reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");

static RegisterRegAlloc
  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);

namespace {

  class RegAllocFast : public MachineFunctionPass {
  public:
    static char ID;

    RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}

  private:
    MachineFrameInfo *MFI;
    MachineRegisterInfo *MRI;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;
    RegisterClassInfo RegClassInfo;

    /// Basic block currently being allocated.
    MachineBasicBlock *MBB;

    /// Maps virtual regs to the frame index where these values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    /// Everything we know about a live virtual register.
    struct LiveReg {
      MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
      unsigned VirtReg;                ///< Virtual register number.
      MCPhysReg PhysReg = 0;           ///< Currently held here.
      unsigned short LastOpNum = 0;    ///< OpNum on LastUse.
      bool Dirty = false;              ///< Register needs spill.

      explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}

      unsigned getSparseSetIndex() const {
        return Register::virtReg2Index(VirtReg);
      }
    };

    using LiveRegMap = SparseSet<LiveReg>;
    /// This map contains entries for each virtual register that is currently
    /// available in a physical register.
    LiveRegMap LiveVirtRegs;

    DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;

    /// Has a bit set for every virtual register for which it was determined
    /// that it is alive across blocks.
    BitVector MayLiveAcrossBlocks;

    /// State of a physical register.
    enum RegState {
      /// A disabled register is not available for allocation, but an alias may
      /// be in use. A register can only be moved out of the disabled state if
      /// all aliases are disabled.
      regDisabled,

      /// A free register is not currently in use and can be allocated
      /// immediately without checking aliases.
      regFree,

      /// A reserved register has been assigned explicitly (e.g., setting up a
      /// call parameter), and it remains reserved until it is used.
      regReserved

      /// A register state may also be a virtual register number, indication
      /// that the physical register is currently allocated to a virtual
      /// register. In that case, LiveVirtRegs contains the inverse mapping.
    };

    /// Maps each physical register to a RegState enum or a virtual register.
    std::vector<unsigned> PhysRegState;

    SmallVector<unsigned, 16> VirtDead;
    SmallVector<MachineInstr *, 32> Coalesced;

    using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
    /// Set of register units that are used in the current instruction, and so
    /// cannot be allocated.
    RegUnitSet UsedInInstr;

    void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);

    /// Mark a physreg as used in this instruction.
    void markRegUsedInInstr(MCPhysReg PhysReg) {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        UsedInInstr.insert(*Units);
    }

    /// Check if a physreg or any of its aliases are used in this instruction.
    bool isRegUsedInInstr(MCPhysReg PhysReg) const {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        if (UsedInInstr.count(*Units))
          return true;
      return false;
    }

    enum : unsigned {
      spillClean = 50,
      spillDirty = 100,
      spillPrefBonus = 20,
      spillImpossible = ~0u
    };

  public:
    StringRef getPassName() const override { return "Fast Register Allocator"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoPHIs);
    }

    MachineFunctionProperties getSetProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    bool runOnMachineFunction(MachineFunction &MF) override;

    void allocateBasicBlock(MachineBasicBlock &MBB);
    void allocateInstruction(MachineInstr &MI);
    void handleDebugValue(MachineInstr &MI);
    void handleThroughOperands(MachineInstr &MI,
                               SmallVectorImpl<unsigned> &VirtDead);
    bool isLastUseOfLocalReg(const MachineOperand &MO) const;

    void addKillFlag(const LiveReg &LRI);
    void killVirtReg(LiveReg &LR);
    void killVirtReg(unsigned VirtReg);
    void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);

    void usePhysReg(MachineOperand &MO);
    void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
                       RegState NewState);
    unsigned calcSpillCost(MCPhysReg PhysReg) const;
    void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);

    LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
    }

    LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
    }

    void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
    void allocVirtRegUndef(MachineOperand &MO);
    MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
                            unsigned Hint);
    LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
                           unsigned Hint);
    void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
    bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);

    unsigned traceCopies(unsigned VirtReg) const;
    unsigned traceCopyChain(unsigned Reg) const;

    int getStackSpaceFor(unsigned VirtReg);
    void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
               MCPhysReg AssignedReg, bool Kill);
    void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
                MCPhysReg PhysReg);

    bool mayLiveOut(unsigned VirtReg);
    bool mayLiveIn(unsigned VirtReg);

    void dumpState();
  };

} // end anonymous namespace

char RegAllocFast::ID = 0;

INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
                false)

void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
  PhysRegState[PhysReg] = NewState;
}

