE =
                   dyn_cast<ExtractElementInst>(State.getBaseValue())) {
      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
      // Find the instruction which produces the base for each input.  We may
      // need to insert a bitcast.
      BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
    } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
      auto *BdvIE = cast<InsertElementInst>(BDV);
      auto UpdateOperand = [&](int OperandIdx) {
        Value *InVal = BdvIE->getOperand(OperandIdx);
        Value *Base = getBaseForInput(InVal, BaseIE);
        BaseIE->setOperand(OperandIdx, Base);
      };
      UpdateOperand(0); // vector operand
      UpdateOperand(1); // scalar operand
    } else {
      auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
      auto *BdvSV = cast<ShuffleVectorInst>(BDV);
      auto UpdateOperand = [&](int OperandIdx) {
        Value *InVal = BdvSV->getOperand(OperandIdx);
        Value *Base = getBaseForInput(InVal, BaseSV);
        BaseSV->setOperand(OperandIdx, Base);
      };
      UpdateOperand(0); // vector operand
      UpdateOperand(1); // vector operand
    }
  }

  // Cache all of our results so we can cheaply reuse them
  // NOTE: This is actually two caches: one of the base defining value
  // relation and one of the base pointer relation!  FIXME
  for (auto Pair : States) {
    auto *BDV = Pair.first;
    Value *Base = Pair.second.getBaseValue();
    assert(BDV && Base);
    assert(!isKnownBaseResult(BDV) && "why did it get added?");

    LLVM_DEBUG(
        dbgs() << "Updating base value cache"
               << " for: " << BDV->getName() << " from: "
               << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
               << " to: " << Base->getName() << "\n");

    if (Cache.count(BDV)) {
      assert(isKnownBaseResult(Base) &&
             "must be something we 'know' is a base pointer");
      // Once we transition from the BDV relation being store in the Cache to
      // the base relation being stored, it must be stable
      assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
             "base relation should be stable");
    }
    Cache[BDV] = Base;
  }
  assert(Cache.count(Def));
  return Cache[Def];
}

// For a set of live pointers (base and/or derived), identify the base
// pointer of the object which they are derived from.  This routine will
// mutate the IR graph as needed to make the 'base' pointer live at the
// definition site of 'derived'.  This ensures that any use of 'derived' can
// also use 'base'.  This may involve the insertion of a number of
// additional PHI nodes.
//
// preconditions: live is a set of pointer type Values
//
// side effects: may insert PHI nodes into the existing CFG, will preserve
// CFG, will not remove or mutate any existing nodes
//
// post condition: PointerToBase contains one (derived, base) pair for every
// pointer in live.  Note that derived can be equal to base if the original
// pointer was a base pointer.
static void
findBasePointers(const StatepointLiveSetTy &live,
                 MapVector<Value *, Value *> &PointerToBase,
                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
  for (Value *ptr : live) {
    Value *base = findBasePointer(ptr, DVCache);
    assert(base && "failed to find base pointer");
    PointerToBase[ptr] = base;
    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
            DT->dominates(cast<Instruction>(base)->getParent(),
                          cast<Instruction>(ptr)->getParent())) &&
           "The base we found better dominate the derived pointer");
  }
}

/// Find the required based pointers (and adjust the live set) for the given
/// parse point.
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
                             CallBase *Call,
                             PartiallyConstructedSafepointRecord &result) {
  MapVector<Value *, Value *> PointerToBase;
  findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);

  if (PrintBasePointers) {
    errs() << "Base Pairs (w/o Relocation):\n";
    for (auto &Pair : PointerToBase) {
      errs() << " derived ";
      Pair.first->printAsOperand(errs(), false);
      errs() << " base ";
      Pair.second->printAsOperand(errs(), false);
      errs() << "\n";;
    }
  }

  result.PointerToBase = PointerToBase;
}

/// Given an updated version of the dataflow liveness results, update the
/// liveset and base pointer maps for the call site CS.
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
                                  CallBase *Call,
                                  PartiallyConstructedSafepointRecord &result);

static void recomputeLiveInValues(
    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
  // TODO-PERF: reuse the original liveness, then simply run the dataflow
  // again.  The old values are still live and will help it stabilize quickly.
  GCPtrLivenessData RevisedLivenessData;
  computeLiveInValues(DT, F, RevisedLivenessData);
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
  }
}

// When inserting gc.relocate and gc.result calls, we need to ensure there are
// no uses of the original value / return value between the gc.statepoint and
// the gc.relocate / gc.result call.  One case which can arise is a phi node
// starting one of the successor blocks.  We also need to be able to insert the
// gc.relocates only on the path which goes through the statepoint.  We might
// need to split an edge to make this possible.
static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
                            DominatorTree &DT) {
  BasicBlock *Ret = BB;
  if (!BB->getUniquePredecessor())
    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);

  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
  // from it
  FoldSingleEntryPHINodes(Ret);
  assert(!isa<PHINode>(Ret->begin()) &&
         "All PHI nodes should have been removed!");

  // At this point, we can safely insert a gc.relocate or gc.result as the first
  // instruction in Ret if needed.
  return Ret;
}

// Create new attribute set containing only attributes which can be transferred
// from original call to the safepoint.
static AttributeList legalizeCallAttributes(AttributeList AL) {
  if (AL.isEmpty())
    return AL;

  // Remove the readonly, readnone, and statepoint function attributes.
  AttrBuilder FnAttrs = AL.getFnAttributes();
  FnAttrs.removeAttribute(Attribute::ReadNone);
  FnAttrs.removeAttribute(Attribute::ReadOnly);
  for (Attribute A : AL.getFnAttributes()) {
    if (isStatepointDirectiveAttr(A))
      FnAttrs.remove(A);
  }

  // Just skip parameter and return attributes for now
  LLVMContext &Ctx = AL.getContext();
  return AttributeList::get(Ctx, AttributeList::FunctionIndex,
                            AttributeSet::get(Ctx, FnAttrs));
}

/// Helper function to place all gc relocates necessary for the given
/// statepoint.
/// Inputs:
///   liveVariables - list of variables to be relocated.
///   liveStart - index of the first live variable.
///   basePtrs - base pointers.
///   statepointToken - statepoint instruction to which relocates should be
///   bound.
///   Builder - Llvm IR builder to be used to construct new calls.
static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
                              const int LiveStart,
                              ArrayRef<Value *> BasePtrs,
                              Instruction *StatepointToken,
                              IRBuilder<> Builder) {
  if (LiveVariables.empty())
    return;

  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
    auto ValIt = llvm::find(LiveVec, Val);
    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
    size_t Index = std::distance(LiveVec.begin(), ValIt);
    assert(Index < LiveVec.size() && "Bug in std::find?");
    return Index;
  };
  Module *M = StatepointToken->getModule();

  // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
  // element type is i8 addrspace(1)*). We originally generated unique
  // declarations for each pointer type, but this proved problematic because
  // the intrinsic mangling code is incomplete and fragile.  Since we're moving
  // towards a single unified pointer type anyways, we can just cast everything
  // to an i8* of the right address space.  A bitcast is added later to convert
  // gc_relocate to the actual value's type.
  auto getGCRelocateDecl = [&] (Type *Ty) {
    assert(isHandledGCPointerType(Ty));
    auto AS = Ty->getScalarType()->getPointerAddressSpace();
    Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
    if (auto *VT = dyn_cast<VectorType>(Ty))
      NewTy = VectorType::get(NewTy, VT->getNumElements());
    return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
                                     {NewTy});
  };

