reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs various transformations related to eliminating memcpy
// calls, or transforming sets of stores into memset's.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "memcpyopt"

STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");

namespace {

/// Represents a range of memset'd bytes with the ByteVal value.
/// This allows us to analyze stores like:
///   store 0 -> P+1
///   store 0 -> P+0
///   store 0 -> P+3
///   store 0 -> P+2
/// which sometimes happens with stores to arrays of structs etc.  When we see
/// the first store, we make a range [1, 2).  The second store extends the range
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
/// two ranges into [0, 3) which is memset'able.
struct MemsetRange {
  // Start/End - A semi range that describes the span that this range covers.
  // The range is closed at the start and open at the end: [Start, End).
  int64_t Start, End;

  /// StartPtr - The getelementptr instruction that points to the start of the
  /// range.
  Value *StartPtr;

  /// Alignment - The known alignment of the first store.
  unsigned Alignment;

  /// TheStores - The actual stores that make up this range.
  SmallVector<Instruction*, 16> TheStores;

  bool isProfitableToUseMemset(const DataLayout &DL) const;
};

} // end anonymous namespace

bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
  // If we found more than 4 stores to merge or 16 bytes, use memset.
  if (TheStores.size() >= 4 || End-Start >= 16) return true;

  // If there is nothing to merge, don't do anything.
  if (TheStores.size() < 2) return false;

  // If any of the stores are a memset, then it is always good to extend the
  // memset.
  for (Instruction *SI : TheStores)
    if (!isa<StoreInst>(SI))
      return true;

  // Assume that the code generator is capable of merging pairs of stores
  // together if it wants to.
  if (TheStores.size() == 2) return false;

  // If we have fewer than 8 stores, it can still be worthwhile to do this.
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
  // memset will be split into 2 32-bit stores anyway) and doing so can
  // pessimize the llvm optimizer.
  //
  // Since we don't have perfect knowledge here, make some assumptions: assume
  // the maximum GPR width is the same size as the largest legal integer
  // size. If so, check to see whether we will end up actually reducing the
  // number of stores used.
  unsigned Bytes = unsigned(End-Start);
  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
  if (MaxIntSize == 0)
    MaxIntSize = 1;
  unsigned NumPointerStores = Bytes / MaxIntSize;

  // Assume the remaining bytes if any are done a byte at a time.
  unsigned NumByteStores = Bytes % MaxIntSize;

  // If we will reduce the # stores (according to this heuristic), do the
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
  // etc.
  return TheStores.size() > NumPointerStores+NumByteStores;
}

namespace {

class MemsetRanges {
  using range_iterator = SmallVectorImpl<MemsetRange>::iterator;

  /// A sorted list of the memset ranges.
  SmallVector<MemsetRange, 8> Ranges;

  const DataLayout &DL;

public:
  MemsetRanges(const DataLayout &DL) : DL(DL) {}

  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;

  const_iterator begin() const { return Ranges.begin(); }
  const_iterator end() const { return Ranges.end(); }
  bool empty() const { return Ranges.empty(); }

  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
      addStore(OffsetFromFirst, SI);
    else
      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
  }

  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());

    addRange(OffsetFromFirst, StoreSize,
             SI->getPointerOperand(), SI->getAlignment(), SI);
  }

  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
  }

  void addRange(int64_t Start, int64_t Size, Value *Ptr,
                unsigned Alignment, Instruction *Inst);
};

} // end anonymous namespace

/// Add a new store to the MemsetRanges data structure.  This adds a
/// new range for the specified store at the specified offset, merging into
/// existing ranges as appropriate.
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
                            unsigned Alignment, Instruction *Inst) {
  int64_t End = Start+Size;

  range_iterator I = partition_point(
      Ranges, [=](const MemsetRange &O) { return O.End < Start; });

  // We now know that I == E, in which case we didn't find anything to merge
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
  // to insert a new range.  Handle this now.
  if (I == Ranges.end() || End < I->Start) {
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
    R.Start        = Start;
    R.End          = End;
    R.StartPtr     = Ptr;
    R.Alignment    = Alignment;
    R.TheStores.push_back(Inst);
    return;
  }

  // This store overlaps with I, add it.
  I->TheStores.push_back(Inst);

  // At this point, we may have an interval that completely contains our store.
  // If so, just add it to the interval and return.
  if (I->Start <= Start && I->End >= End)
    return;

  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
  // but is not entirely contained within the range.

