1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
| //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");
static RegisterRegAlloc
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
namespace {
class RegAllocFast : public MachineFunctionPass {
public:
static char ID;
RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
private:
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
RegisterClassInfo RegClassInfo;
/// Basic block currently being allocated.
MachineBasicBlock *MBB;
/// Maps virtual regs to the frame index where these values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
/// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
unsigned VirtReg; ///< Virtual register number.
MCPhysReg PhysReg = 0; ///< Currently held here.
unsigned short LastOpNum = 0; ///< OpNum on LastUse.
bool Dirty = false; ///< Register needs spill.
explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
unsigned getSparseSetIndex() const {
return Register::virtReg2Index(VirtReg);
}
};
using LiveRegMap = SparseSet<LiveReg>;
/// This map contains entries for each virtual register that is currently
/// available in a physical register.
LiveRegMap LiveVirtRegs;
DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
/// Has a bit set for every virtual register for which it was determined
/// that it is alive across blocks.
BitVector MayLiveAcrossBlocks;
/// State of a physical register.
enum RegState {
/// A disabled register is not available for allocation, but an alias may
/// be in use. A register can only be moved out of the disabled state if
/// all aliases are disabled.
regDisabled,
/// A free register is not currently in use and can be allocated
/// immediately without checking aliases.
regFree,
/// A reserved register has been assigned explicitly (e.g., setting up a
/// call parameter), and it remains reserved until it is used.
regReserved
/// A register state may also be a virtual register number, indication
/// that the physical register is currently allocated to a virtual
/// register. In that case, LiveVirtRegs contains the inverse mapping.
};
/// Maps each physical register to a RegState enum or a virtual register.
std::vector<unsigned> PhysRegState;
SmallVector<unsigned, 16> VirtDead;
SmallVector<MachineInstr *, 32> Coalesced;
using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
/// Set of register units that are used in the current instruction, and so
/// cannot be allocated.
RegUnitSet UsedInInstr;
void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
/// Mark a physreg as used in this instruction.
void markRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
UsedInInstr.insert(*Units);
}
/// Check if a physreg or any of its aliases are used in this instruction.
bool isRegUsedInInstr(MCPhysReg PhysReg) const {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
if (UsedInInstr.count(*Units))
return true;
return false;
}
enum : unsigned {
spillClean = 50,
spillDirty = 100,
spillPrefBonus = 20,
spillImpossible = ~0u
};
public:
StringRef getPassName() const override { return "Fast Register Allocator"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
MachineFunctionProperties getSetProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
bool runOnMachineFunction(MachineFunction &MF) override;
void allocateBasicBlock(MachineBasicBlock &MBB);
void allocateInstruction(MachineInstr &MI);
void handleDebugValue(MachineInstr &MI);
void handleThroughOperands(MachineInstr &MI,
SmallVectorImpl<unsigned> &VirtDead);
bool isLastUseOfLocalReg(const MachineOperand &MO) const;
void addKillFlag(const LiveReg &LRI);
void killVirtReg(LiveReg &LR);
void killVirtReg(unsigned VirtReg);
void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
void usePhysReg(MachineOperand &MO);
void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
RegState NewState);
unsigned calcSpillCost(MCPhysReg PhysReg) const;
void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
}
LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
}
void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
void allocVirtRegUndef(MachineOperand &MO);
MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
unsigned Hint);
LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
unsigned Hint);
void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
unsigned traceCopies(unsigned VirtReg) const;
unsigned traceCopyChain(unsigned Reg) const;
int getStackSpaceFor(unsigned VirtReg);
void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
MCPhysReg AssignedReg, bool Kill);
void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
MCPhysReg PhysReg);
bool mayLiveOut(unsigned VirtReg);
bool mayLiveIn(unsigned VirtReg);
void dumpState();
};
} // end anonymous namespace
char RegAllocFast::ID = 0;
INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
false)
void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
PhysRegState[PhysReg] = NewState;
}
/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
// Already has space allocated?
if (SS != -1)
return SS;
// Allocate a new stack object for this spill location...