  // Lazily populated map from input types to the canonicalized form mentioned
  // in the comment above.  This should probably be cached somewhere more
  // broadly.
  DenseMap<Type *, Function *> TypeToDeclMap;

  for (unsigned i = 0; i < LiveVariables.size(); i++) {
    // Generate the gc.relocate call and save the result
    Value *BaseIdx =
      Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
    Value *LiveIdx = Builder.getInt32(LiveStart + i);

    Type *Ty = LiveVariables[i]->getType();
    if (!TypeToDeclMap.count(Ty))
      TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
    Function *GCRelocateDecl = TypeToDeclMap[Ty];

    // only specify a debug name if we can give a useful one
    CallInst *Reloc = Builder.CreateCall(
        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
        suffixed_name_or(LiveVariables[i], ".relocated", ""));
    // Trick CodeGen into thinking there are lots of free registers at this
    // fake call.
    Reloc->setCallingConv(CallingConv::Cold);
  }
}

namespace {

/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
/// avoids having to worry about keeping around dangling pointers to Values.
class DeferredReplacement {
  AssertingVH<Instruction> Old;
  AssertingVH<Instruction> New;
  bool IsDeoptimize = false;

  DeferredReplacement() = default;

public:
  static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
    assert(Old != New && Old && New &&
           "Cannot RAUW equal values or to / from null!");

    DeferredReplacement D;
    D.Old = Old;
    D.New = New;
    return D;
  }

  static DeferredReplacement createDelete(Instruction *ToErase) {
    DeferredReplacement D;
    D.Old = ToErase;
    return D;
  }

  static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
#ifndef NDEBUG
    auto *F = cast<CallInst>(Old)->getCalledFunction();
    assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
           "Only way to construct a deoptimize deferred replacement");
#endif
    DeferredReplacement D;
    D.Old = Old;
    D.IsDeoptimize = true;
    return D;
  }

  /// Does the task represented by this instance.
  void doReplacement() {
    Instruction *OldI = Old;
    Instruction *NewI = New;

    assert(OldI != NewI && "Disallowed at construction?!");
    assert((!IsDeoptimize || !New) &&
           "Deoptimize intrinsics are not replaced!");

    Old = nullptr;
    New = nullptr;

    if (NewI)
      OldI->replaceAllUsesWith(NewI);

    if (IsDeoptimize) {
      // Note: we've inserted instructions, so the call to llvm.deoptimize may
      // not necessarily be followed by the matching return.
      auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
      new UnreachableInst(RI->getContext(), RI);
      RI->eraseFromParent();
    }

    OldI->eraseFromParent();
  }
};

} // end anonymous namespace

static StringRef getDeoptLowering(CallBase *Call) {
  const char *DeoptLowering = "deopt-lowering";
  if (Call->hasFnAttr(DeoptLowering)) {
    // FIXME: Calls have a *really* confusing interface around attributes
    // with values.
    const AttributeList &CSAS = Call->getAttributes();
    if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
      return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
          .getValueAsString();
    Function *F = Call->getCalledFunction();
    assert(F && F->hasFnAttribute(DeoptLowering));
    return F->getFnAttribute(DeoptLowering).getValueAsString();
  }
  return "live-through";
}

static void
makeStatepointExplicitImpl(CallBase *Call, /* to replace */
                           const SmallVectorImpl<Value *> &BasePtrs,
                           const SmallVectorImpl<Value *> &LiveVariables,
                           PartiallyConstructedSafepointRecord &Result,
                           std::vector<DeferredReplacement> &Replacements) {
  assert(BasePtrs.size() == LiveVariables.size());

  // Then go ahead and use the builder do actually do the inserts.  We insert
  // immediately before the previous instruction under the assumption that all
  // arguments will be available here.  We can't insert afterwards since we may
  // be replacing a terminator.
  IRBuilder<> Builder(Call);

  ArrayRef<Value *> GCArgs(LiveVariables);
  uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
  uint32_t NumPatchBytes = 0;
  uint32_t Flags = uint32_t(StatepointFlags::None);

  ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
  ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
  ArrayRef<Use> TransitionArgs;
  if (auto TransitionBundle =
          Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
    Flags |= uint32_t(StatepointFlags::GCTransition);
    TransitionArgs = TransitionBundle->Inputs;
  }

  // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
  // with a return value, we lower then as never returning calls to
  // __llvm_deoptimize that are followed by unreachable to get better codegen.
  bool IsDeoptimize = false;

  StatepointDirectives SD =
      parseStatepointDirectivesFromAttrs(Call->getAttributes());
  if (SD.NumPatchBytes)
    NumPatchBytes = *SD.NumPatchBytes;
  if (SD.StatepointID)
    StatepointID = *SD.StatepointID;

  // Pass through the requested lowering if any.  The default is live-through.
  StringRef DeoptLowering = getDeoptLowering(Call);
  if (DeoptLowering.equals("live-in"))
    Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
  else {
    assert(DeoptLowering.equals("live-through") && "Unsupported value!");
  }

  Value *CallTarget = Call->getCalledValue();
  if (Function *F = dyn_cast<Function>(CallTarget)) {
    if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
      // Calls to llvm.experimental.deoptimize are lowered to calls to the
      // __llvm_deoptimize symbol.  We want to resolve this now, since the
      // verifier does not allow taking the address of an intrinsic function.

      SmallVector<Type *, 8> DomainTy;
      for (Value *Arg : CallArgs)
        DomainTy.push_back(Arg->getType());
      auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
                                    /* isVarArg = */ false);

      // Note: CallTarget can be a bitcast instruction of a symbol if there are
      // calls to @llvm.experimental.deoptimize with different argument types in
      // the same module.  This is fine -- we assume the frontend knew what it
      // was doing when generating this kind of IR.
      CallTarget = F->getParent()
                       ->getOrInsertFunction("__llvm_deoptimize", FTy)
                       .getCallee();

      IsDeoptimize = true;
    }
  }

  // Create the statepoint given all the arguments
  Instruction *Token = nullptr;
  if (auto *CI = dyn_cast<CallInst>(Call)) {
    CallInst *SPCall = Builder.CreateGCStatepointCall(
        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");

    SPCall->setTailCallKind(CI->getTailCallKind());
    SPCall->setCallingConv(CI->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.  In case if we can handle this set of attributes -
    // set up function attrs directly on statepoint and return attrs later for
    // gc_result intrinsic.
    SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));

    Token = SPCall;

    // Put the following gc_result and gc_relocate calls immediately after the
    // the old call (which we're about to delete)
    assert(CI->getNextNode() && "Not a terminator, must have next!");
    Builder.SetInsertPoint(CI->getNextNode());
    Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
  } else {
    auto *II = cast<InvokeInst>(Call);

    // Insert the new invoke into the old block.  We'll remove the old one in a
    // moment at which point this will become the new terminator for the
    // original block.
    InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
        StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
        II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
        "statepoint_token");

    SPInvoke->setCallingConv(II->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.  In case if we can handle this set of attributes -
    // set up function attrs directly on statepoint and return attrs later for
    // gc_result intrinsic.
    SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));

    Token = SPInvoke;

    // Generate gc relocates in exceptional path
    BasicBlock *UnwindBlock = II->getUnwindDest();
    assert(!isa<PHINode>(UnwindBlock->begin()) &&
           UnwindBlock->getUniquePredecessor() &&
           "can't safely insert in this block!");

