reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AArch64RegisterBankInfo.h"
#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>

#define GET_TARGET_REGBANK_IMPL
#include "AArch64GenRegisterBank.inc"

// This file will be TableGen'ed at some point.
#include "AArch64GenRegisterBankInfo.def"

using namespace llvm;

AArch64RegisterBankInfo::AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
    : AArch64GenRegisterBankInfo() {
  static bool AlreadyInit = false;
  // We have only one set of register banks, whatever the subtarget
  // is. Therefore, the initialization of the RegBanks table should be
  // done only once. Indeed the table of all register banks
  // (AArch64::RegBanks) is unique in the compiler. At some point, it
  // will get tablegen'ed and the whole constructor becomes empty.
  if (AlreadyInit)
    return;
  AlreadyInit = true;

  const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
  (void)RBGPR;
  assert(&AArch64::GPRRegBank == &RBGPR &&
         "The order in RegBanks is messed up");

  const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
  (void)RBFPR;
  assert(&AArch64::FPRRegBank == &RBFPR &&
         "The order in RegBanks is messed up");

  const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
  (void)RBCCR;
  assert(&AArch64::CCRegBank == &RBCCR && "The order in RegBanks is messed up");

  // The GPR register bank is fully defined by all the registers in
  // GR64all + its subclasses.
  assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
         "Subclass not added?");
  assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit");

  // The FPR register bank is fully defined by all the registers in
  // GR64all + its subclasses.
  assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
         "Subclass not added?");
  assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
         "Subclass not added?");
  assert(RBFPR.getSize() == 512 &&
         "FPRs should hold up to 512-bit via QQQQ sequence");

  assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
         "Class not added?");
  assert(RBCCR.getSize() == 32 && "CCR should hold up to 32-bit");

  // Check that the TableGen'ed like file is in sync we our expectations.
  // First, the Idx.
  assert(checkPartialMappingIdx(PMI_FirstGPR, PMI_LastGPR,
                                {PMI_GPR32, PMI_GPR64}) &&
         "PartialMappingIdx's are incorrectly ordered");
  assert(checkPartialMappingIdx(PMI_FirstFPR, PMI_LastFPR,
                                {PMI_FPR16, PMI_FPR32, PMI_FPR64, PMI_FPR128,
                                 PMI_FPR256, PMI_FPR512}) &&
         "PartialMappingIdx's are incorrectly ordered");
// Now, the content.
// Check partial mapping.
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)                      \
  do {                                                                         \
    assert(                                                                    \
        checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
        #Idx " is incorrectly initialized");                                   \
  } while (false)

  CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
  CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
  CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
  CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
  CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
  CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
  CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
  CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);

// Check value mapping.
#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset)                              \
  do {                                                                         \
    assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size,            \
                             PartialMappingIdx::PMI_First##RBName, Size,       \
                             Offset) &&                                        \
           #RBName #Size " " #Offset " is incorrectly initialized");           \
  } while (false)

#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)

  CHECK_VALUEMAP(GPR, 32);
  CHECK_VALUEMAP(GPR, 64);
  CHECK_VALUEMAP(FPR, 16);
  CHECK_VALUEMAP(FPR, 32);
  CHECK_VALUEMAP(FPR, 64);
  CHECK_VALUEMAP(FPR, 128);
  CHECK_VALUEMAP(FPR, 256);
  CHECK_VALUEMAP(FPR, 512);

// Check the value mapping for 3-operands instructions where all the operands
// map to the same value mapping.
#define CHECK_VALUEMAP_3OPS(RBName, Size)                                      \
  do {                                                                         \
    CHECK_VALUEMAP_IMPL(RBName, Size, 0);                                      \
    CHECK_VALUEMAP_IMPL(RBName, Size, 1);                                      \
    CHECK_VALUEMAP_IMPL(RBName, Size, 2);                                      \
  } while (false)

  CHECK_VALUEMAP_3OPS(GPR, 32);
  CHECK_VALUEMAP_3OPS(GPR, 64);
  CHECK_VALUEMAP_3OPS(FPR, 32);
  CHECK_VALUEMAP_3OPS(FPR, 64);
  CHECK_VALUEMAP_3OPS(FPR, 128);
  CHECK_VALUEMAP_3OPS(FPR, 256);
  CHECK_VALUEMAP_3OPS(FPR, 512);