/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  // Already has space allocated?
  if (SS != -1)
    return SS;

  // Allocate a new stack object for this spill location...
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  unsigned Size = TRI->getSpillSize(RC);
  unsigned Align = TRI->getSpillAlignment(RC);
  int FrameIdx = MFI->CreateSpillStackObject(Size, Align);

  // Assign the slot.
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}

/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
    // Cannot be live-out if there are no successors.
    return !MBB->succ_empty();
  }

  // If this block loops back to itself, it would be necessary to check whether
  // the use comes after the def.
  if (MBB->isSuccessor(MBB)) {
    MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
    return true;
  }

  // See if the first \p Limit uses of the register are all in the current
  // block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
    if (UseInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      // Cannot be live-out if there are no successors.
      return !MBB->succ_empty();
    }
  }

  return false;
}

/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFast::mayLiveIn(unsigned VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
    return !MBB->pred_empty();

  // See if the first \p Limit def of the register are all in the current block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
    if (DefInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      return !MBB->pred_empty();
    }
  }

  return false;
}

/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
                         MCPhysReg AssignedReg, bool Kill) {
  LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
                    << " in " << printReg(AssignedReg, TRI));
  int FI = getStackSpaceFor(VirtReg);
  LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
  ++NumStores;

  // If this register is used by DBG_VALUE then insert new DBG_VALUE to
  // identify spilled location as the place to find corresponding variable's
  // value.
  SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
  for (MachineInstr *DBG : LRIDbgValues) {
    MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
    assert(NewDV->getParent() == MBB && "dangling parent pointer");
    (void)NewDV;
    LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
  }
  // Now this register is spilled there is should not be any DBG_VALUE
  // pointing to this register because they are all pointing to spilled value
  // now.
  LRIDbgValues.clear();
}

/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
                          MCPhysReg PhysReg) {
  LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
                    << printReg(PhysReg, TRI) << '\n');
  int FI = getStackSpaceFor(VirtReg);
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
  ++NumLoads;
}

/// Return true if MO is the only remaining reference to its virtual register,
/// and it is guaranteed to be a block-local register.
bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
  // If the register has ever been spilled or reloaded, we conservatively assume
  // it is a global register used in multiple blocks.
  if (StackSlotForVirtReg[MO.getReg()] != -1)
    return false;

  // Check that the use/def chain has exactly one operand - MO.
  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
  if (&*I != &MO)
    return false;
  return ++I == MRI->reg_nodbg_end();
}

/// Set kill flags on last use of a virtual register.
void RegAllocFast::addKillFlag(const LiveReg &LR) {
  if (!LR.LastUse) return;
  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
    if (MO.getReg() == LR.PhysReg)
      MO.setIsKill();
    // else, don't do anything we are problably redefining a
    // subreg of this register and given we don't track which
    // lanes are actually dead, we cannot insert a kill flag here.
    // Otherwise we may end up in a situation like this:
    // ... = (MO) physreg:sub1, implicit killed physreg
    // ... <== Here we would allow later pass to reuse physreg:sub1
    //         which is potentially wrong.
    // LR:sub0 = ...
    // ... = LR.sub1 <== This is going to use physreg:sub1
  }
}

/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(LiveReg &LR) {
  addKillFlag(LR);
  assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
         "Broken RegState mapping");
  setPhysRegState(LR.PhysReg, regFree);
  LR.PhysReg = 0;
}

/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(unsigned VirtReg) {
  assert(Register::isVirtualRegister(VirtReg) &&
         "killVirtReg needs a virtual register");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
    killVirtReg(*LRI);
}

/// This method spills the value specified by VirtReg into the corresponding
/// stack slot if needed.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
                                unsigned VirtReg) {
  assert(Register::isVirtualRegister(VirtReg) &&
         "Spilling a physical register is illegal!");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
         "Spilling unmapped virtual register");
  spillVirtReg(MI, *LRI);
}

/// Do the actual work of spilling.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
  assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");

  if (LR.Dirty) {
    // If this physreg is used by the instruction, we want to kill it on the
    // instruction, not on the spill.
    bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
    LR.Dirty = false;

    spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);

    if (SpillKill)
      LR.LastUse = nullptr; // Don't kill register again
  }
  killVirtReg(LR);
}

/// Spill all dirty virtregs without killing them.
void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
  if (LiveVirtRegs.empty())
    return;
  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
  // of spilling here is deterministic, if arbitrary.
  for (LiveReg &LR : LiveVirtRegs) {
    if (!LR.PhysReg)
      continue;
    if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
      continue;
    spillVirtReg(MI, LR);
  }
  LiveVirtRegs.clear();
}