    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
    Builder.SetCurrentDebugLocation(II->getDebugLoc());

    // Attach exceptional gc relocates to the landingpad.
    Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
    Result.UnwindToken = ExceptionalToken;

    const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
    CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
                      Builder);

    // Generate gc relocates and returns for normal block
    BasicBlock *NormalDest = II->getNormalDest();
    assert(!isa<PHINode>(NormalDest->begin()) &&
           NormalDest->getUniquePredecessor() &&
           "can't safely insert in this block!");

    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());

    // gc relocates will be generated later as if it were regular call
    // statepoint
  }
  assert(Token && "Should be set in one of the above branches!");

  if (IsDeoptimize) {
    // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
    // transform the tail-call like structure to a call to a void function
    // followed by unreachable to get better codegen.
    Replacements.push_back(
        DeferredReplacement::createDeoptimizeReplacement(Call));
  } else {
    Token->setName("statepoint_token");
    if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
      StringRef Name = Call->hasName() ? Call->getName() : "";
      CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
      GCResult->setAttributes(
          AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
                             Call->getAttributes().getRetAttributes()));

      // We cannot RAUW or delete CS.getInstruction() because it could be in the
      // live set of some other safepoint, in which case that safepoint's
      // PartiallyConstructedSafepointRecord will hold a raw pointer to this
      // llvm::Instruction.  Instead, we defer the replacement and deletion to
      // after the live sets have been made explicit in the IR, and we no longer
      // have raw pointers to worry about.
      Replacements.emplace_back(
          DeferredReplacement::createRAUW(Call, GCResult));
    } else {
      Replacements.emplace_back(DeferredReplacement::createDelete(Call));
    }
  }

  Result.StatepointToken = Token;

  // Second, create a gc.relocate for every live variable
  const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
  CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
}

// Replace an existing gc.statepoint with a new one and a set of gc.relocates
// which make the relocations happening at this safepoint explicit.
//
// WARNING: Does not do any fixup to adjust users of the original live
// values.  That's the callers responsibility.
static void
makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
                       PartiallyConstructedSafepointRecord &Result,
                       std::vector<DeferredReplacement> &Replacements) {
  const auto &LiveSet = Result.LiveSet;
  const auto &PointerToBase = Result.PointerToBase;

  // Convert to vector for efficient cross referencing.
  SmallVector<Value *, 64> BaseVec, LiveVec;
  LiveVec.reserve(LiveSet.size());
  BaseVec.reserve(LiveSet.size());
  for (Value *L : LiveSet) {
    LiveVec.push_back(L);
    assert(PointerToBase.count(L));
    Value *Base = PointerToBase.find(L)->second;
    BaseVec.push_back(Base);
  }
  assert(LiveVec.size() == BaseVec.size());

  // Do the actual rewriting and delete the old statepoint
  makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
}

// Helper function for the relocationViaAlloca.
//
// It receives iterator to the statepoint gc relocates and emits a store to the
// assigned location (via allocaMap) for the each one of them.  It adds the
// visited values into the visitedLiveValues set, which we will later use them
// for sanity checking.
static void
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
                       DenseMap<Value *, AllocaInst *> &AllocaMap,
                       DenseSet<Value *> &VisitedLiveValues) {
  for (User *U : GCRelocs) {
    GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
    if (!Relocate)
      continue;

    Value *OriginalValue = Relocate->getDerivedPtr();
    assert(AllocaMap.count(OriginalValue));
    Value *Alloca = AllocaMap[OriginalValue];

    // Emit store into the related alloca
    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
    // the correct type according to alloca.
    assert(Relocate->getNextNode() &&
           "Should always have one since it's not a terminator");
    IRBuilder<> Builder(Relocate->getNextNode());
    Value *CastedRelocatedValue =
      Builder.CreateBitCast(Relocate,
                            cast<AllocaInst>(Alloca)->getAllocatedType(),
                            suffixed_name_or(Relocate, ".casted", ""));

    StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
    Store->insertAfter(cast<Instruction>(CastedRelocatedValue));

#ifndef NDEBUG
    VisitedLiveValues.insert(OriginalValue);
#endif
  }
}

// Helper function for the "relocationViaAlloca". Similar to the
// "insertRelocationStores" but works for rematerialized values.
static void insertRematerializationStores(
    const RematerializedValueMapTy &RematerializedValues,
    DenseMap<Value *, AllocaInst *> &AllocaMap,
    DenseSet<Value *> &VisitedLiveValues) {
  for (auto RematerializedValuePair: RematerializedValues) {
    Instruction *RematerializedValue = RematerializedValuePair.first;
    Value *OriginalValue = RematerializedValuePair.second;

    assert(AllocaMap.count(OriginalValue) &&
           "Can not find alloca for rematerialized value");
    Value *Alloca = AllocaMap[OriginalValue];

    StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
    Store->insertAfter(RematerializedValue);

#ifndef NDEBUG
    VisitedLiveValues.insert(OriginalValue);
#endif
  }
}

/// Do all the relocation update via allocas and mem2reg
static void relocationViaAlloca(
    Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
    ArrayRef<PartiallyConstructedSafepointRecord> Records) {
#ifndef NDEBUG
  // record initial number of (static) allocas; we'll check we have the same
  // number when we get done.
  int InitialAllocaNum = 0;
  for (Instruction &I : F.getEntryBlock())
    if (isa<AllocaInst>(I))
      InitialAllocaNum++;
#endif

  // TODO-PERF: change data structures, reserve
  DenseMap<Value *, AllocaInst *> AllocaMap;
  SmallVector<AllocaInst *, 200> PromotableAllocas;
  // Used later to chack that we have enough allocas to store all values
  std::size_t NumRematerializedValues = 0;
  PromotableAllocas.reserve(Live.size());

  // Emit alloca for "LiveValue" and record it in "allocaMap" and
  // "PromotableAllocas"
  const DataLayout &DL = F.getParent()->getDataLayout();
  auto emitAllocaFor = [&](Value *LiveValue) {
    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
                                        DL.getAllocaAddrSpace(), "",
                                        F.getEntryBlock().getFirstNonPHI());
    AllocaMap[LiveValue] = Alloca;
    PromotableAllocas.push_back(Alloca);
  };

  // Emit alloca for each live gc pointer
  for (Value *V : Live)
    emitAllocaFor(V);

  // Emit allocas for rematerialized values
  for (const auto &Info : Records)
    for (auto RematerializedValuePair : Info.RematerializedValues) {
      Value *OriginalValue = RematerializedValuePair.second;
      if (AllocaMap.count(OriginalValue) != 0)
        continue;

      emitAllocaFor(OriginalValue);
      ++NumRematerializedValues;
    }

  // The next two loops are part of the same conceptual operation.  We need to
  // insert a store to the alloca after the original def and at each
  // redefinition.  We need to insert a load before each use.  These are split
  // into distinct loops for performance reasons.