  // See if the range extends the start of the range.  In this case, it couldn't
  // possibly cause it to join the prior range, because otherwise we would have
  // stopped on *it*.
  if (Start < I->Start) {
    I->Start = Start;
    I->StartPtr = Ptr;
    I->Alignment = Alignment;
  }

  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
  // End.
  if (End > I->End) {
    I->End = End;
    range_iterator NextI = I;
    while (++NextI != Ranges.end() && End >= NextI->Start) {
      // Merge the range in.
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
      if (NextI->End > I->End)
        I->End = NextI->End;
      Ranges.erase(NextI);
      NextI = I;
    }
  }
}

//===----------------------------------------------------------------------===//
//                         MemCpyOptLegacyPass Pass
//===----------------------------------------------------------------------===//

namespace {

class MemCpyOptLegacyPass : public FunctionPass {
  MemCpyOptPass Impl;

public:
  static char ID; // Pass identification, replacement for typeid

  MemCpyOptLegacyPass() : FunctionPass(ID) {
    initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

private:
  // This transformation requires dominator postdominator info
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<MemoryDependenceWrapperPass>();
  }
};

} // end anonymous namespace

char MemCpyOptLegacyPass::ID = 0;

/// The public interface to this file...
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }

INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
                    false, false)

/// When scanning forward over instructions, we look for some other patterns to
/// fold away. In particular, this looks for stores to neighboring locations of
/// memory. If it sees enough consecutive ones, it attempts to merge them
/// together into a memcpy/memset.
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
                                                 Value *StartPtr,
                                                 Value *ByteVal) {
  const DataLayout &DL = StartInst->getModule()->getDataLayout();

  // Okay, so we now have a single store that can be splatable.  Scan to find
  // all subsequent stores of the same value to offset from the same pointer.
  // Join these together into ranges, so we can decide whether contiguous blocks
  // are stored.
  MemsetRanges Ranges(DL);

  BasicBlock::iterator BI(StartInst);
  for (++BI; !BI->isTerminator(); ++BI) {
    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
      // If the instruction is readnone, ignore it, otherwise bail out.  We
      // don't even allow readonly here because we don't want something like:
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
        break;
      continue;
    }

    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
      // If this is a store, see if we can merge it in.
      if (!NextStore->isSimple()) break;

      // Check to see if this stored value is of the same byte-splattable value.
      Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL);
      if (isa<UndefValue>(ByteVal) && StoredByte)
        ByteVal = StoredByte;
      if (ByteVal != StoredByte)
        break;

      // Check to see if this store is to a constant offset from the start ptr.
      Optional<int64_t> Offset =
          isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
      if (!Offset)
        break;

      Ranges.addStore(*Offset, NextStore);
    } else {
      MemSetInst *MSI = cast<MemSetInst>(BI);

      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
          !isa<ConstantInt>(MSI->getLength()))
        break;

      // Check to see if this store is to a constant offset from the start ptr.
      Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
      if (!Offset)
        break;

      Ranges.addMemSet(*Offset, MSI);
    }
  }

  // If we have no ranges, then we just had a single store with nothing that
  // could be merged in.  This is a very common case of course.
  if (Ranges.empty())
    return nullptr;

  // If we had at least one store that could be merged in, add the starting
  // store as well.  We try to avoid this unless there is at least something
  // interesting as a small compile-time optimization.
  Ranges.addInst(0, StartInst);

  // If we create any memsets, we put it right before the first instruction that
  // isn't part of the memset block.  This ensure that the memset is dominated
  // by any addressing instruction needed by the start of the block.
  IRBuilder<> Builder(&*BI);

  // Now that we have full information about ranges, loop over the ranges and
  // emit memset's for anything big enough to be worthwhile.
  Instruction *AMemSet = nullptr;
  for (const MemsetRange &Range : Ranges) {
    if (Range.TheStores.size() == 1) continue;

    // If it is profitable to lower this range to memset, do so now.
    if (!Range.isProfitableToUseMemset(DL))
      continue;

    // Otherwise, we do want to transform this!  Create a new memset.
    // Get the starting pointer of the block.
    StartPtr = Range.StartPtr;

    // Determine alignment
    unsigned Alignment = Range.Alignment;
    if (Alignment == 0) {
      Type *EltType =
        cast<PointerType>(StartPtr->getType())->getElementType();
      Alignment = DL.getABITypeAlignment(EltType);
    }

    AMemSet =
      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);

    LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
                                                   : Range.TheStores) dbgs()
                                              << *SI << '\n';
               dbgs() << "With: " << *AMemSet << '\n');

    if (!Range.TheStores.empty())
      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());

    // Zap all the stores.
    for (Instruction *SI : Range.TheStores) {
      MD->removeInstruction(SI);
      SI->eraseFromParent();
    }
    ++NumMemSetInfer;
  }

  return AMemSet;
}

static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
  unsigned StoreAlign = SI->getAlignment();
  if (!StoreAlign)
    StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
  return StoreAlign;
}

static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
  unsigned LoadAlign = LI->getAlignment();
  if (!LoadAlign)
    LoadAlign = DL.getABITypeAlignment(LI->getType());
  return LoadAlign;
}

static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
                                     const LoadInst *LI) {
  unsigned StoreAlign = findStoreAlignment(DL, SI);
  unsigned LoadAlign = findLoadAlignment(DL, LI);
  return MinAlign(StoreAlign, LoadAlign);
}