#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)                 \
  do {                                                                         \
    unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min;               \
    unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min;               \
    (void)PartialMapDstIdx;                                                    \
    (void)PartialMapSrcIdx;                                                    \
    const ValueMapping *Map = getCopyMapping(                                  \
        AArch64::RBNameDst##RegBankID, AArch64::RBNameSrc##RegBankID, Size);  \
    (void)Map;                                                                 \
    assert(Map[0].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
           Map[0].NumBreakDowns == 1 && #RBNameDst #Size                       \
           " Dst is incorrectly initialized");                                 \
    assert(Map[1].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
           Map[1].NumBreakDowns == 1 && #RBNameSrc #Size                       \
           " Src is incorrectly initialized");                                 \
                                                                               \
  } while (false)

  CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
  CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 32);
  CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
  CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 64);
  CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 32);
  CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 32);
  CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 64);
  CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 64);

#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)                                 \
  do {                                                                         \
    unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min;                    \
    unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min;                    \
    (void)PartialMapDstIdx;                                                    \
    (void)PartialMapSrcIdx;                                                    \
    const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize);               \
    (void)Map;                                                                 \
    assert(Map[0].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
           Map[0].NumBreakDowns == 1 && "FPR" #DstSize                         \
                                        " Dst is incorrectly initialized");    \
    assert(Map[1].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
           Map[1].NumBreakDowns == 1 && "FPR" #SrcSize                         \
                                        " Src is incorrectly initialized");    \
                                                                               \
  } while (false)

  CHECK_VALUEMAP_FPEXT(32, 16);
  CHECK_VALUEMAP_FPEXT(64, 16);
  CHECK_VALUEMAP_FPEXT(64, 32);
  CHECK_VALUEMAP_FPEXT(128, 64);

  assert(verify(TRI) && "Invalid register bank information");
}

unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A,
                                           const RegisterBank &B,
                                           unsigned Size) const {
  // What do we do with different size?
  // copy are same size.
  // Will introduce other hooks for different size:
  // * extract cost.
  // * build_sequence cost.

  // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
  // FIXME: This should be deduced from the scheduling model.
  if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
    // FMOVXDr or FMOVWSr.
    return 5;
  if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
    // FMOVDXr or FMOVSWr.
    return 4;

  return RegisterBankInfo::copyCost(A, B, Size);
}

const RegisterBank &AArch64RegisterBankInfo::getRegBankFromRegClass(
    const TargetRegisterClass &RC) const {
  switch (RC.getID()) {
  case AArch64::FPR8RegClassID:
  case AArch64::FPR16RegClassID:
  case AArch64::FPR32RegClassID:
  case AArch64::FPR64RegClassID:
  case AArch64::FPR128RegClassID:
  case AArch64::FPR128_loRegClassID:
  case AArch64::DDRegClassID:
  case AArch64::DDDRegClassID:
  case AArch64::DDDDRegClassID:
  case AArch64::QQRegClassID:
  case AArch64::QQQRegClassID:
  case AArch64::QQQQRegClassID:
    return getRegBank(AArch64::FPRRegBankID);
  case AArch64::GPR32commonRegClassID:
  case AArch64::GPR32RegClassID:
  case AArch64::GPR32spRegClassID:
  case AArch64::GPR32sponlyRegClassID:
  case AArch64::GPR32argRegClassID:
  case AArch64::GPR32allRegClassID:
  case AArch64::GPR64commonRegClassID:
  case AArch64::GPR64RegClassID:
  case AArch64::GPR64spRegClassID:
  case AArch64::GPR64sponlyRegClassID:
  case AArch64::GPR64argRegClassID:
  case AArch64::GPR64allRegClassID:
  case AArch64::GPR64noipRegClassID:
  case AArch64::GPR64common_and_GPR64noipRegClassID:
  case AArch64::GPR64noip_and_tcGPR64RegClassID:
  case AArch64::tcGPR64RegClassID:
  case AArch64::WSeqPairsClassRegClassID:
  case AArch64::XSeqPairsClassRegClassID:
    return getRegBank(AArch64::GPRRegBankID);
  case AArch64::CCRRegClassID:
    return getRegBank(AArch64::CCRegBankID);
  default:
    llvm_unreachable("Register class not supported");
  }
}