  // Update gc pointer after each statepoint: either store a relocated value or
  // null (if no relocated value was found for this gc pointer and it is not a
  // gc_result).  This must happen before we update the statepoint with load of
  // alloca otherwise we lose the link between statepoint and old def.
  for (const auto &Info : Records) {
    Value *Statepoint = Info.StatepointToken;

    // This will be used for consistency check
    DenseSet<Value *> VisitedLiveValues;

    // Insert stores for normal statepoint gc relocates
    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);

    // In case if it was invoke statepoint
    // we will insert stores for exceptional path gc relocates.
    if (isa<InvokeInst>(Statepoint)) {
      insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
                             VisitedLiveValues);
    }

    // Do similar thing with rematerialized values
    insertRematerializationStores(Info.RematerializedValues, AllocaMap,
                                  VisitedLiveValues);

    if (ClobberNonLive) {
      // As a debugging aid, pretend that an unrelocated pointer becomes null at
      // the gc.statepoint.  This will turn some subtle GC problems into
      // slightly easier to debug SEGVs.  Note that on large IR files with
      // lots of gc.statepoints this is extremely costly both memory and time
      // wise.
      SmallVector<AllocaInst *, 64> ToClobber;
      for (auto Pair : AllocaMap) {
        Value *Def = Pair.first;
        AllocaInst *Alloca = Pair.second;

        // This value was relocated
        if (VisitedLiveValues.count(Def)) {
          continue;
        }
        ToClobber.push_back(Alloca);
      }

      auto InsertClobbersAt = [&](Instruction *IP) {
        for (auto *AI : ToClobber) {
          auto PT = cast<PointerType>(AI->getAllocatedType());
          Constant *CPN = ConstantPointerNull::get(PT);
          StoreInst *Store = new StoreInst(CPN, AI);
          Store->insertBefore(IP);
        }
      };

      // Insert the clobbering stores.  These may get intermixed with the
      // gc.results and gc.relocates, but that's fine.
      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
      } else {
        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
      }
    }
  }

  // Update use with load allocas and add store for gc_relocated.
  for (auto Pair : AllocaMap) {
    Value *Def = Pair.first;
    AllocaInst *Alloca = Pair.second;

    // We pre-record the uses of allocas so that we dont have to worry about
    // later update that changes the user information..

    SmallVector<Instruction *, 20> Uses;
    // PERF: trade a linear scan for repeated reallocation
    Uses.reserve(Def->getNumUses());
    for (User *U : Def->users()) {
      if (!isa<ConstantExpr>(U)) {
        // If the def has a ConstantExpr use, then the def is either a
        // ConstantExpr use itself or null.  In either case
        // (recursively in the first, directly in the second), the oop
        // it is ultimately dependent on is null and this particular
        // use does not need to be fixed up.
        Uses.push_back(cast<Instruction>(U));
      }
    }

    llvm::sort(Uses);
    auto Last = std::unique(Uses.begin(), Uses.end());
    Uses.erase(Last, Uses.end());

    for (Instruction *Use : Uses) {
      if (isa<PHINode>(Use)) {
        PHINode *Phi = cast<PHINode>(Use);
        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
          if (Def == Phi->getIncomingValue(i)) {
            LoadInst *Load =
                new LoadInst(Alloca->getAllocatedType(), Alloca, "",
                             Phi->getIncomingBlock(i)->getTerminator());
            Phi->setIncomingValue(i, Load);
          }
        }
      } else {
        LoadInst *Load =
            new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
        Use->replaceUsesOfWith(Def, Load);
      }
    }

    // Emit store for the initial gc value.  Store must be inserted after load,
    // otherwise store will be in alloca's use list and an extra load will be
    // inserted before it.
    StoreInst *Store = new StoreInst(Def, Alloca);
    if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
        // InvokeInst is a terminator so the store need to be inserted into its
        // normal destination block.
        BasicBlock *NormalDest = Invoke->getNormalDest();
        Store->insertBefore(NormalDest->getFirstNonPHI());
      } else {
        assert(!Inst->isTerminator() &&
               "The only terminator that can produce a value is "
               "InvokeInst which is handled above.");
        Store->insertAfter(Inst);
      }
    } else {
      assert(isa<Argument>(Def));
      Store->insertAfter(cast<Instruction>(Alloca));
    }
  }

  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
         "we must have the same allocas with lives");
  if (!PromotableAllocas.empty()) {
    // Apply mem2reg to promote alloca to SSA
    PromoteMemToReg(PromotableAllocas, DT);
  }

#ifndef NDEBUG
  for (auto &I : F.getEntryBlock())
    if (isa<AllocaInst>(I))
      InitialAllocaNum--;
  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
#endif
}

/// Implement a unique function which doesn't require we sort the input
/// vector.  Doing so has the effect of changing the output of a couple of
/// tests in ways which make them less useful in testing fused safepoints.
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
  SmallSet<T, 8> Seen;
  Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
            Vec.end());
}

/// Insert holders so that each Value is obviously live through the entire
/// lifetime of the call.
static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
                                 SmallVectorImpl<CallInst *> &Holders) {
  if (Values.empty())
    // No values to hold live, might as well not insert the empty holder
    return;

  Module *M = Call->getModule();
  // Use a dummy vararg function to actually hold the values live
  FunctionCallee Func = M->getOrInsertFunction(
      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
  if (isa<CallInst>(Call)) {
    // For call safepoints insert dummy calls right after safepoint
    Holders.push_back(
        CallInst::Create(Func, Values, "", &*++Call->getIterator()));
    return;
  }
  // For invoke safepooints insert dummy calls both in normal and
  // exceptional destination blocks
  auto *II = cast<InvokeInst>(Call);
  Holders.push_back(CallInst::Create(
      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
  Holders.push_back(CallInst::Create(
      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
}

static void findLiveReferences(
    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
  GCPtrLivenessData OriginalLivenessData;
  computeLiveInValues(DT, F, OriginalLivenessData);
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
  }
}

// Helper function for the "rematerializeLiveValues". It walks use chain
// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
// the base or a value it cannot process. Only "simple" values are processed
// (currently it is GEP's and casts). The returned root is  examined by the
// callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
// with all visited values.
static Value* findRematerializableChainToBasePointer(
  SmallVectorImpl<Instruction*> &ChainToBase,
  Value *CurrentValue) {
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
    ChainToBase.push_back(GEP);
    return findRematerializableChainToBasePointer(ChainToBase,
                                                  GEP->getPointerOperand());
  }

  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
    if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
      return CI;

    ChainToBase.push_back(CI);
    return findRematerializableChainToBasePointer(ChainToBase,
                                                  CI->getOperand(0));
  }

  // We have reached the root of the chain, which is either equal to the base or
  // is the first unsupported value along the use chain.
  return CurrentValue;
}

// Helper function for the "rematerializeLiveValues". Compute cost of the use
// chain we are going to rematerialize.
static unsigned
chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
                       TargetTransformInfo &TTI) {
  unsigned Cost = 0;

  for (Instruction *Instr : Chain) {
    if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
             "non noop cast is found during rematerialization");

      Type *SrcTy = CI->getOperand(0)->getType();
      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);

    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
      // Cost of the address calculation
      Type *ValTy = GEP->getSourceElementType();
      Cost += TTI.getAddressComputationCost(ValTy);

      // And cost of the GEP itself
      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
      //       allowed for the external usage)
      if (!GEP->hasAllConstantIndices())
        Cost += 2;

    } else {
      llvm_unreachable("unsupported instruction type during rematerialization");
    }
  }

  return Cost;
}

static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
  unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
  if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
      OrigRootPhi.getParent() != AlternateRootPhi.getParent())
    return false;
  // Map of incoming values and their corresponding basic blocks of
  // OrigRootPhi.
  SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
  for (unsigned i = 0; i < PhiNum; i++)
    CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
        OrigRootPhi.getIncomingBlock(i);