// This method try to lift a store instruction before position P.
// It will lift the store and its argument + that anything that
// may alias with these.
// The method returns true if it was successful.
static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
                   const LoadInst *LI) {
  // If the store alias this position, early bail out.
  MemoryLocation StoreLoc = MemoryLocation::get(SI);
  if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
    return false;

  // Keep track of the arguments of all instruction we plan to lift
  // so we can make sure to lift them as well if appropriate.
  DenseSet<Instruction*> Args;
  if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
    if (Ptr->getParent() == SI->getParent())
      Args.insert(Ptr);

  // Instruction to lift before P.
  SmallVector<Instruction*, 8> ToLift;

  // Memory locations of lifted instructions.
  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};

  // Lifted calls.
  SmallVector<const CallBase *, 8> Calls;

  const MemoryLocation LoadLoc = MemoryLocation::get(LI);

  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
    auto *C = &*I;

    bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));

    bool NeedLift = false;
    if (Args.erase(C))
      NeedLift = true;
    else if (MayAlias) {
      NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
        return isModOrRefSet(AA.getModRefInfo(C, ML));
      });

      if (!NeedLift)
        NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
          return isModOrRefSet(AA.getModRefInfo(C, Call));
        });
    }

    if (!NeedLift)
      continue;

    if (MayAlias) {
      // Since LI is implicitly moved downwards past the lifted instructions,
      // none of them may modify its source.
      if (isModSet(AA.getModRefInfo(C, LoadLoc)))
        return false;
      else if (const auto *Call = dyn_cast<CallBase>(C)) {
        // If we can't lift this before P, it's game over.
        if (isModOrRefSet(AA.getModRefInfo(P, Call)))
          return false;

        Calls.push_back(Call);
      } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
        // If we can't lift this before P, it's game over.
        auto ML = MemoryLocation::get(C);
        if (isModOrRefSet(AA.getModRefInfo(P, ML)))
          return false;

        MemLocs.push_back(ML);
      } else
        // We don't know how to lift this instruction.
        return false;
    }

    ToLift.push_back(C);
    for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
      if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
        if (A->getParent() == SI->getParent()) {
          // Cannot hoist user of P above P
          if(A == P) return false;
          Args.insert(A);
        }
      }
  }

  // We made it, we need to lift
  for (auto *I : llvm::reverse(ToLift)) {
    LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
    I->moveBefore(P);
  }

  return true;
}

bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
  if (!SI->isSimple()) return false;

  // Avoid merging nontemporal stores since the resulting
  // memcpy/memset would not be able to preserve the nontemporal hint.
  // In theory we could teach how to propagate the !nontemporal metadata to
  // memset calls. However, that change would force the backend to
  // conservatively expand !nontemporal memset calls back to sequences of
  // store instructions (effectively undoing the merging).
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
    return false;

  const DataLayout &DL = SI->getModule()->getDataLayout();

  // Load to store forwarding can be interpreted as memcpy.
  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
    if (LI->isSimple() && LI->hasOneUse() &&
        LI->getParent() == SI->getParent()) {

      auto *T = LI->getType();
      if (T->isAggregateType()) {
        AliasAnalysis &AA = LookupAliasAnalysis();
        MemoryLocation LoadLoc = MemoryLocation::get(LI);

        // We use alias analysis to check if an instruction may store to
        // the memory we load from in between the load and the store. If
        // such an instruction is found, we try to promote there instead
        // of at the store position.
        Instruction *P = SI;
        for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
          if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
            P = &I;
            break;
          }
        }

        // We found an instruction that may write to the loaded memory.
        // We can try to promote at this position instead of the store
        // position if nothing alias the store memory after this and the store
        // destination is not in the range.
        if (P && P != SI) {
          if (!moveUp(AA, SI, P, LI))
            P = nullptr;
        }

        // If a valid insertion position is found, then we can promote
        // the load/store pair to a memcpy.
        if (P) {
          // If we load from memory that may alias the memory we store to,
          // memmove must be used to preserve semantic. If not, memcpy can
          // be used.
          bool UseMemMove = false;
          if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
            UseMemMove = true;

          uint64_t Size = DL.getTypeStoreSize(T);

          IRBuilder<> Builder(P);
          Instruction *M;
          if (UseMemMove)
            M = Builder.CreateMemMove(
                SI->getPointerOperand(), findStoreAlignment(DL, SI),
                LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
          else
            M = Builder.CreateMemCpy(
                SI->getPointerOperand(), findStoreAlignment(DL, SI),
                LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);

          LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
                            << *M << "\n");

          MD->removeInstruction(SI);
          SI->eraseFromParent();
          MD->removeInstruction(LI);
          LI->eraseFromParent();
          ++NumMemCpyInstr;

          // Make sure we do not invalidate the iterator.
          BBI = M->getIterator();
          return true;
        }
      }

      // Detect cases where we're performing call slot forwarding, but
      // happen to be using a load-store pair to implement it, rather than
      // a memcpy.
      MemDepResult ldep = MD->getDependency(LI);
      CallInst *C = nullptr;
      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
        C = dyn_cast<CallInst>(ldep.getInst());

      if (C) {
        // Check that nothing touches the dest of the "copy" between
        // the call and the store.
        Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
        bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
        AliasAnalysis &AA = LookupAliasAnalysis();
        MemoryLocation StoreLoc = MemoryLocation::get(SI);
        for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
             I != E; --I) {
          if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
            C = nullptr;
            break;
          }
          // The store to dest may never happen if an exception can be thrown
          // between the load and the store.
          if (I->mayThrow() && !CpyDestIsLocal) {
            C = nullptr;
            break;
          }
        }
      }

      if (C) {
        bool changed = performCallSlotOptzn(
            LI, SI->getPointerOperand()->stripPointerCasts(),
            LI->getPointerOperand()->stripPointerCasts(),
            DL.getTypeStoreSize(SI->getOperand(0)->getType()),
            findCommonAlignment(DL, SI, LI), C);
        if (changed) {
          MD->removeInstruction(SI);
          SI->eraseFromParent();
          MD->removeInstruction(LI);
          LI->eraseFromParent();
          ++NumMemCpyInstr;
          return true;
        }
      }
    }
  }

  // There are two cases that are interesting for this code to handle: memcpy
  // and memset.  Right now we only handle memset.

  // Ensure that the value being stored is something that can be memset'able a
  // byte at a time like "0" or "-1" or any width, as well as things like
  // 0xA0A0A0A0 and 0.0.
  auto *V = SI->getOperand(0);
  if (Value *ByteVal = isBytewiseValue(V, DL)) {
    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
                                              ByteVal)) {
      BBI = I->getIterator(); // Don't invalidate iterator.
      return true;
    }

    // If we have an aggregate, we try to promote it to memset regardless
    // of opportunity for merging as it can expose optimization opportunities
    // in subsequent passes.
    auto *T = V->getType();
    if (T->isAggregateType()) {
      uint64_t Size = DL.getTypeStoreSize(T);
      unsigned Align = SI->getAlignment();
      if (!Align)
        Align = DL.getABITypeAlignment(T);
      IRBuilder<> Builder(SI);
      auto *M =
          Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align);

      LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");

      MD->removeInstruction(SI);
      SI->eraseFromParent();
      NumMemSetInfer++;

      // Make sure we do not invalidate the iterator.
      BBI = M->getIterator();
      return true;
    }
  }

  return false;
}

bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
  // See if there is another memset or store neighboring this memset which
  // allows us to widen out the memset to do a single larger store.
  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
                                              MSI->getValue())) {
      BBI = I->getIterator(); // Don't invalidate iterator.
      return true;
    }
  return false;
}

/// Takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy.
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
                                         Value *cpySrc, uint64_t cpyLen,
                                         unsigned cpyAlign, CallInst *C) {
  // The general transformation to keep in mind is
  //
  //   call @func(..., src, ...)
  //   memcpy(dest, src, ...)
  //
  // ->
  //
  //   memcpy(dest, src, ...)
  //   call @func(..., dest, ...)
  //
  // Since moving the memcpy is technically awkward, we additionally check that
  // src only holds uninitialized values at the moment of the call, meaning that
  // the memcpy can be discarded rather than moved.

  // Lifetime marks shouldn't be operated on.
  if (Function *F = C->getCalledFunction())
    if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
      return false;

  // Deliberately get the source and destination with bitcasts stripped away,
  // because we'll need to do type comparisons based on the underlying type.
  CallSite CS(C);

  // Require that src be an alloca.  This simplifies the reasoning considerably.
  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
  if (!srcAlloca)
    return false;

  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
  if (!srcArraySize)
    return false;

  const DataLayout &DL = cpy->getModule()->getDataLayout();
  uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
                     srcArraySize->getZExtValue();

  if (cpyLen < srcSize)
    return false;

  // Check that accessing the first srcSize bytes of dest will not cause a
  // trap.  Otherwise the transform is invalid since it might cause a trap
  // to occur earlier than it otherwise would.
  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
    // The destination is an alloca.  Check it is larger than srcSize.
    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    if (!destArraySize)
      return false;

    uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
                        destArraySize->getZExtValue();

    if (destSize < srcSize)
      return false;
  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
    // The store to dest may never happen if the call can throw.
    if (C->mayThrow())
      return false;

    if (A->getDereferenceableBytes() < srcSize) {
      // If the destination is an sret parameter then only accesses that are
      // outside of the returned struct type can trap.
      if (!A->hasStructRetAttr())
        return false;