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
unsigned Size = TRI->getSpillSize(RC);
unsigned Align = TRI->getSpillAlignment(RC);
int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
// Cannot be live-out if there are no successors.
return !MBB->succ_empty();
}
// If this block loops back to itself, it would be necessary to check whether
// the use comes after the def.
if (MBB->isSuccessor(MBB)) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
// See if the first \p Limit uses of the register are all in the current
// block.
static const unsigned Limit = 8;
unsigned C = 0;
for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
if (UseInst.getParent() != MBB || ++C >= Limit) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
// Cannot be live-out if there are no successors.
return !MBB->succ_empty();
}
}
return false;
}
/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFast::mayLiveIn(unsigned VirtReg) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
return !MBB->pred_empty();
// See if the first \p Limit def of the register are all in the current block.
static const unsigned Limit = 8;
unsigned C = 0;
for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
if (DefInst.getParent() != MBB || ++C >= Limit) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return !MBB->pred_empty();
}
}
return false;
}
/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
MCPhysReg AssignedReg, bool Kill) {
LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
<< " in " << printReg(AssignedReg, TRI));
int FI = getStackSpaceFor(VirtReg);
LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
++NumStores;
// If this register is used by DBG_VALUE then insert new DBG_VALUE to
// identify spilled location as the place to find corresponding variable's
// value.
SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
for (MachineInstr *DBG : LRIDbgValues) {
MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
assert(NewDV->getParent() == MBB && "dangling parent pointer");
(void)NewDV;
LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
}
// Now this register is spilled there is should not be any DBG_VALUE
// pointing to this register because they are all pointing to spilled value
// now.
LRIDbgValues.clear();
}
/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
MCPhysReg PhysReg) {
LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
<< printReg(PhysReg, TRI) << '\n');
int FI = getStackSpaceFor(VirtReg);
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
++NumLoads;
}
/// Return true if MO is the only remaining reference to its virtual register,
/// and it is guaranteed to be a block-local register.
bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
// If the register has ever been spilled or reloaded, we conservatively assume
// it is a global register used in multiple blocks.
if (StackSlotForVirtReg[MO.getReg()] != -1)
return false;
// Check that the use/def chain has exactly one operand - MO.
MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
if (&*I != &MO)
return false;
return ++I == MRI->reg_nodbg_end();
}
/// Set kill flags on last use of a virtual register.
void RegAllocFast::addKillFlag(const LiveReg &LR) {
if (!LR.LastUse) return;
MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
if (MO.getReg() == LR.PhysReg)
MO.setIsKill();
// else, don't do anything we are problably redefining a
// subreg of this register and given we don't track which
// lanes are actually dead, we cannot insert a kill flag here.
// Otherwise we may end up in a situation like this:
// ... = (MO) physreg:sub1, implicit killed physreg
// ... <== Here we would allow later pass to reuse physreg:sub1
// which is potentially wrong.
// LR:sub0 = ...
// ... = LR.sub1 <== This is going to use physreg:sub1
}
}
/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(LiveReg &LR) {
addKillFlag(LR);
assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
"Broken RegState mapping");
setPhysRegState(LR.PhysReg, regFree);
LR.PhysReg = 0;
}
/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(unsigned VirtReg) {
assert(Register::isVirtualRegister(VirtReg) &&
"killVirtReg needs a virtual register");
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
killVirtReg(*LRI);
}
/// This method spills the value specified by VirtReg into the corresponding
/// stack slot if needed.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
unsigned VirtReg) {
assert(Register::isVirtualRegister(VirtReg) &&
"Spilling a physical register is illegal!");
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
"Spilling unmapped virtual register");
spillVirtReg(MI, *LRI);
}
/// Do the actual work of spilling.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
if (LR.Dirty) {
// If this physreg is used by the instruction, we want to kill it on the
// instruction, not on the spill.
bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
LR.Dirty = false;
spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
if (SpillKill)
LR.LastUse = nullptr; // Don't kill register again
}
killVirtReg(LR);
}
/// Spill all dirty virtregs without killing them.
void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
if (LiveVirtRegs.empty())
return;
// The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
// of spilling here is deterministic, if arbitrary.
for (LiveReg &LR : LiveVirtRegs) {
if (!LR.PhysReg)
continue;
if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
continue;
spillVirtReg(MI, LR);
}
LiveVirtRegs.clear();
}
/// Handle the direct use of a physical register. Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
void RegAllocFast::usePhysReg(MachineOperand &MO) {
// Ignore undef uses.
if (MO.isUndef())
return;
Register PhysReg = MO.getReg();
assert(Register::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand");
markRegUsedInInstr(PhysReg);
switch (PhysRegState[PhysReg]) {
case regDisabled:
break;
case regReserved:
PhysRegState[PhysReg] = regFree;
LLVM_FALLTHROUGH;
case regFree:
MO.setIsKill();
return;
default:
// The physreg was allocated to a virtual register. That means the value we
// wanted has been clobbered.
llvm_unreachable("Instruction uses an allocated register");
}
// Maybe a superregister is reserved?
for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
MCPhysReg Alias = *AI;
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
// Either PhysReg is a subregister of Alias and we mark the
// whole register as free, or PhysReg is the superregister of
// Alias and we mark all the aliases as disabled before freeing
// PhysReg.