  // Both current and base PHIs should have same incoming values and
  // the same basic blocks corresponding to the incoming values.
  for (unsigned i = 0; i < PhiNum; i++) {
    auto CIVI =
        CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
    if (CIVI == CurrentIncomingValues.end())
      return false;
    BasicBlock *CurrentIncomingBB = CIVI->second;
    if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
      return false;
  }
  return true;
}

// From the statepoint live set pick values that are cheaper to recompute then
// to relocate. Remove this values from the live set, rematerialize them after
// statepoint and record them in "Info" structure. Note that similar to
// relocated values we don't do any user adjustments here.
static void rematerializeLiveValues(CallBase *Call,
                                    PartiallyConstructedSafepointRecord &Info,
                                    TargetTransformInfo &TTI) {
  const unsigned int ChainLengthThreshold = 10;

  // Record values we are going to delete from this statepoint live set.
  // We can not di this in following loop due to iterator invalidation.
  SmallVector<Value *, 32> LiveValuesToBeDeleted;

  for (Value *LiveValue: Info.LiveSet) {
    // For each live pointer find its defining chain
    SmallVector<Instruction *, 3> ChainToBase;
    assert(Info.PointerToBase.count(LiveValue));
    Value *RootOfChain =
      findRematerializableChainToBasePointer(ChainToBase,
                                             LiveValue);

    // Nothing to do, or chain is too long
    if ( ChainToBase.size() == 0 ||
        ChainToBase.size() > ChainLengthThreshold)
      continue;

    // Handle the scenario where the RootOfChain is not equal to the
    // Base Value, but they are essentially the same phi values.
    if (RootOfChain != Info.PointerToBase[LiveValue]) {
      PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
      PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
      if (!OrigRootPhi || !AlternateRootPhi)
        continue;
      // PHI nodes that have the same incoming values, and belonging to the same
      // basic blocks are essentially the same SSA value.  When the original phi
      // has incoming values with different base pointers, the original phi is
      // marked as conflict, and an additional `AlternateRootPhi` with the same
      // incoming values get generated by the findBasePointer function. We need
      // to identify the newly generated AlternateRootPhi (.base version of phi)
      // and RootOfChain (the original phi node itself) are the same, so that we
      // can rematerialize the gep and casts. This is a workaround for the
      // deficiency in the findBasePointer algorithm.
      if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
        continue;
      // Now that the phi nodes are proved to be the same, assert that
      // findBasePointer's newly generated AlternateRootPhi is present in the
      // liveset of the call.
      assert(Info.LiveSet.count(AlternateRootPhi));
    }
    // Compute cost of this chain
    unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
    // TODO: We can also account for cases when we will be able to remove some
    //       of the rematerialized values by later optimization passes. I.e if
    //       we rematerialized several intersecting chains. Or if original values
    //       don't have any uses besides this statepoint.

    // For invokes we need to rematerialize each chain twice - for normal and
    // for unwind basic blocks. Model this by multiplying cost by two.
    if (isa<InvokeInst>(Call)) {
      Cost *= 2;
    }
    // If it's too expensive - skip it
    if (Cost >= RematerializationThreshold)
      continue;

    // Remove value from the live set
    LiveValuesToBeDeleted.push_back(LiveValue);

    // Clone instructions and record them inside "Info" structure

    // Walk backwards to visit top-most instructions first
    std::reverse(ChainToBase.begin(), ChainToBase.end());

    // Utility function which clones all instructions from "ChainToBase"
    // and inserts them before "InsertBefore". Returns rematerialized value
    // which should be used after statepoint.
    auto rematerializeChain = [&ChainToBase](
        Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
      Instruction *LastClonedValue = nullptr;
      Instruction *LastValue = nullptr;
      for (Instruction *Instr: ChainToBase) {
        // Only GEP's and casts are supported as we need to be careful to not
        // introduce any new uses of pointers not in the liveset.
        // Note that it's fine to introduce new uses of pointers which were
        // otherwise not used after this statepoint.
        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));

        Instruction *ClonedValue = Instr->clone();
        ClonedValue->insertBefore(InsertBefore);
        ClonedValue->setName(Instr->getName() + ".remat");

        // If it is not first instruction in the chain then it uses previously
        // cloned value. We should update it to use cloned value.
        if (LastClonedValue) {
          assert(LastValue);
          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
#ifndef NDEBUG
          for (auto OpValue : ClonedValue->operand_values()) {
            // Assert that cloned instruction does not use any instructions from
            // this chain other than LastClonedValue
            assert(!is_contained(ChainToBase, OpValue) &&
                   "incorrect use in rematerialization chain");
            // Assert that the cloned instruction does not use the RootOfChain
            // or the AlternateLiveBase.
            assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
          }
#endif
        } else {
          // For the first instruction, replace the use of unrelocated base i.e.
          // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
          // live set. They have been proved to be the same PHI nodes.  Note
          // that the *only* use of the RootOfChain in the ChainToBase list is
          // the first Value in the list.
          if (RootOfChain != AlternateLiveBase)
            ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
        }

        LastClonedValue = ClonedValue;
        LastValue = Instr;
      }
      assert(LastClonedValue);
      return LastClonedValue;
    };

    // Different cases for calls and invokes. For invokes we need to clone
    // instructions both on normal and unwind path.
    if (isa<CallInst>(Call)) {
      Instruction *InsertBefore = Call->getNextNode();
      assert(InsertBefore);
      Instruction *RematerializedValue = rematerializeChain(
          InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
      Info.RematerializedValues[RematerializedValue] = LiveValue;
    } else {
      auto *Invoke = cast<InvokeInst>(Call);

      Instruction *NormalInsertBefore =
          &*Invoke->getNormalDest()->getFirstInsertionPt();
      Instruction *UnwindInsertBefore =
          &*Invoke->getUnwindDest()->getFirstInsertionPt();

      Instruction *NormalRematerializedValue = rematerializeChain(
          NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
      Instruction *UnwindRematerializedValue = rematerializeChain(
          UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);

      Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
    }
  }

  // Remove rematerializaed values from the live set
  for (auto LiveValue: LiveValuesToBeDeleted) {
    Info.LiveSet.remove(LiveValue);
  }
}

static bool insertParsePoints(Function &F, DominatorTree &DT,
                              TargetTransformInfo &TTI,
                              SmallVectorImpl<CallBase *> &ToUpdate) {
#ifndef NDEBUG
  // sanity check the input
  std::set<CallBase *> Uniqued;
  Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");

  for (CallBase *Call : ToUpdate)
    assert(Call->getFunction() == &F);
#endif

  // When inserting gc.relocates for invokes, we need to be able to insert at
  // the top of the successor blocks.  See the comment on
  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
  // may restructure the CFG.
  for (CallBase *Call : ToUpdate) {
    auto *II = dyn_cast<InvokeInst>(Call);
    if (!II)
      continue;
    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
  }

  // A list of dummy calls added to the IR to keep various values obviously
  // live in the IR.  We'll remove all of these when done.
  SmallVector<CallInst *, 64> Holders;

  // Insert a dummy call with all of the deopt operands we'll need for the
  // actual safepoint insertion as arguments.  This ensures reference operands
  // in the deopt argument list are considered live through the safepoint (and
  // thus makes sure they get relocated.)
  for (CallBase *Call : ToUpdate) {
    SmallVector<Value *, 64> DeoptValues;

    for (Value *Arg : GetDeoptBundleOperands(Call)) {
      assert(!isUnhandledGCPointerType(Arg->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(Arg->getType()))
        DeoptValues.push_back(Arg);
    }

    insertUseHolderAfter(Call, DeoptValues, Holders);
  }

  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());