      Type *StructTy = cast<PointerType>(A->getType())->getElementType();
      if (!StructTy->isSized()) {
        // The call may never return and hence the copy-instruction may never
        // be executed, and therefore it's not safe to say "the destination
        // has at least <cpyLen> bytes, as implied by the copy-instruction",
        return false;
      }

      uint64_t destSize = DL.getTypeAllocSize(StructTy);
      if (destSize < srcSize)
        return false;
    }
  } else {
    return false;
  }

  // Check that dest points to memory that is at least as aligned as src.
  unsigned srcAlign = srcAlloca->getAlignment();
  if (!srcAlign)
    srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
  // If dest is not aligned enough and we can't increase its alignment then
  // bail out.
  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
    return false;

  // Check that src is not accessed except via the call and the memcpy.  This
  // guarantees that it holds only undefined values when passed in (so the final
  // memcpy can be dropped), that it is not read or written between the call and
  // the memcpy, and that writing beyond the end of it is undefined.
  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
                                   srcAlloca->user_end());
  while (!srcUseList.empty()) {
    User *U = srcUseList.pop_back_val();

    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
      for (User *UU : U->users())
        srcUseList.push_back(UU);
      continue;
    }
    if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
      if (!G->hasAllZeroIndices())
        return false;

      for (User *UU : U->users())
        srcUseList.push_back(UU);
      continue;
    }
    if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
      if (IT->isLifetimeStartOrEnd())
        continue;

    if (U != C && U != cpy)
      return false;
  }

  // Check that src isn't captured by the called function since the
  // transformation can cause aliasing issues in that case.
  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
      return false;

  // Since we're changing the parameter to the callsite, we need to make sure
  // that what would be the new parameter dominates the callsite.
  DominatorTree &DT = LookupDomTree();
  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
    if (!DT.dominates(cpyDestInst, C))
      return false;

  // In addition to knowing that the call does not access src in some
  // unexpected manner, for example via a global, which we deduce from
  // the use analysis, we also need to know that it does not sneakily
  // access dest.  We rely on AA to figure this out for us.
  AliasAnalysis &AA = LookupAliasAnalysis();
  ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
  // If necessary, perform additional analysis.
  if (isModOrRefSet(MR))
    MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
  if (isModOrRefSet(MR))
    return false;

  // We can't create address space casts here because we don't know if they're
  // safe for the target.
  if (cpySrc->getType()->getPointerAddressSpace() !=
      cpyDest->getType()->getPointerAddressSpace())
    return false;
  for (unsigned i = 0; i < CS.arg_size(); ++i)
    if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
        cpySrc->getType()->getPointerAddressSpace() !=
        CS.getArgument(i)->getType()->getPointerAddressSpace())
      return false;

  // All the checks have passed, so do the transformation.
  bool changedArgument = false;
  for (unsigned i = 0; i < CS.arg_size(); ++i)
    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
                                      cpyDest->getName(), C);
      changedArgument = true;
      if (CS.getArgument(i)->getType() == Dest->getType())
        CS.setArgument(i, Dest);
      else
        CS.setArgument(i, CastInst::CreatePointerCast(Dest,
                          CS.getArgument(i)->getType(), Dest->getName(), C));
    }

  if (!changedArgument)
    return false;

  // If the destination wasn't sufficiently aligned then increase its alignment.
  if (!isDestSufficientlyAligned) {
    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
    cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign));
  }

  // Drop any cached information about the call, because we may have changed
  // its dependence information by changing its parameter.
  MD->removeInstruction(C);

  // Update AA metadata
  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
  // handled here, but combineMetadata doesn't support them yet
  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
                         LLVMContext::MD_noalias,
                         LLVMContext::MD_invariant_group,
                         LLVMContext::MD_access_group};
  combineMetadata(C, cpy, KnownIDs, true);

  // Remove the memcpy.
  MD->removeInstruction(cpy);
  ++NumMemCpyInstr;

  return true;
}

/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
                                                  MemCpyInst *MDep) {
  // We can only transforms memcpy's where the dest of one is the source of the
  // other.
  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
    return false;

  // If dep instruction is reading from our current input, then it is a noop
  // transfer and substituting the input won't change this instruction.  Just
  // ignore the input and let someone else zap MDep.  This handles cases like:
  //    memcpy(a <- a)
  //    memcpy(b <- a)
  if (M->getSource() == MDep->getSource())
    return false;