// In the latter case, since PhysReg was disabled, this means that
// its value is defined only by physical sub-registers. This check
// is performed by the assert of the default case in this loop.
// Note: The value of the superregister may only be partial
// defined, that is why regDisabled is a valid state for aliases.
assert((TRI->isSuperRegister(PhysReg, Alias) ||
TRI->isSuperRegister(Alias, PhysReg)) &&
"Instruction is not using a subregister of a reserved register");
LLVM_FALLTHROUGH;
case regFree:
if (TRI->isSuperRegister(PhysReg, Alias)) {
// Leave the superregister in the working set.
setPhysRegState(Alias, regFree);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
}
// Some other alias was in the working set - clear it.
setPhysRegState(Alias, regDisabled);
break;
default:
llvm_unreachable("Instruction uses an alias of an allocated register");
}
}
// All aliases are disabled, bring register into working set.
setPhysRegState(PhysReg, regFree);
MO.setIsKill();
}
/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
MCPhysReg PhysReg, RegState NewState) {
markRegUsedInInstr(PhysReg);
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg);
LLVM_FALLTHROUGH;
case regFree:
case regReserved:
setPhysRegState(PhysReg, NewState);
return;
}
// This is a disabled register, disable all aliases.
setPhysRegState(PhysReg, NewState);
for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
MCPhysReg Alias = *AI;
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg);
LLVM_FALLTHROUGH;
case regFree:
case regReserved:
setPhysRegState(Alias, regDisabled);
if (TRI->isSuperRegister(PhysReg, Alias))
return;
break;
}
}
}
/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
if (isRegUsedInInstr(PhysReg)) {
LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
<< " is already used in instr.\n");
return spillImpossible;
}
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
case regFree:
return 0;
case regReserved:
LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
<< printReg(PhysReg, TRI) << " is reserved already.\n");
return spillImpossible;
default: {
LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
"Missing VirtReg entry");
return LRI->Dirty ? spillDirty : spillClean;
}
}
// This is a disabled register, add up cost of aliases.
LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
unsigned Cost = 0;
for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
MCPhysReg Alias = *AI;
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
break;
case regFree:
++Cost;
break;
case regReserved:
return spillImpossible;
default: {
LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
"Missing VirtReg entry");
Cost += LRI->Dirty ? spillDirty : spillClean;
break;
}
}
}
return Cost;
}
/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now. The physical register must not be used
/// for anything else when this is called.
void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
unsigned VirtReg = LR.VirtReg;
LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
<< printReg(PhysReg, TRI) << '\n');
assert(LR.PhysReg == 0 && "Already assigned a physreg");
assert(PhysReg != 0 && "Trying to assign no register");
LR.PhysReg = PhysReg;
setPhysRegState(PhysReg, VirtReg);
}
static bool isCoalescable(const MachineInstr &MI) {
return MI.isFullCopy();
}
unsigned RegAllocFast::traceCopyChain(unsigned Reg) const {
static const unsigned ChainLengthLimit = 3;
unsigned C = 0;
do {
if (Register::isPhysicalRegister(Reg))
return Reg;
assert(Register::isVirtualRegister(Reg));
MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
if (!VRegDef || !isCoalescable(*VRegDef))
return 0;
Reg = VRegDef->getOperand(1).getReg();
} while (++C <= ChainLengthLimit);
return 0;
}
/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
unsigned RegAllocFast::traceCopies(unsigned VirtReg) const {
static const unsigned DefLimit = 3;
unsigned C = 0;
for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
if (isCoalescable(MI)) {
Register Reg = MI.getOperand(1).getReg();
Reg = traceCopyChain(Reg);
if (Reg != 0)
return Reg;
}
if (++C >= DefLimit)
break;
}
return 0;
}
/// Allocates a physical register for VirtReg.