  // A) Identify all gc pointers which are statically live at the given call
  // site.
  findLiveReferences(F, DT, ToUpdate, Records);

  // B) Find the base pointers for each live pointer
  /* scope for caching */ {
    // Cache the 'defining value' relation used in the computation and
    // insertion of base phis and selects.  This ensures that we don't insert
    // large numbers of duplicate base_phis.
    DefiningValueMapTy DVCache;

    for (size_t i = 0; i < Records.size(); i++) {
      PartiallyConstructedSafepointRecord &info = Records[i];
      findBasePointers(DT, DVCache, ToUpdate[i], info);
    }
  } // end of cache scope

  // The base phi insertion logic (for any safepoint) may have inserted new
  // instructions which are now live at some safepoint.  The simplest such
  // example is:
  // loop:
  //   phi a  <-- will be a new base_phi here
  //   safepoint 1 <-- that needs to be live here
  //   gep a + 1
  //   safepoint 2
  //   br loop
  // We insert some dummy calls after each safepoint to definitely hold live
  // the base pointers which were identified for that safepoint.  We'll then
  // ask liveness for _every_ base inserted to see what is now live.  Then we
  // remove the dummy calls.
  Holders.reserve(Holders.size() + Records.size());
  for (size_t i = 0; i < Records.size(); i++) {
    PartiallyConstructedSafepointRecord &Info = Records[i];

    SmallVector<Value *, 128> Bases;
    for (auto Pair : Info.PointerToBase)
      Bases.push_back(Pair.second);

    insertUseHolderAfter(ToUpdate[i], Bases, Holders);
  }

  // By selecting base pointers, we've effectively inserted new uses. Thus, we
  // need to rerun liveness.  We may *also* have inserted new defs, but that's
  // not the key issue.
  recomputeLiveInValues(F, DT, ToUpdate, Records);

  if (PrintBasePointers) {
    for (auto &Info : Records) {
      errs() << "Base Pairs: (w/Relocation)\n";
      for (auto Pair : Info.PointerToBase) {
        errs() << " derived ";
        Pair.first->printAsOperand(errs(), false);
        errs() << " base ";
        Pair.second->printAsOperand(errs(), false);
        errs() << "\n";
      }
    }
  }

  // It is possible that non-constant live variables have a constant base.  For
  // example, a GEP with a variable offset from a global.  In this case we can
  // remove it from the liveset.  We already don't add constants to the liveset
  // because we assume they won't move at runtime and the GC doesn't need to be
  // informed about them.  The same reasoning applies if the base is constant.
  // Note that the relocation placement code relies on this filtering for
  // correctness as it expects the base to be in the liveset, which isn't true
  // if the base is constant.
  for (auto &Info : Records)
    for (auto &BasePair : Info.PointerToBase)
      if (isa<Constant>(BasePair.second))
        Info.LiveSet.remove(BasePair.first);

  for (CallInst *CI : Holders)
    CI->eraseFromParent();

  Holders.clear();

  // In order to reduce live set of statepoint we might choose to rematerialize
  // some values instead of relocating them. This is purely an optimization and
  // does not influence correctness.
  for (size_t i = 0; i < Records.size(); i++)
    rematerializeLiveValues(ToUpdate[i], Records[i], TTI);

  // We need this to safely RAUW and delete call or invoke return values that
  // may themselves be live over a statepoint.  For details, please see usage in
  // makeStatepointExplicitImpl.
  std::vector<DeferredReplacement> Replacements;

  // Now run through and replace the existing statepoints with new ones with
  // the live variables listed.  We do not yet update uses of the values being
  // relocated. We have references to live variables that need to
  // survive to the last iteration of this loop.  (By construction, the
  // previous statepoint can not be a live variable, thus we can and remove
  // the old statepoint calls as we go.)
  for (size_t i = 0; i < Records.size(); i++)
    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);

  ToUpdate.clear(); // prevent accident use of invalid calls.

  for (auto &PR : Replacements)
    PR.doReplacement();

  Replacements.clear();

  for (auto &Info : Records) {
    // These live sets may contain state Value pointers, since we replaced calls
    // with operand bundles with calls wrapped in gc.statepoint, and some of
    // those calls may have been def'ing live gc pointers.  Clear these out to
    // avoid accidentally using them.
    //
    // TODO: We should create a separate data structure that does not contain
    // these live sets, and migrate to using that data structure from this point
    // onward.
    Info.LiveSet.clear();
    Info.PointerToBase.clear();
  }

  // Do all the fixups of the original live variables to their relocated selves
  SmallVector<Value *, 128> Live;
  for (size_t i = 0; i < Records.size(); i++) {
    PartiallyConstructedSafepointRecord &Info = Records[i];

    // We can't simply save the live set from the original insertion.  One of
    // the live values might be the result of a call which needs a safepoint.
    // That Value* no longer exists and we need to use the new gc_result.
    // Thankfully, the live set is embedded in the statepoint (and updated), so
    // we just grab that.
    Statepoint Statepoint(Info.StatepointToken);
    Live.insert(Live.end(), Statepoint.gc_args_begin(),
                Statepoint.gc_args_end());
#ifndef NDEBUG
    // Do some basic sanity checks on our liveness results before performing
    // relocation.  Relocation can and will turn mistakes in liveness results
    // into non-sensical code which is must harder to debug.
    // TODO: It would be nice to test consistency as well
    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
           "statepoint must be reachable or liveness is meaningless");
    for (Value *V : Statepoint.gc_args()) {
      if (!isa<Instruction>(V))
        // Non-instruction values trivial dominate all possible uses
        continue;
      auto *LiveInst = cast<Instruction>(V);
      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
             "unreachable values should never be live");
      assert(DT.dominates(LiveInst, Info.StatepointToken) &&
             "basic SSA liveness expectation violated by liveness analysis");
    }
#endif
  }
  unique_unsorted(Live);

#ifndef NDEBUG
  // sanity check
  for (auto *Ptr : Live)
    assert(isHandledGCPointerType(Ptr->getType()) &&
           "must be a gc pointer type");
#endif

  relocationViaAlloca(F, DT, Live, Records);
  return !Records.empty();
}

// Handles both return values and arguments for Functions and calls.
template <typename AttrHolder>
static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
                                      unsigned Index) {
  AttrBuilder R;
  if (AH.getDereferenceableBytes(Index))
    R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
                                  AH.getDereferenceableBytes(Index)));
  if (AH.getDereferenceableOrNullBytes(Index))
    R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
                                  AH.getDereferenceableOrNullBytes(Index)));
  if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
    R.addAttribute(Attribute::NoAlias);

  if (!R.empty())
    AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
}

static void stripNonValidAttributesFromPrototype(Function &F) {
  LLVMContext &Ctx = F.getContext();

  for (Argument &A : F.args())
    if (isa<PointerType>(A.getType()))
      RemoveNonValidAttrAtIndex(Ctx, F,
                                A.getArgNo() + AttributeList::FirstArgIndex);

  if (isa<PointerType>(F.getReturnType()))
    RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
}