  // Second, the length of the memcpy's must be the same, or the preceding one
  // must be larger than the following one.
  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
    return false;

  AliasAnalysis &AA = LookupAliasAnalysis();

  // Verify that the copied-from memory doesn't change in between the two
  // transfers.  For example, in:
  //    memcpy(a <- b)
  //    *b = 42;
  //    memcpy(c <- a)
  // It would be invalid to transform the second memcpy into memcpy(c <- b).
  //
  // TODO: If the code between M and MDep is transparent to the destination "c",
  // then we could still perform the xform by moving M up to the first memcpy.
  //
  // NOTE: This is conservative, it will stop on any read from the source loc,
  // not just the defining memcpy.
  MemDepResult SourceDep =
      MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
                                   M->getIterator(), M->getParent());
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    return false;

  // If the dest of the second might alias the source of the first, then the
  // source and dest might overlap.  We still want to eliminate the intermediate
  // value, but we have to generate a memmove instead of memcpy.
  bool UseMemMove = false;
  if (!AA.isNoAlias(MemoryLocation::getForDest(M),
                    MemoryLocation::getForSource(MDep)))
    UseMemMove = true;

  // If all checks passed, then we can transform M.
  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
                    << *MDep << '\n' << *M << '\n');

  // TODO: Is this worth it if we're creating a less aligned memcpy? For
  // example we could be moving from movaps -> movq on x86.
  IRBuilder<> Builder(M);
  if (UseMemMove)
    Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
                          MDep->getRawSource(), MDep->getSourceAlignment(),
                          M->getLength(), M->isVolatile());
  else
    Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
                         MDep->getRawSource(), MDep->getSourceAlignment(),
                         M->getLength(), M->isVolatile());

  // Remove the instruction we're replacing.
  MD->removeInstruction(M);
  M->eraseFromParent();
  ++NumMemCpyInstr;
  return true;
}

/// We've found that the (upward scanning) memory dependence of \p MemCpy is
/// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
/// weren't copied over by \p MemCpy.
///
/// In other words, transform:
/// \code
///   memset(dst, c, dst_size);
///   memcpy(dst, src, src_size);
/// \endcode
/// into:
/// \code
///   memcpy(dst, src, src_size);
///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
/// \endcode
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
                                                  MemSetInst *MemSet) {
  // We can only transform memset/memcpy with the same destination.
  if (MemSet->getDest() != MemCpy->getDest())
    return false;

  // Check that there are no other dependencies on the memset destination.
  MemDepResult DstDepInfo =
      MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
                                   MemCpy->getIterator(), MemCpy->getParent());
  if (DstDepInfo.getInst() != MemSet)
    return false;

  // Use the same i8* dest as the memcpy, killing the memset dest if different.
  Value *Dest = MemCpy->getRawDest();
  Value *DestSize = MemSet->getLength();
  Value *SrcSize = MemCpy->getLength();

  // By default, create an unaligned memset.
  unsigned Align = 1;
  // If Dest is aligned, and SrcSize is constant, use the minimum alignment
  // of the sum.
  const unsigned DestAlign =
      std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
  if (DestAlign > 1)
    if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
      Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);

  IRBuilder<> Builder(MemCpy);

  // If the sizes have different types, zext the smaller one.
  if (DestSize->getType() != SrcSize->getType()) {
    if (DestSize->getType()->getIntegerBitWidth() >
        SrcSize->getType()->getIntegerBitWidth())
      SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
    else
      DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
  }

  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
  Value *MemsetLen = Builder.CreateSelect(
      Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
  Builder.CreateMemSet(
      Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
                        SrcSize),
      MemSet->getOperand(1), MemsetLen, Align);

  MD->removeInstruction(MemSet);
  MemSet->eraseFromParent();
  return true;
}

/// Determine whether the instruction has undefined content for the given Size,
/// either because it was freshly alloca'd or started its lifetime.
static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
  if (isa<AllocaInst>(I))
    return true;

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
      if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
        if (LTSize->getZExtValue() >= Size->getZExtValue())
          return true;

  return false;
}

/// Transform memcpy to memset when its source was just memset.
/// In other words, turn:
/// \code
///   memset(dst1, c, dst1_size);
///   memcpy(dst2, dst1, dst2_size);
/// \endcode
/// into:
/// \code
///   memset(dst1, c, dst1_size);
///   memset(dst2, c, dst2_size);
/// \endcode
/// When dst2_size <= dst1_size.
///
/// The \p MemCpy must have a Constant length.
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
                                               MemSetInst *MemSet) {
  AliasAnalysis &AA = LookupAliasAnalysis();

  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
  // memcpying from the same address. Otherwise it is hard to reason about.
  if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
    return false;

  // A known memset size is required.
  ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
  if (!MemSetSize)
    return false;