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) {
const unsigned VirtReg = LR.VirtReg;
assert(Register::isVirtualRegister(VirtReg) &&
"Can only allocate virtual registers");
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
<< " in class " << TRI->getRegClassName(&RC)
<< " with hint " << printReg(Hint0, TRI) << '\n');
// Take hint when possible.
if (Register::isPhysicalRegister(Hint0) && MRI->isAllocatable(Hint0) &&
RC.contains(Hint0)) {
// Ignore the hint if we would have to spill a dirty register.
unsigned Cost = calcSpillCost(Hint0);
if (Cost < spillDirty) {
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
<< '\n');
if (Cost)
definePhysReg(MI, Hint0, regFree);
assignVirtToPhysReg(LR, Hint0);
return;
} else {
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
<< "occupied\n");
}
} else {
Hint0 = 0;
}
// Try other hint.
unsigned Hint1 = traceCopies(VirtReg);
if (Register::isPhysicalRegister(Hint1) && MRI->isAllocatable(Hint1) &&
RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) {
// Ignore the hint if we would have to spill a dirty register.
unsigned Cost = calcSpillCost(Hint1);
if (Cost < spillDirty) {
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
<< '\n');
if (Cost)
definePhysReg(MI, Hint1, regFree);
assignVirtToPhysReg(LR, Hint1);
return;
} else {
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
<< "occupied\n");
}
} else {
Hint1 = 0;
}
MCPhysReg BestReg = 0;
unsigned BestCost = spillImpossible;
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
for (MCPhysReg PhysReg : AllocationOrder) {
LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
unsigned Cost = calcSpillCost(PhysReg);
LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
// Immediate take a register with cost 0.
if (Cost == 0) {
assignVirtToPhysReg(LR, PhysReg);
return;
}
if (PhysReg == Hint1 || PhysReg == Hint0)
Cost -= spillPrefBonus;
if (Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
}
}
if (!BestReg) {
// Nothing we can do: Report an error and keep going with an invalid
// allocation.
if (MI.isInlineAsm())
MI.emitError("inline assembly requires more registers than available");
else
MI.emitError("ran out of registers during register allocation");
definePhysReg(MI, *AllocationOrder.begin(), regFree);
assignVirtToPhysReg(LR, *AllocationOrder.begin());
return;
}
definePhysReg(MI, BestReg, regFree);
assignVirtToPhysReg(LR, BestReg);
}
void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
assert(MO.isUndef() && "expected undef use");
Register VirtReg = MO.getReg();
assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
MCPhysReg PhysReg;
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
PhysReg = LRI->PhysReg;
} else {
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
assert(!AllocationOrder.empty() && "Allocation order must not be empty");
PhysReg = AllocationOrder[0];
}
unsigned SubRegIdx = MO.getSubReg();
if (SubRegIdx != 0) {
PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
MO.setSubReg(0);
}
MO.setReg(PhysReg);
MO.setIsRenamable(true);
}
/// Allocates a register for VirtReg and mark it as dirty.
MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
LiveRegMap::iterator LRI;
bool New;
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
if (!LRI->PhysReg) {
// If there is no hint, peek at the only use of this register.
if ((!Hint || !Register::isPhysicalRegister(Hint)) &&
MRI->hasOneNonDBGUse(VirtReg)) {
const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
// It's a copy, use the destination register as a hint.
if (UseMI.isCopyLike())
Hint = UseMI.getOperand(0).getReg();
}
allocVirtReg(MI, *LRI, Hint);
} else if (LRI->LastUse) {
// Redefining a live register - kill at the last use, unless it is this
// instruction defining VirtReg multiple times.
if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
addKillFlag(*LRI);
}
assert(LRI->PhysReg && "Register not assigned");
LRI->LastUse = &MI;
LRI->LastOpNum = OpNum;
LRI->Dirty = true;
markRegUsedInInstr(LRI->PhysReg);
return LRI->PhysReg;
}
/// Make sure VirtReg is available in a physreg and return it.
RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
unsigned OpNum,
unsigned VirtReg,
unsigned Hint) {
assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
LiveRegMap::iterator LRI;
bool New;
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
MachineOperand &MO = MI.getOperand(OpNum);
if (!LRI->PhysReg) {
allocVirtReg(MI, *LRI, Hint);
reload(MI, VirtReg, LRI->PhysReg);
} else if (LRI->Dirty) {
if (isLastUseOfLocalReg(MO)) {
LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
if (MO.isUse())
MO.setIsKill();
else
MO.setIsDead();
} else if (MO.isKill()) {
LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
MO.setIsKill(false);
} else if (MO.isDead()) {
LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
MO.setIsDead(false);
}
} else if (MO.isKill()) {
// We must remove kill flags from uses of reloaded registers because the
// register would be killed immediately, and there might be a second use:
// %foo = OR killed %x, %x
// This would cause a second reload of %x into a different register.
LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
MO.setIsKill(false);
} else if (MO.isDead()) {
LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
MO.setIsDead(false);
}
assert(LRI->PhysReg && "Register not assigned");
LRI->LastUse = &MI;
LRI->LastOpNum = OpNum;
markRegUsedInInstr(LRI->PhysReg);
return *LRI;
}
/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
/// may invalidate any operand pointers. Return true if the operand kills its
/// register.
bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
MCPhysReg PhysReg) {
bool Dead = MO.isDead();
if (!MO.getSubReg()) {
MO.setReg(PhysReg);
MO.setIsRenamable(true);
return MO.isKill() || Dead;
}
// Handle subregister index.
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
MO.setIsRenamable(true);
MO.setSubReg(0);
// A kill flag implies killing the full register. Add corresponding super
// register kill.
if (MO.isKill()) {
MI.addRegisterKilled(PhysReg, TRI, true);
return true;
}
// A <def,read-undef> of a sub-register requires an implicit def of the full
// register.
if (MO.isDef() && MO.isUndef())
MI.addRegisterDefined(PhysReg, TRI);
return Dead;
}
// Handles special instruction operand like early clobbers and tied ops when
// there are additional physreg defines.
void RegAllocFast::handleThroughOperands(MachineInstr &MI,
SmallVectorImpl<unsigned> &VirtDead) {
LLVM_DEBUG(dbgs() << "Scanning for through registers:");
SmallSet<unsigned, 8> ThroughRegs;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
continue;
if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
(MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
if (ThroughRegs.insert(Reg).second)
LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
}
}
// If any physreg defines collide with preallocated through registers,
// we must spill and reallocate.
LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef()) continue;
Register Reg = MO.getReg();
if (!Reg || !Register::isPhysicalRegister(Reg))
continue;
markRegUsedInInstr(Reg);
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
if (ThroughRegs.count(PhysRegState[*AI]))
definePhysReg(MI, *AI, regFree);
}
}
SmallVector<unsigned, 8> PartialDefs;
LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
continue;
if (MO.isUse()) {
if (!MO.isTied()) continue;
LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
<< ") is tied to operand " << MI.findTiedOperandIdx(I)
<< ".\n");
LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
MCPhysReg PhysReg = LR.PhysReg;
setPhysReg(MI, MO, PhysReg);
// Note: we don't update the def operand yet. That would cause the normal
// def-scan to attempt spilling.
} else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
// Reload the register, but don't assign to the operand just yet.
// That would confuse the later phys-def processing pass.
LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
PartialDefs.push_back(LR.PhysReg);
}
}
LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
continue;
if (!MO.isEarlyClobber())
continue;
// Note: defineVirtReg may invalidate MO.
MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
if (setPhysReg(MI, MI.getOperand(I), PhysReg))
VirtDead.push_back(Reg);
}
// Restore UsedInInstr to a state usable for allocating normal virtual uses.
UsedInInstr.clear();
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
Register Reg = MO.getReg();
if (!Reg || !Register::isPhysicalRegister(Reg))
continue;
LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
<< " as used in instr\n");
markRegUsedInInstr(Reg);
}
// Also mark PartialDefs as used to avoid reallocation.
for (unsigned PartialDef : PartialDefs)
markRegUsedInInstr(PartialDef);
}
#ifndef NDEBUG
void RegAllocFast::dumpState() {
for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
if (PhysRegState[Reg] == regDisabled) continue;
dbgs() << " " << printReg(Reg, TRI);
switch(PhysRegState[Reg]) {
case regFree:
break;
case regReserved:
dbgs() << "*";
break;
default: {
dbgs() << '=' << printReg(PhysRegState[Reg]);
LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
"Missing VirtReg entry");
if (LRI->Dirty)
dbgs() << "*";
assert(LRI->PhysReg == Reg && "Bad inverse map");
break;
}
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i) {
if (!i->PhysReg)
continue;
assert(Register::isVirtualRegister(i->VirtReg) && "Bad map key");
assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value");
assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
}
}
#endif
void RegAllocFast::allocateInstruction(MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// If this is a copy, we may be able to coalesce.