/// Handle the direct use of a physical register.  Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
void RegAllocFast::usePhysReg(MachineOperand &MO) {
  // Ignore undef uses.
  if (MO.isUndef())
    return;

  Register PhysReg = MO.getReg();
  assert(Register::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand");

  markRegUsedInInstr(PhysReg);
  switch (PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regReserved:
    PhysRegState[PhysReg] = regFree;
    LLVM_FALLTHROUGH;
  case regFree:
    MO.setIsKill();
    return;
  default:
    // The physreg was allocated to a virtual register. That means the value we
    // wanted has been clobbered.
    llvm_unreachable("Instruction uses an allocated register");
  }

  // Maybe a superregister is reserved?
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regReserved:
      // Either PhysReg is a subregister of Alias and we mark the
      // whole register as free, or PhysReg is the superregister of
      // Alias and we mark all the aliases as disabled before freeing
      // PhysReg.
      // In the latter case, since PhysReg was disabled, this means that
      // its value is defined only by physical sub-registers. This check
      // is performed by the assert of the default case in this loop.
      // Note: The value of the superregister may only be partial
      // defined, that is why regDisabled is a valid state for aliases.
      assert((TRI->isSuperRegister(PhysReg, Alias) ||
              TRI->isSuperRegister(Alias, PhysReg)) &&
             "Instruction is not using a subregister of a reserved register");
      LLVM_FALLTHROUGH;
    case regFree:
      if (TRI->isSuperRegister(PhysReg, Alias)) {
        // Leave the superregister in the working set.
        setPhysRegState(Alias, regFree);
        MO.getParent()->addRegisterKilled(Alias, TRI, true);
        return;
      }
      // Some other alias was in the working set - clear it.
      setPhysRegState(Alias, regDisabled);
      break;
    default:
      llvm_unreachable("Instruction uses an alias of an allocated register");
    }
  }

  // All aliases are disabled, bring register into working set.
  setPhysRegState(PhysReg, regFree);
  MO.setIsKill();
}

/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
                                 MCPhysReg PhysReg, RegState NewState) {
  markRegUsedInInstr(PhysReg);
  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  default:
    spillVirtReg(MI, VirtReg);
    LLVM_FALLTHROUGH;
  case regFree:
  case regReserved:
    setPhysRegState(PhysReg, NewState);
    return;
  }

  // This is a disabled register, disable all aliases.
  setPhysRegState(PhysReg, NewState);
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (unsigned VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    default:
      spillVirtReg(MI, VirtReg);
      LLVM_FALLTHROUGH;
    case regFree:
    case regReserved:
      setPhysRegState(Alias, regDisabled);
      if (TRI->isSuperRegister(PhysReg, Alias))
        return;
      break;
    }
  }
}

/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
  if (isRegUsedInInstr(PhysReg)) {
    LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
                      << " is already used in instr.\n");
    return spillImpossible;
  }
  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regFree:
    return 0;
  case regReserved:
    LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
                      << printReg(PhysReg, TRI) << " is reserved already.\n");
    return spillImpossible;
  default: {
    LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
    assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
           "Missing VirtReg entry");
    return LRI->Dirty ? spillDirty : spillClean;
  }
  }

  // This is a disabled register, add up cost of aliases.
  LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
  unsigned Cost = 0;
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (unsigned VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regFree:
      ++Cost;
      break;
    case regReserved:
      return spillImpossible;
    default: {
      LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
      assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
             "Missing VirtReg entry");
      Cost += LRI->Dirty ? spillDirty : spillClean;
      break;
    }
    }
  }
  return Cost;
}

/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now.  The physical register must not be used
/// for anything else when this is called.
void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
  unsigned VirtReg = LR.VirtReg;
  LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
                    << printReg(PhysReg, TRI) << '\n');
  assert(LR.PhysReg == 0 && "Already assigned a physreg");
  assert(PhysReg != 0 && "Trying to assign no register");
  LR.PhysReg = PhysReg;
  setPhysRegState(PhysReg, VirtReg);
}

static bool isCoalescable(const MachineInstr &MI) {
  return MI.isFullCopy();
}

unsigned RegAllocFast::traceCopyChain(unsigned Reg) const {
  static const unsigned ChainLengthLimit = 3;
  unsigned C = 0;
  do {
    if (Register::isPhysicalRegister(Reg))
      return Reg;
    assert(Register::isVirtualRegister(Reg));

    MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
    if (!VRegDef || !isCoalescable(*VRegDef))
      return 0;
    Reg = VRegDef->getOperand(1).getReg();
  } while (++C <= ChainLengthLimit);
  return 0;
}

/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
unsigned RegAllocFast::traceCopies(unsigned VirtReg) const {
  static const unsigned DefLimit = 3;
  unsigned C = 0;
  for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
    if (isCoalescable(MI)) {
      Register Reg = MI.getOperand(1).getReg();
      Reg = traceCopyChain(Reg);
      if (Reg != 0)
        return Reg;
    }

    if (++C >= DefLimit)
      break;
  }
  return 0;
}

/// Allocates a physical register for VirtReg.
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) {
  const unsigned VirtReg = LR.VirtReg;

  assert(Register::isVirtualRegister(VirtReg) &&
         "Can only allocate virtual registers");

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
                    << " in class " << TRI->getRegClassName(&RC)
                    << " with hint " << printReg(Hint0, TRI) << '\n');

  // Take hint when possible.
  if (Register::isPhysicalRegister(Hint0) && MRI->isAllocatable(Hint0) &&
      RC.contains(Hint0)) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint0);
    if (Cost < spillDirty) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << '\n');
      if (Cost)
        definePhysReg(MI, Hint0, regFree);
      assignVirtToPhysReg(LR, Hint0);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << "occupied\n");
    }
  } else {
    Hint0 = 0;
  }

  // Try other hint.
  unsigned Hint1 = traceCopies(VirtReg);
  if (Register::isPhysicalRegister(Hint1) && MRI->isAllocatable(Hint1) &&
      RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint1);
    if (Cost < spillDirty) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << '\n');
      if (Cost)
        definePhysReg(MI, Hint1, regFree);
      assignVirtToPhysReg(LR, Hint1);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << "occupied\n");
    }
  } else {
    Hint1 = 0;
  }

  MCPhysReg BestReg = 0;
  unsigned BestCost = spillImpossible;
  ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
  for (MCPhysReg PhysReg : AllocationOrder) {
    LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
    unsigned Cost = calcSpillCost(PhysReg);
    LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
    // Immediate take a register with cost 0.
    if (Cost == 0) {
      assignVirtToPhysReg(LR, PhysReg);
      return;
    }

    if (PhysReg == Hint1 || PhysReg == Hint0)
      Cost -= spillPrefBonus;

    if (Cost < BestCost) {
      BestReg = PhysReg;
      BestCost = Cost;
    }
  }

  if (!BestReg) {
    // Nothing we can do: Report an error and keep going with an invalid
    // allocation.
    if (MI.isInlineAsm())
      MI.emitError("inline assembly requires more registers than available");
    else
      MI.emitError("ran out of registers during register allocation");
    definePhysReg(MI, *AllocationOrder.begin(), regFree);
    assignVirtToPhysReg(LR, *AllocationOrder.begin());
    return;
  }

  definePhysReg(MI, BestReg, regFree);
  assignVirtToPhysReg(LR, BestReg);
}

void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
  assert(MO.isUndef() && "expected undef use");
  Register VirtReg = MO.getReg();
  assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");

  LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
  MCPhysReg PhysReg;
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    PhysReg = LRI->PhysReg;
  } else {
    const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
    ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
    assert(!AllocationOrder.empty() && "Allocation order must not be empty");
    PhysReg = AllocationOrder[0];
  }

  unsigned SubRegIdx = MO.getSubReg();
  if (SubRegIdx != 0) {
    PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
    MO.setSubReg(0);
  }
  MO.setReg(PhysReg);
  MO.setIsRenamable(true);
}

/// Allocates a register for VirtReg and mark it as dirty.
MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
                                      unsigned VirtReg, unsigned Hint) {
  assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  if (!LRI->PhysReg) {
    // If there is no hint, peek at the only use of this register.
    if ((!Hint || !Register::isPhysicalRegister(Hint)) &&
        MRI->hasOneNonDBGUse(VirtReg)) {
      const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
      // It's a copy, use the destination register as a hint.
      if (UseMI.isCopyLike())
        Hint = UseMI.getOperand(0).getReg();
    }
    allocVirtReg(MI, *LRI, Hint);
  } else if (LRI->LastUse) {
    // Redefining a live register - kill at the last use, unless it is this
    // instruction defining VirtReg multiple times.
    if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
      addKillFlag(*LRI);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = &MI;
  LRI->LastOpNum = OpNum;
  LRI->Dirty = true;
  markRegUsedInInstr(LRI->PhysReg);
  return LRI->PhysReg;
}