  // Make sure the memcpy doesn't read any more than what the memset wrote.
  // Don't worry about sizes larger than i64.
  ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
  if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
    // If the memcpy is larger than the memset, but the memory was undef prior
    // to the memset, we can just ignore the tail. Technically we're only
    // interested in the bytes from MemSetSize..CopySize here, but as we can't
    // easily represent this location, we use the full 0..CopySize range.
    MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
    MemDepResult DepInfo = MD->getPointerDependencyFrom(
        MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
    if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
      CopySize = MemSetSize;
    else
      return false;
  }

  IRBuilder<> Builder(MemCpy);
  Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
                       CopySize, MemCpy->getDestAlignment());
  return true;
}

/// Perform simplification of memcpy's.  If we have memcpy A
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
/// circumstances). This allows later passes to remove the first memcpy
/// altogether.
bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
  // We can only optimize non-volatile memcpy's.
  if (M->isVolatile()) return false;

  // If the source and destination of the memcpy are the same, then zap it.
  if (M->getSource() == M->getDest()) {
    MD->removeInstruction(M);
    M->eraseFromParent();
    return false;
  }

  // If copying from a constant, try to turn the memcpy into a memset.
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
      if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
                                           M->getModule()->getDataLayout())) {
        IRBuilder<> Builder(M);
        Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
                             M->getDestAlignment(), false);
        MD->removeInstruction(M);
        M->eraseFromParent();
        ++NumCpyToSet;
        return true;
      }

  MemDepResult DepInfo = MD->getDependency(M);

  // Try to turn a partially redundant memset + memcpy into
  // memcpy + smaller memset.  We don't need the memcpy size for this.
  if (DepInfo.isClobber())
    if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
      if (processMemSetMemCpyDependence(M, MDep))
        return true;

  // The optimizations after this point require the memcpy size.
  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
  if (!CopySize) return false;

  // There are four possible optimizations we can do for memcpy:
  //   a) memcpy-memcpy xform which exposes redundance for DSE.
  //   b) call-memcpy xform for return slot optimization.
  //   c) memcpy from freshly alloca'd space or space that has just started its
  //      lifetime copies undefined data, and we can therefore eliminate the
  //      memcpy in favor of the data that was already at the destination.
  //   d) memcpy from a just-memset'd source can be turned into memset.
  if (DepInfo.isClobber()) {
    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
      // FIXME: Can we pass in either of dest/src alignment here instead
      // of conservatively taking the minimum?
      unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
      if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
                               CopySize->getZExtValue(), Align,
                               C)) {
        MD->removeInstruction(M);
        M->eraseFromParent();
        return true;
      }
    }
  }

  MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
      SrcLoc, true, M->getIterator(), M->getParent());

  if (SrcDepInfo.isClobber()) {
    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
      return processMemCpyMemCpyDependence(M, MDep);
  } else if (SrcDepInfo.isDef()) {
    if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
      MD->removeInstruction(M);
      M->eraseFromParent();
      ++NumMemCpyInstr;
      return true;
    }
  }

  if (SrcDepInfo.isClobber())
    if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
      if (performMemCpyToMemSetOptzn(M, MDep)) {
        MD->removeInstruction(M);
        M->eraseFromParent();
        ++NumCpyToSet;
        return true;
      }

  return false;
}

/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
/// not to alias.
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
  AliasAnalysis &AA = LookupAliasAnalysis();

  if (!TLI->has(LibFunc_memmove))
    return false;

  // See if the pointers alias.
  if (!AA.isNoAlias(MemoryLocation::getForDest(M),
                    MemoryLocation::getForSource(M)))
    return false;

  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
                    << "\n");

  // If not, then we know we can transform this.
  Type *ArgTys[3] = { M->getRawDest()->getType(),
                      M->getRawSource()->getType(),
                      M->getLength()->getType() };
  M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
                                                 Intrinsic::memcpy, ArgTys));

  // MemDep may have over conservative information about this instruction, just
  // conservatively flush it from the cache.
  MD->removeInstruction(M);

  ++NumMoveToCpy;
  return true;
}

/// This is called on every byval argument in call sites.
bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
  const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
  // Find out what feeds this byval argument.
  Value *ByValArg = CS.getArgument(ArgNo);
  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
  uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
  MemDepResult DepInfo = MD->getPointerDependencyFrom(
      MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
      CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
  if (!DepInfo.isClobber())
    return false;

  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
  // a memcpy, see if we can byval from the source of the memcpy instead of the
  // result.
  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
  if (!MDep || MDep->isVolatile() ||
      ByValArg->stripPointerCasts() != MDep->getDest())
    return false;

  // The length of the memcpy must be larger or equal to the size of the byval.
  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
  if (!C1 || C1->getValue().getZExtValue() < ByValSize)
    return false;