RegisterBankInfo::InstructionMappings
AArch64RegisterBankInfo::getInstrAlternativeMappings(
    const MachineInstr &MI) const {
  const MachineFunction &MF = *MI.getParent()->getParent();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  switch (MI.getOpcode()) {
  case TargetOpcode::G_OR: {
    // 32 and 64-bit or can be mapped on either FPR or
    // GPR for the same cost.
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 3)
      break;
    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
        /*NumOperands*/ 3);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
        /*NumOperands*/ 3);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    return AltMappings;
  }
  case TargetOpcode::G_BITCAST: {
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 2)
      break;

    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1,
        getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1,
        getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
        /*ID*/ 3,
        /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
        getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
        /*ID*/ 3,
        /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
        getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
        /*NumOperands*/ 2);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    AltMappings.push_back(&GPRToFPRMapping);
    AltMappings.push_back(&FPRToGPRMapping);
    return AltMappings;
  }
  case TargetOpcode::G_LOAD: {
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 2)
      break;

    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1,
        getOperandsMapping({getValueMapping(PMI_FirstGPR, Size),
                            // Addresses are GPR 64-bit.
                            getValueMapping(PMI_FirstGPR, 64)}),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1,
        getOperandsMapping({getValueMapping(PMI_FirstFPR, Size),
                            // Addresses are GPR 64-bit.
                            getValueMapping(PMI_FirstGPR, 64)}),
        /*NumOperands*/ 2);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    return AltMappings;
  }
  default:
    break;
  }
  return RegisterBankInfo::getInstrAlternativeMappings(MI);
}

void AArch64RegisterBankInfo::applyMappingImpl(
    const OperandsMapper &OpdMapper) const {
  switch (OpdMapper.getMI().getOpcode()) {
  case TargetOpcode::G_OR:
  case TargetOpcode::G_BITCAST:
  case TargetOpcode::G_LOAD:
    // Those ID must match getInstrAlternativeMappings.
    assert((OpdMapper.getInstrMapping().getID() >= 1 &&
            OpdMapper.getInstrMapping().getID() <= 4) &&
           "Don't know how to handle that ID");
    return applyDefaultMapping(OpdMapper);
  default:
    llvm_unreachable("Don't know how to handle that operation");
  }
}

/// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode,
/// having only floating-point operands.
static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) {
  switch (Opc) {
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FMA:
  case TargetOpcode::G_FDIV:
  case TargetOpcode::G_FCONSTANT:
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC:
  case TargetOpcode::G_FCEIL:
  case TargetOpcode::G_FFLOOR:
  case TargetOpcode::G_FNEARBYINT:
  case TargetOpcode::G_FNEG:
  case TargetOpcode::G_FCOS:
  case TargetOpcode::G_FSIN:
  case TargetOpcode::G_FLOG10:
  case TargetOpcode::G_FLOG:
  case TargetOpcode::G_FLOG2:
  case TargetOpcode::G_FSQRT:
  case TargetOpcode::G_FABS:
  case TargetOpcode::G_FEXP:
  case TargetOpcode::G_FRINT:
  case TargetOpcode::G_INTRINSIC_TRUNC:
  case TargetOpcode::G_INTRINSIC_ROUND:
    return true;
  }
  return false;
}

const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
    const MachineInstr &MI) const {
  const unsigned Opc = MI.getOpcode();
  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  unsigned NumOperands = MI.getNumOperands();
  assert(NumOperands <= 3 &&
         "This code is for instructions with 3 or less operands");

  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  unsigned Size = Ty.getSizeInBits();
  bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc);

  PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR;