/// Certain metadata on instructions are invalid after running RS4GC.
/// Optimizations that run after RS4GC can incorrectly use this metadata to
/// optimize functions. We drop such metadata on the instruction.
static void stripInvalidMetadataFromInstruction(Instruction &I) {
  if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
    return;
  // These are the attributes that are still valid on loads and stores after
  // RS4GC.
  // The metadata implying dereferenceability and noalias are (conservatively)
  // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
  // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
  // touch the entire heap including noalias objects. Note: The reasoning is
  // same as stripping the dereferenceability and noalias attributes that are
  // analogous to the metadata counterparts.
  // We also drop the invariant.load metadata on the load because that metadata
  // implies the address operand to the load points to memory that is never
  // changed once it became dereferenceable. This is no longer true after RS4GC.
  // Similar reasoning applies to invariant.group metadata, which applies to
  // loads within a group.
  unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
                         LLVMContext::MD_range,
                         LLVMContext::MD_alias_scope,
                         LLVMContext::MD_nontemporal,
                         LLVMContext::MD_nonnull,
                         LLVMContext::MD_align,
                         LLVMContext::MD_type};

  // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
  I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
}

static void stripNonValidDataFromBody(Function &F) {
  if (F.empty())
    return;

  LLVMContext &Ctx = F.getContext();
  MDBuilder Builder(Ctx);

  // Set of invariantstart instructions that we need to remove.
  // Use this to avoid invalidating the instruction iterator.
  SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;

  for (Instruction &I : instructions(F)) {
    // invariant.start on memory location implies that the referenced memory
    // location is constant and unchanging. This is no longer true after
    // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
    // which frees the entire heap and the presence of invariant.start allows
    // the optimizer to sink the load of a memory location past a statepoint,
    // which is incorrect.
    if (auto *II = dyn_cast<IntrinsicInst>(&I))
      if (II->getIntrinsicID() == Intrinsic::invariant_start) {
        InvariantStartInstructions.push_back(II);
        continue;
      }

    if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
      MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
    }

    stripInvalidMetadataFromInstruction(I);

    if (auto *Call = dyn_cast<CallBase>(&I)) {
      for (int i = 0, e = Call->arg_size(); i != e; i++)
        if (isa<PointerType>(Call->getArgOperand(i)->getType()))
          RemoveNonValidAttrAtIndex(Ctx, *Call,
                                    i + AttributeList::FirstArgIndex);
      if (isa<PointerType>(Call->getType()))
        RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
    }
  }

  // Delete the invariant.start instructions and RAUW undef.
  for (auto *II : InvariantStartInstructions) {
    II->replaceAllUsesWith(UndefValue::get(II->getType()));
    II->eraseFromParent();
  }
}

/// Returns true if this function should be rewritten by this pass.  The main
/// point of this function is as an extension point for custom logic.
static bool shouldRewriteStatepointsIn(Function &F) {
  // TODO: This should check the GCStrategy
  if (F.hasGC()) {
    const auto &FunctionGCName = F.getGC();
    const StringRef StatepointExampleName("statepoint-example");
    const StringRef CoreCLRName("coreclr");
    return (StatepointExampleName == FunctionGCName) ||
           (CoreCLRName == FunctionGCName);
  } else
    return false;
}

static void stripNonValidData(Module &M) {
#ifndef NDEBUG
  assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
#endif

  for (Function &F : M)
    stripNonValidAttributesFromPrototype(F);

  for (Function &F : M)
    stripNonValidDataFromBody(F);
}

bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
                                            TargetTransformInfo &TTI,
                                            const TargetLibraryInfo &TLI) {
  assert(!F.isDeclaration() && !F.empty() &&
         "need function body to rewrite statepoints in");
  assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");

  auto NeedsRewrite = [&TLI](Instruction &I) {
    if (const auto *Call = dyn_cast<CallBase>(&I))
      return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
    return false;
  };

  // Delete any unreachable statepoints so that we don't have unrewritten
  // statepoints surviving this pass.  This makes testing easier and the
  // resulting IR less confusing to human readers.
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  bool MadeChange = removeUnreachableBlocks(F, &DTU);
  // Flush the Dominator Tree.
  DTU.getDomTree();

  // Gather all the statepoints which need rewritten.  Be careful to only
  // consider those in reachable code since we need to ask dominance queries
  // when rewriting.  We'll delete the unreachable ones in a moment.
  SmallVector<CallBase *, 64> ParsePointNeeded;
  for (Instruction &I : instructions(F)) {
    // TODO: only the ones with the flag set!
    if (NeedsRewrite(I)) {
      // NOTE removeUnreachableBlocks() is stronger than
      // DominatorTree::isReachableFromEntry(). In other words
      // removeUnreachableBlocks can remove some blocks for which
      // isReachableFromEntry() returns true.
      assert(DT.isReachableFromEntry(I.getParent()) &&
            "no unreachable blocks expected");
      ParsePointNeeded.push_back(cast<CallBase>(&I));
    }
  }

  // Return early if no work to do.
  if (ParsePointNeeded.empty())
    return MadeChange;

  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
  // These are created by LCSSA.  They have the effect of increasing the size
  // of liveness sets for no good reason.  It may be harder to do this post
  // insertion since relocations and base phis can confuse things.
  for (BasicBlock &BB : F)
    if (BB.getUniquePredecessor()) {
      MadeChange = true;
      FoldSingleEntryPHINodes(&BB);
    }

  // Before we start introducing relocations, we want to tweak the IR a bit to
  // avoid unfortunate code generation effects.  The main example is that we
  // want to try to make sure the comparison feeding a branch is after any
  // safepoints.  Otherwise, we end up with a comparison of pre-relocation
  // values feeding a branch after relocation.  This is semantically correct,
  // but results in extra register pressure since both the pre-relocation and
  // post-relocation copies must be available in registers.  For code without
  // relocations this is handled elsewhere, but teaching the scheduler to
  // reverse the transform we're about to do would be slightly complex.
  // Note: This may extend the live range of the inputs to the icmp and thus
  // increase the liveset of any statepoint we move over.  This is profitable
  // as long as all statepoints are in rare blocks.  If we had in-register
  // lowering for live values this would be a much safer transform.
  auto getConditionInst = [](Instruction *TI) -> Instruction * {
    if (auto *BI = dyn_cast<BranchInst>(TI))
      if (BI->isConditional())
        return dyn_cast<Instruction>(BI->getCondition());
    // TODO: Extend this to handle switches
    return nullptr;
  };
  for (BasicBlock &BB : F) {
    Instruction *TI = BB.getTerminator();
    if (auto *Cond = getConditionInst(TI))
      // TODO: Handle more than just ICmps here.  We should be able to move
      // most instructions without side effects or memory access.
      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
        MadeChange = true;
        Cond->moveBefore(TI);
      }
  }

  // Nasty workaround - The base computation code in the main algorithm doesn't
  // consider the fact that a GEP can be used to convert a scalar to a vector.
  // The right fix for this is to integrate GEPs into the base rewriting
  // algorithm properly, this is just a short term workaround to prevent
  // crashes by canonicalizing such GEPs into fully vector GEPs.
  for (Instruction &I : instructions(F)) {
    if (!isa<GetElementPtrInst>(I))
      continue;

    unsigned VF = 0;
    for (unsigned i = 0; i < I.getNumOperands(); i++)
      if (I.getOperand(i)->getType()->isVectorTy()) {
        assert(VF == 0 ||
               VF == I.getOperand(i)->getType()->getVectorNumElements());
        VF = I.getOperand(i)->getType()->getVectorNumElements();
      }

    // It's the vector to scalar traversal through the pointer operand which
    // confuses base pointer rewriting, so limit ourselves to that case.
    if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
      IRBuilder<> B(&I);
      auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
      I.setOperand(0, Splat);
      MadeChange = true;
    }
  }

  MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
  return MadeChange;
}

// liveness computation via standard dataflow
// -------------------------------------------------------------------

// TODO: Consider using bitvectors for liveness, the set of potentially
// interesting values should be small and easy to pre-compute.