  // Get the alignment of the byval.  If the call doesn't specify the alignment,
  // then it is some target specific value that we can't know.
  unsigned ByValAlign = CS.getParamAlignment(ArgNo);
  if (ByValAlign == 0) return false;

  // If it is greater than the memcpy, then we check to see if we can force the
  // source of the memcpy to the alignment we need.  If we fail, we bail out.
  AssumptionCache &AC = LookupAssumptionCache();
  DominatorTree &DT = LookupDomTree();
  if (MDep->getSourceAlignment() < ByValAlign &&
      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
                                 CS.getInstruction(), &AC, &DT) < ByValAlign)
    return false;

  // The address space of the memcpy source must match the byval argument
  if (MDep->getSource()->getType()->getPointerAddressSpace() !=
      ByValArg->getType()->getPointerAddressSpace())
    return false;

  // Verify that the copied-from memory doesn't change in between the memcpy and
  // the byval call.
  //    memcpy(a <- b)
  //    *b = 42;
  //    foo(*a)
  // It would be invalid to transform the second memcpy into foo(*b).
  //
  // NOTE: This is conservative, it will stop on any read from the source loc,
  // not just the defining memcpy.
  MemDepResult SourceDep = MD->getPointerDependencyFrom(
      MemoryLocation::getForSource(MDep), false,
      CS.getInstruction()->getIterator(), MDep->getParent());
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    return false;

  Value *TmpCast = MDep->getSource();
  if (MDep->getSource()->getType() != ByValArg->getType())
    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
                              "tmpcast", CS.getInstruction());

  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
                    << "  " << *MDep << "\n"
                    << "  " << *CS.getInstruction() << "\n");

  // Otherwise we're good!  Update the byval argument.
  CS.setArgument(ArgNo, TmpCast);
  ++NumMemCpyInstr;
  return true;
}

/// Executes one iteration of MemCpyOptPass.
bool MemCpyOptPass::iterateOnFunction(Function &F) {
  bool MadeChange = false;

  DominatorTree &DT = LookupDomTree();

  // Walk all instruction in the function.
  for (BasicBlock &BB : F) {
    // Skip unreachable blocks. For example processStore assumes that an
    // instruction in a BB can't be dominated by a later instruction in the
    // same BB (which is a scenario that can happen for an unreachable BB that
    // has itself as a predecessor).
    if (!DT.isReachableFromEntry(&BB))
      continue;

    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
        // Avoid invalidating the iterator.
      Instruction *I = &*BI++;

      bool RepeatInstruction = false;

      if (StoreInst *SI = dyn_cast<StoreInst>(I))
        MadeChange |= processStore(SI, BI);
      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
        RepeatInstruction = processMemSet(M, BI);
      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
        RepeatInstruction = processMemCpy(M);
      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
        RepeatInstruction = processMemMove(M);
      else if (auto CS = CallSite(I)) {
        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
          if (CS.isByValArgument(i))
            MadeChange |= processByValArgument(CS, i);
      }

      // Reprocess the instruction if desired.
      if (RepeatInstruction) {
        if (BI != BB.begin())
          --BI;
        MadeChange = true;
      }
    }
  }

  return MadeChange;
}

PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);

  auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
    return AM.getResult<AAManager>(F);
  };
  auto LookupAssumptionCache = [&]() -> AssumptionCache & {
    return AM.getResult<AssumptionAnalysis>(F);
  };
  auto LookupDomTree = [&]() -> DominatorTree & {
    return AM.getResult<DominatorTreeAnalysis>(F);
  };

  bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
                            LookupAssumptionCache, LookupDomTree);
  if (!MadeChange)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  PA.preserve<MemoryDependenceAnalysis>();
  return PA;
}

bool MemCpyOptPass::runImpl(
    Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
    std::function<AliasAnalysis &()> LookupAliasAnalysis_,
    std::function<AssumptionCache &()> LookupAssumptionCache_,
    std::function<DominatorTree &()> LookupDomTree_) {
  bool MadeChange = false;
  MD = MD_;
  TLI = TLI_;
  LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
  LookupAssumptionCache = std::move(LookupAssumptionCache_);
  LookupDomTree = std::move(LookupDomTree_);

  // If we don't have at least memset and memcpy, there is little point of doing
  // anything here.  These are required by a freestanding implementation, so if
  // even they are disabled, there is no point in trying hard.
  if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
    return false;

  while (true) {
    if (!iterateOnFunction(F))
      break;
    MadeChange = true;
  }

  MD = nullptr;
  return MadeChange;
}

/// This is the main transformation entry point for a function.
bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);

  auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
    return getAnalysis<AAResultsWrapperPass>().getAAResults();
  };
  auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
    return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  };
  auto LookupDomTree = [this]() -> DominatorTree & {
    return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  };

  return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
                      LookupDomTree);
}