#ifndef NDEBUG
  // Make sure all the operands are using similar size and type.
  // Should probably be checked by the machine verifier.
  // This code won't catch cases where the number of lanes is
  // different between the operands.
  // If we want to go to that level of details, it is probably
  // best to check that the types are the same, period.
  // Currently, we just check that the register banks are the same
  // for each types.
  for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
    LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
    assert(
        AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(
            RBIdx, OpTy.getSizeInBits()) ==
            AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) &&
        "Operand has incompatible size");
    bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
    (void)OpIsFPR;
    assert(IsFPR == OpIsFPR && "Operand has incompatible type");
  }
#endif // End NDEBUG.

  return getInstructionMapping(DefaultMappingID, 1,
                               getValueMapping(RBIdx, Size), NumOperands);
}

bool AArch64RegisterBankInfo::hasFPConstraints(
    const MachineInstr &MI, const MachineRegisterInfo &MRI,
    const TargetRegisterInfo &TRI) const {
  unsigned Op = MI.getOpcode();

  // Do we have an explicit floating point instruction?
  if (isPreISelGenericFloatingPointOpcode(Op))
    return true;

  // No. Check if we have a copy-like instruction. If we do, then we could
  // still be fed by floating point instructions.
  if (Op != TargetOpcode::COPY && !MI.isPHI())
    return false;

  // MI is copy-like. Return true if it outputs an FPR.
  return getRegBank(MI.getOperand(0).getReg(), MRI, TRI) ==
         &AArch64::FPRRegBank;
}

bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
                                         const MachineRegisterInfo &MRI,
                                         const TargetRegisterInfo &TRI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI:
  case TargetOpcode::G_FCMP:
    return true;
  default:
    break;
  }
  return hasFPConstraints(MI, MRI, TRI);
}

bool AArch64RegisterBankInfo::onlyDefinesFP(
    const MachineInstr &MI, const MachineRegisterInfo &MRI,
    const TargetRegisterInfo &TRI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return true;
  default:
    break;
  }
  return hasFPConstraints(MI, MRI, TRI);
}

const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
  const unsigned Opc = MI.getOpcode();

  // Try the default logic for non-generic instructions that are either copies
  // or already have some operands assigned to banks.
  if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
      Opc == TargetOpcode::G_PHI) {
    const RegisterBankInfo::InstructionMapping &Mapping =
        getInstrMappingImpl(MI);
    if (Mapping.isValid())
      return Mapping;
  }

  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();

  switch (Opc) {
    // G_{F|S|U}REM are not listed because they are not legal.
    // Arithmetic ops.
  case TargetOpcode::G_ADD:
  case TargetOpcode::G_SUB:
  case TargetOpcode::G_GEP:
  case TargetOpcode::G_MUL:
  case TargetOpcode::G_SDIV:
  case TargetOpcode::G_UDIV:
    // Bitwise ops.
  case TargetOpcode::G_AND:
  case TargetOpcode::G_OR:
  case TargetOpcode::G_XOR:
    // Floating point ops.
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FDIV:
    return getSameKindOfOperandsMapping(MI);
  case TargetOpcode::G_FPEXT: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    return getInstructionMapping(
        DefaultMappingID, /*Cost*/ 1,
        getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
        /*NumOperands*/ 2);
  }
    // Shifts.
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_ASHR: {
    LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
      return getInstructionMapping(DefaultMappingID, 1,
                                   &ValMappings[Shift64Imm], 3);
    return getSameKindOfOperandsMapping(MI);
  }
  case TargetOpcode::COPY: {
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = MI.getOperand(1).getReg();
    // Check if one of the register is not a generic register.
    if ((Register::isPhysicalRegister(DstReg) ||
         !MRI.getType(DstReg).isValid()) ||
        (Register::isPhysicalRegister(SrcReg) ||
         !MRI.getType(SrcReg).isValid())) {
      const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
      const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
      if (!DstRB)
        DstRB = SrcRB;
      else if (!SrcRB)
        SrcRB = DstRB;
      // If both RB are null that means both registers are generic.
      // We shouldn't be here.
      assert(DstRB && SrcRB && "Both RegBank were nullptr");
      unsigned Size = getSizeInBits(DstReg, MRI, TRI);
      return getInstructionMapping(
          DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
          getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
          // We only care about the mapping of the destination.
          /*NumOperands*/ 1);
    }
    // Both registers are generic, use G_BITCAST.
    LLVM_FALLTHROUGH;
  }
  case TargetOpcode::G_BITCAST: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    unsigned Size = DstTy.getSizeInBits();
    bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
    bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
    const RegisterBank &DstRB =
        DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
    const RegisterBank &SrcRB =
        SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
    return getInstructionMapping(
        DefaultMappingID, copyCost(DstRB, SrcRB, Size),
        getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
        // We only care about the mapping of the destination for COPY.
        /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
  }
  default:
    break;
  }

  unsigned NumOperands = MI.getNumOperands();