/// Compute the live-in set for the location rbegin starting from
/// the live-out set of the basic block
static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
                                BasicBlock::reverse_iterator End,
                                SetVector<Value *> &LiveTmp) {
  for (auto &I : make_range(Begin, End)) {
    // KILL/Def - Remove this definition from LiveIn
    LiveTmp.remove(&I);

    // Don't consider *uses* in PHI nodes, we handle their contribution to
    // predecessor blocks when we seed the LiveOut sets
    if (isa<PHINode>(I))
      continue;

    // USE - Add to the LiveIn set for this instruction
    for (Value *V : I.operands()) {
      assert(!isUnhandledGCPointerType(V->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
        // The choice to exclude all things constant here is slightly subtle.
        // There are two independent reasons:
        // - We assume that things which are constant (from LLVM's definition)
        // do not move at runtime.  For example, the address of a global
        // variable is fixed, even though it's contents may not be.
        // - Second, we can't disallow arbitrary inttoptr constants even
        // if the language frontend does.  Optimization passes are free to
        // locally exploit facts without respect to global reachability.  This
        // can create sections of code which are dynamically unreachable and
        // contain just about anything.  (see constants.ll in tests)
        LiveTmp.insert(V);
      }
    }
  }
}

static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
  for (BasicBlock *Succ : successors(BB)) {
    for (auto &I : *Succ) {
      PHINode *PN = dyn_cast<PHINode>(&I);
      if (!PN)
        break;

      Value *V = PN->getIncomingValueForBlock(BB);
      assert(!isUnhandledGCPointerType(V->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
        LiveTmp.insert(V);
    }
  }
}

static SetVector<Value *> computeKillSet(BasicBlock *BB) {
  SetVector<Value *> KillSet;
  for (Instruction &I : *BB)
    if (isHandledGCPointerType(I.getType()))
      KillSet.insert(&I);
  return KillSet;
}

#ifndef NDEBUG
/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
/// sanity check for the liveness computation.
static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
                          Instruction *TI, bool TermOkay = false) {
  for (Value *V : Live) {
    if (auto *I = dyn_cast<Instruction>(V)) {
      // The terminator can be a member of the LiveOut set.  LLVM's definition
      // of instruction dominance states that V does not dominate itself.  As
      // such, we need to special case this to allow it.
      if (TermOkay && TI == I)
        continue;
      assert(DT.dominates(I, TI) &&
             "basic SSA liveness expectation violated by liveness analysis");
    }
  }
}

/// Check that all the liveness sets used during the computation of liveness
/// obey basic SSA properties.  This is useful for finding cases where we miss
/// a def.
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
                          BasicBlock &BB) {
  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
}
#endif

static void computeLiveInValues(DominatorTree &DT, Function &F,
                                GCPtrLivenessData &Data) {
  SmallSetVector<BasicBlock *, 32> Worklist;

  // Seed the liveness for each individual block
  for (BasicBlock &BB : F) {
    Data.KillSet[&BB] = computeKillSet(&BB);
    Data.LiveSet[&BB].clear();
    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);

#ifndef NDEBUG
    for (Value *Kill : Data.KillSet[&BB])
      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
#endif

    Data.LiveOut[&BB] = SetVector<Value *>();
    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
    Data.LiveIn[&BB] = Data.LiveSet[&BB];
    Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
    Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
    if (!Data.LiveIn[&BB].empty())
      Worklist.insert(pred_begin(&BB), pred_end(&BB));
  }

  // Propagate that liveness until stable
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.pop_back_val();

    // Compute our new liveout set, then exit early if it hasn't changed despite
    // the contribution of our successor.
    SetVector<Value *> LiveOut = Data.LiveOut[BB];
    const auto OldLiveOutSize = LiveOut.size();
    for (BasicBlock *Succ : successors(BB)) {
      assert(Data.LiveIn.count(Succ));
      LiveOut.set_union(Data.LiveIn[Succ]);
    }
    // assert OutLiveOut is a subset of LiveOut
    if (OldLiveOutSize == LiveOut.size()) {
      // If the sets are the same size, then we didn't actually add anything
      // when unioning our successors LiveIn.  Thus, the LiveIn of this block
      // hasn't changed.
      continue;
    }
    Data.LiveOut[BB] = LiveOut;

    // Apply the effects of this basic block
    SetVector<Value *> LiveTmp = LiveOut;
    LiveTmp.set_union(Data.LiveSet[BB]);
    LiveTmp.set_subtract(Data.KillSet[BB]);

    assert(Data.LiveIn.count(BB));
    const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
    // assert: OldLiveIn is a subset of LiveTmp
    if (OldLiveIn.size() != LiveTmp.size()) {
      Data.LiveIn[BB] = LiveTmp;
      Worklist.insert(pred_begin(BB), pred_end(BB));
    }
  } // while (!Worklist.empty())

#ifndef NDEBUG
  // Sanity check our output against SSA properties.  This helps catch any
  // missing kills during the above iteration.
  for (BasicBlock &BB : F)
    checkBasicSSA(DT, Data, BB);
#endif
}

static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
                              StatepointLiveSetTy &Out) {
  BasicBlock *BB = Inst->getParent();

  // Note: The copy is intentional and required
  assert(Data.LiveOut.count(BB));
  SetVector<Value *> LiveOut = Data.LiveOut[BB];

  // We want to handle the statepoint itself oddly.  It's
  // call result is not live (normal), nor are it's arguments
  // (unless they're used again later).  This adjustment is
  // specifically what we need to relocate
  computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
                      LiveOut);
  LiveOut.remove(Inst);
  Out.insert(LiveOut.begin(), LiveOut.end());
}

static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
                                  CallBase *Call,
                                  PartiallyConstructedSafepointRecord &Info) {
  StatepointLiveSetTy Updated;
  findLiveSetAtInst(Call, RevisedLivenessData, Updated);

  // We may have base pointers which are now live that weren't before.  We need
  // to update the PointerToBase structure to reflect this.
  for (auto V : Updated)
    if (Info.PointerToBase.insert({V, V}).second) {
      assert(isKnownBaseResult(V) &&
             "Can't find base for unexpected live value!");
      continue;
    }

#ifndef NDEBUG
  for (auto V : Updated)
    assert(Info.PointerToBase.count(V) &&
           "Must be able to find base for live value!");
#endif

  // Remove any stale base mappings - this can happen since our liveness is
  // more precise then the one inherent in the base pointer analysis.
  DenseSet<Value *> ToErase;
  for (auto KVPair : Info.PointerToBase)
    if (!Updated.count(KVPair.first))
      ToErase.insert(KVPair.first);

  for (auto *V : ToErase)
    Info.PointerToBase.erase(V);

#ifndef NDEBUG
  for (auto KVPair : Info.PointerToBase)
    assert(Updated.count(KVPair.first) && "record for non-live value");
#endif

  Info.LiveSet = Updated;
}