unsigned CopySrcReg = 0;
unsigned CopyDstReg = 0;
unsigned CopySrcSub = 0;
unsigned CopyDstSub = 0;
if (MI.isCopy()) {
CopyDstReg = MI.getOperand(0).getReg();
CopySrcReg = MI.getOperand(1).getReg();
CopyDstSub = MI.getOperand(0).getSubReg();
CopySrcSub = MI.getOperand(1).getSubReg();
}
// Track registers used by instruction.
UsedInInstr.clear();
// First scan.
// Mark physreg uses and early clobbers as used.
// Find the end of the virtreg operands
unsigned VirtOpEnd = 0;
bool hasTiedOps = false;
bool hasEarlyClobbers = false;
bool hasPartialRedefs = false;
bool hasPhysDefs = false;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
// Make sure MRI knows about registers clobbered by regmasks.
if (MO.isRegMask()) {
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
continue;
}
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (!Reg) continue;
if (Register::isVirtualRegister(Reg)) {
VirtOpEnd = i+1;
if (MO.isUse()) {
hasTiedOps = hasTiedOps ||
MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
} else {
if (MO.isEarlyClobber())
hasEarlyClobbers = true;
if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
hasPartialRedefs = true;
}
continue;
}
if (!MRI->isAllocatable(Reg)) continue;
if (MO.isUse()) {
usePhysReg(MO);
} else if (MO.isEarlyClobber()) {
definePhysReg(MI, Reg,
(MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
hasEarlyClobbers = true;
} else
hasPhysDefs = true;
}
// The instruction may have virtual register operands that must be allocated
// the same register at use-time and def-time: early clobbers and tied
// operands. If there are also physical defs, these registers must avoid
// both physical defs and uses, making them more constrained than normal
// operands.
// Similarly, if there are multiple defs and tied operands, we must make
// sure the same register is allocated to uses and defs.
// We didn't detect inline asm tied operands above, so just make this extra
// pass for all inline asm.
if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
(hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
handleThroughOperands(MI, VirtDead);
// Don't attempt coalescing when we have funny stuff going on.
CopyDstReg = 0;
// Pretend we have early clobbers so the use operands get marked below.
// This is not necessary for the common case of a single tied use.
hasEarlyClobbers = true;
}
// Second scan.
// Allocate virtreg uses.
bool HasUndefUse = false;
for (unsigned I = 0; I != VirtOpEnd; ++I) {
MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
continue;
if (MO.isUse()) {
if (MO.isUndef()) {
HasUndefUse = true;
// There is no need to allocate a register for an undef use.
continue;
}
// Populate MayLiveAcrossBlocks in case the use block is allocated before
// the def block (removing the vreg uses).
mayLiveIn(Reg);
LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
MCPhysReg PhysReg = LR.PhysReg;
CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
if (setPhysReg(MI, MO, PhysReg))
killVirtReg(LR);
}
}
// Allocate undef operands. This is a separate step because in a situation
// like ` = OP undef %X, %X` both operands need the same register assign
// so we should perform the normal assignment first.
if (HasUndefUse) {
for (MachineOperand &MO : MI.uses()) {
if (!MO.isReg() || !MO.isUse())
continue;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
continue;
assert(MO.isUndef() && "Should only have undef virtreg uses left");
allocVirtRegUndef(MO);
}
}
// Track registers defined by instruction - early clobbers and tied uses at
// this point.
UsedInInstr.clear();
if (hasEarlyClobbers) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (!Reg || !Register::isPhysicalRegister(Reg))
continue;
// Look for physreg defs and tied uses.
if (!MO.isDef() && !MO.isTied()) continue;
markRegUsedInInstr(Reg);
}
}
unsigned DefOpEnd = MI.getNumOperands();
if (MI.isCall()) {
// Spill all virtregs before a call. This serves one purpose: If an
// exception is thrown, the landing pad is going to expect to find
// registers in their spill slots.
// Note: although this is appealing to just consider all definitions
// as call-clobbered, this is not correct because some of those
// definitions may be used later on and we do not want to reuse
// those for virtual registers in between.
LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
spillAll(MI, /*OnlyLiveOut*/ false);
}
// Third scan.
// Mark all physreg defs as used before allocating virtreg defs.
for (unsigned I = 0; I != DefOpEnd; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
continue;
Register Reg = MO.getReg();
if (!Reg || !Register::isPhysicalRegister(Reg) || !MRI->isAllocatable(Reg))
continue;
definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
}
// Fourth scan.
// Allocate defs and collect dead defs.
for (unsigned I = 0; I != DefOpEnd; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
continue;
Register Reg = MO.getReg();
// We have already dealt with phys regs in the previous scan.
if (Register::isPhysicalRegister(Reg))
continue;
MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
VirtDead.push_back(Reg);
CopyDstReg = 0; // cancel coalescing;
} else
CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
}
// Kill dead defs after the scan to ensure that multiple defs of the same
// register are allocated identically. We didn't need to do this for uses
// because we are crerating our own kill flags, and they are always at the
// last use.
for (unsigned VirtReg : VirtDead)
killVirtReg(VirtReg);
VirtDead.clear();
LLVM_DEBUG(dbgs() << "<< " << MI);
if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
Coalesced.push_back(&MI);
}
}
void RegAllocFast::handleDebugValue(MachineInstr &MI) {
MachineOperand &MO = MI.getOperand(0);
// Ignore DBG_VALUEs that aren't based on virtual registers. These are
// mostly constants and frame indices.
if (!MO.isReg())
return;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
return;
// See if this virtual register has already been allocated to a physical
// register or spilled to a stack slot.
LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
setPhysReg(MI, MO, LRI->PhysReg);
} else {
int SS = StackSlotForVirtReg[Reg];
if (SS != -1) {
// Modify DBG_VALUE now that the value is in a spill slot.
updateDbgValueForSpill(MI, SS);
LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
return;
}
// We can't allocate a physreg for a DebugValue, sorry!
LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
MO.setReg(0);
}
// If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
// that future spills of Reg will have DBG_VALUEs.
LiveDbgValueMap[Reg].push_back(&MI);
}
void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
this->MBB = &MBB;
LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
PhysRegState.assign(TRI->getNumRegs(), regDisabled);
assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
MachineBasicBlock::iterator MII = MBB.begin();
// Add live-in registers as live.
for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
if (MRI->isAllocatable(LI.PhysReg))
definePhysReg(MII, LI.PhysReg, regReserved);
VirtDead.clear();
Coalesced.clear();
// Otherwise, sequentially allocate each instruction in the MBB.
for (MachineInstr &MI : MBB) {
LLVM_DEBUG(
dbgs() << "\n>> " << MI << "Regs:";
dumpState()
);
// Special handling for debug values. Note that they are not allowed to
// affect codegen of the other instructions in any way.
if (MI.isDebugValue()) {
handleDebugValue(MI);
continue;
}
allocateInstruction(MI);
}
// Spill all physical registers holding virtual registers now.
LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);
// Erase all the coalesced copies. We are delaying it until now because
// LiveVirtRegs might refer to the instrs.
for (MachineInstr *MI : Coalesced)
MBB.erase(MI);
NumCoalesced += Coalesced.size();
LLVM_DEBUG(MBB.dump());
}
bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
<< "********** Function: " << MF.getName() << '\n');
MRI = &MF.getRegInfo();
const TargetSubtargetInfo &STI = MF.getSubtarget();
TRI = STI.getRegisterInfo();
TII = STI.getInstrInfo();
MFI = &MF.getFrameInfo();
MRI->freezeReservedRegs(MF);
RegClassInfo.runOnMachineFunction(MF);
UsedInInstr.clear();
UsedInInstr.setUniverse(TRI->getNumRegUnits());
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned NumVirtRegs = MRI->getNumVirtRegs();
StackSlotForVirtReg.resize(NumVirtRegs);
LiveVirtRegs.setUniverse(NumVirtRegs);
MayLiveAcrossBlocks.clear();
MayLiveAcrossBlocks.resize(NumVirtRegs);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineBasicBlock &MBB : MF)
allocateBasicBlock(MBB);
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers.
MRI->clearVirtRegs();
StackSlotForVirtReg.clear();
LiveDbgValueMap.clear();
return true;
}
FunctionPass *llvm::createFastRegisterAllocator() {
return new RegAllocFast();
}
|