  // Track the size and bank of each register.  We don't do partial mappings.
  SmallVector<unsigned, 4> OpSize(NumOperands);
  SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    auto &MO = MI.getOperand(Idx);
    if (!MO.isReg() || !MO.getReg())
      continue;

    LLT Ty = MRI.getType(MO.getReg());
    OpSize[Idx] = Ty.getSizeInBits();

    // As a top-level guess, vectors go in FPRs, scalars and pointers in GPRs.
    // For floating-point instructions, scalars go in FPRs.
    if (Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc) ||
        Ty.getSizeInBits() > 64)
      OpRegBankIdx[Idx] = PMI_FirstFPR;
    else
      OpRegBankIdx[Idx] = PMI_FirstGPR;
  }

  unsigned Cost = 1;
  // Some of the floating-point instructions have mixed GPR and FPR operands:
  // fine-tune the computed mapping.
  switch (Opc) {
  case TargetOpcode::G_TRUNC: {
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
    break;
  }
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
    if (MRI.getType(MI.getOperand(0).getReg()).isVector())
      break;
    OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
    break;
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI:
    if (MRI.getType(MI.getOperand(0).getReg()).isVector())
      break;
    OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
    break;
  case TargetOpcode::G_FCMP:
    OpRegBankIdx = {PMI_FirstGPR,
                    /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
    break;
  case TargetOpcode::G_BITCAST:
    // This is going to be a cross register bank copy and this is expensive.
    if (OpRegBankIdx[0] != OpRegBankIdx[1])
      Cost = copyCost(
          *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
          *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
          OpSize[0]);
    break;
  case TargetOpcode::G_LOAD:
    // Loading in vector unit is slightly more expensive.
    // This is actually only true for the LD1R and co instructions,
    // but anyway for the fast mode this number does not matter and
    // for the greedy mode the cost of the cross bank copy will
    // offset this number.
    // FIXME: Should be derived from the scheduling model.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      Cost = 2;
    else
      // Check if that load feeds fp instructions.
      // In that case, we want the default mapping to be on FPR
      // instead of blind map every scalar to GPR.
      for (const MachineInstr &UseMI :
           MRI.use_instructions(MI.getOperand(0).getReg())) {
        // If we have at least one direct use in a FP instruction,
        // assume this was a floating point load in the IR.
        // If it was not, we would have had a bitcast before
        // reaching that instruction.
        if (onlyUsesFP(UseMI, MRI, TRI)) {
          OpRegBankIdx[0] = PMI_FirstFPR;
          break;
        }
      }
    break;
  case TargetOpcode::G_STORE:
    // Check if that store is fed by fp instructions.
    if (OpRegBankIdx[0] == PMI_FirstGPR) {
      Register VReg = MI.getOperand(0).getReg();
      if (!VReg)
        break;
      MachineInstr *DefMI = MRI.getVRegDef(VReg);
      if (onlyDefinesFP(*DefMI, MRI, TRI))
        OpRegBankIdx[0] = PMI_FirstFPR;
      break;
    }
    break;
  case TargetOpcode::G_SELECT: {
    // If the destination is FPR, preserve that.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      break;

    // If we're taking in vectors, we have no choice but to put everything on
    // FPRs, except for the condition. The condition must always be on a GPR.
    LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
    if (SrcTy.isVector()) {
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};
      break;
    }

    // Try to minimize the number of copies. If we have more floating point
    // constrained values than not, then we'll put everything on FPR. Otherwise,
    // everything has to be on GPR.
    unsigned NumFP = 0;

    // Check if the uses of the result always produce floating point values.
    //
    // For example:
    //
    // %z = G_SELECT %cond %x %y
    // fpr = G_FOO %z ...
    if (any_of(
            MRI.use_instructions(MI.getOperand(0).getReg()),
            [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
      ++NumFP;

    // Check if the defs of the source values always produce floating point
    // values.
    //
    // For example:
    //
    // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
    // %z = G_SELECT %cond %x %y
    //
    // Also check whether or not the sources have already been decided to be
    // FPR. Keep track of this.
    //
    // This doesn't check the condition, since it's just whatever is in NZCV.
    // This isn't passed explicitly in a register to fcsel/csel.
    for (unsigned Idx = 2; Idx < 4; ++Idx) {
      Register VReg = MI.getOperand(Idx).getReg();
      MachineInstr *DefMI = MRI.getVRegDef(VReg);
      if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
          onlyDefinesFP(*DefMI, MRI, TRI))
        ++NumFP;
    }

    // If we have more FP constraints than not, then move everything over to
    // FPR.
    if (NumFP >= 2)
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};

    break;
  }
  case TargetOpcode::G_UNMERGE_VALUES: {
    // If the first operand belongs to a FPR register bank, then make sure that
    // we preserve that.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      break;

    LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
    // UNMERGE into scalars from a vector should always use FPR.
    // Likewise if any of the uses are FP instructions.
    if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
        any_of(MRI.use_instructions(MI.getOperand(0).getReg()),
               [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
      // Set the register bank of every operand to FPR.
      for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
           Idx < NumOperands; ++Idx)
        OpRegBankIdx[Idx] = PMI_FirstFPR;
    }
    break;
  }
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    // Destination and source need to be FPRs.
    OpRegBankIdx[0] = PMI_FirstFPR;
    OpRegBankIdx[1] = PMI_FirstFPR;

    // Index needs to be a GPR.
    OpRegBankIdx[2] = PMI_FirstGPR;
    break;
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    OpRegBankIdx[0] = PMI_FirstFPR;
    OpRegBankIdx[1] = PMI_FirstFPR;

    // The element may be either a GPR or FPR. Preserve that behaviour.
    if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
      OpRegBankIdx[2] = PMI_FirstFPR;
    else
      OpRegBankIdx[2] = PMI_FirstGPR;

    // Index needs to be a GPR.
    OpRegBankIdx[3] = PMI_FirstGPR;
    break;
  case TargetOpcode::G_EXTRACT: {
    // For s128 sources we have to use fpr.
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (SrcTy.getSizeInBits() == 128) {
      OpRegBankIdx[0] = PMI_FirstFPR;
      OpRegBankIdx[1] = PMI_FirstFPR;
    }
    break;
  }
  case TargetOpcode::G_BUILD_VECTOR:
    // If the first source operand belongs to a FPR register bank, then make
    // sure that we preserve that.
    if (OpRegBankIdx[1] != PMI_FirstGPR)
      break;
    Register VReg = MI.getOperand(1).getReg();
    if (!VReg)
      break;

    // Get the instruction that defined the source operand reg, and check if
    // it's a floating point operation. Or, if it's a type like s16 which
    // doesn't have a exact size gpr register class.
    MachineInstr *DefMI = MRI.getVRegDef(VReg);
    unsigned DefOpc = DefMI->getOpcode();
    const LLT SrcTy = MRI.getType(VReg);
    if (isPreISelGenericFloatingPointOpcode(DefOpc) ||
        SrcTy.getSizeInBits() < 32) {
      // Have a floating point op.
      // Make sure every operand gets mapped to a FPR register class.
      unsigned NumOperands = MI.getNumOperands();
      for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
        OpRegBankIdx[Idx] = PMI_FirstFPR;
    }
    break;
  }

  // Finally construct the computed mapping.
  SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
      auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
      if (!Mapping->isValid())
        return getInvalidInstructionMapping();

      OpdsMapping[Idx] = Mapping;
    }
  }

  return getInstructionMapping(DefaultMappingID, Cost,
                               getOperandsMapping(OpdsMapping), NumOperands);
}