/// Make sure VirtReg is available in a physreg and return it.
RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
                                                   unsigned OpNum,
                                                   unsigned VirtReg,
                                                   unsigned Hint) {
  assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  MachineOperand &MO = MI.getOperand(OpNum);
  if (!LRI->PhysReg) {
    allocVirtReg(MI, *LRI, Hint);
    reload(MI, VirtReg, LRI->PhysReg);
  } else if (LRI->Dirty) {
    if (isLastUseOfLocalReg(MO)) {
      LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
      if (MO.isUse())
        MO.setIsKill();
      else
        MO.setIsDead();
    } else if (MO.isKill()) {
      LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
      MO.setIsKill(false);
    } else if (MO.isDead()) {
      LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
      MO.setIsDead(false);
    }
  } else if (MO.isKill()) {
    // We must remove kill flags from uses of reloaded registers because the
    // register would be killed immediately, and there might be a second use:
    //   %foo = OR killed %x, %x
    // This would cause a second reload of %x into a different register.
    LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
    MO.setIsKill(false);
  } else if (MO.isDead()) {
    LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
    MO.setIsDead(false);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = &MI;
  LRI->LastOpNum = OpNum;
  markRegUsedInInstr(LRI->PhysReg);
  return *LRI;
}

/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
/// may invalidate any operand pointers.  Return true if the operand kills its
/// register.
bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
                              MCPhysReg PhysReg) {
  bool Dead = MO.isDead();
  if (!MO.getSubReg()) {
    MO.setReg(PhysReg);
    MO.setIsRenamable(true);
    return MO.isKill() || Dead;
  }

  // Handle subregister index.
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
  MO.setIsRenamable(true);
  MO.setSubReg(0);

  // A kill flag implies killing the full register. Add corresponding super
  // register kill.
  if (MO.isKill()) {
    MI.addRegisterKilled(PhysReg, TRI, true);
    return true;
  }

  // A <def,read-undef> of a sub-register requires an implicit def of the full
  // register.
  if (MO.isDef() && MO.isUndef())
    MI.addRegisterDefined(PhysReg, TRI);

  return Dead;
}

// Handles special instruction operand like early clobbers and tied ops when
// there are additional physreg defines.
void RegAllocFast::handleThroughOperands(MachineInstr &MI,
                                         SmallVectorImpl<unsigned> &VirtDead) {
  LLVM_DEBUG(dbgs() << "Scanning for through registers:");
  SmallSet<unsigned, 8> ThroughRegs;
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
        (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
      if (ThroughRegs.insert(Reg).second)
        LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
    }
  }

  // If any physreg defines collide with preallocated through registers,
  // we must spill and reallocate.
  LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef()) continue;
    Register Reg = MO.getReg();
    if (!Reg || !Register::isPhysicalRegister(Reg))
      continue;
    markRegUsedInInstr(Reg);
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      if (ThroughRegs.count(PhysRegState[*AI]))
        definePhysReg(MI, *AI, regFree);
    }
  }

  SmallVector<unsigned, 8> PartialDefs;
  LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isUse()) {
      if (!MO.isTied()) continue;
      LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
                        << ") is tied to operand " << MI.findTiedOperandIdx(I)
                        << ".\n");
      LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
      MCPhysReg PhysReg = LR.PhysReg;
      setPhysReg(MI, MO, PhysReg);
      // Note: we don't update the def operand yet. That would cause the normal
      // def-scan to attempt spilling.
    } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
      LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
      // Reload the register, but don't assign to the operand just yet.
      // That would confuse the later phys-def processing pass.
      LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
      PartialDefs.push_back(LR.PhysReg);
    }
  }

  LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (!MO.isEarlyClobber())
      continue;
    // Note: defineVirtReg may invalidate MO.
    MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
    if (setPhysReg(MI, MI.getOperand(I), PhysReg))
      VirtDead.push_back(Reg);
  }

  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
  UsedInInstr.clear();
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
    Register Reg = MO.getReg();
    if (!Reg || !Register::isPhysicalRegister(Reg))
      continue;
    LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
                      << " as used in instr\n");
    markRegUsedInInstr(Reg);
  }

  // Also mark PartialDefs as used to avoid reallocation.
  for (unsigned PartialDef : PartialDefs)
    markRegUsedInInstr(PartialDef);
}

#ifndef NDEBUG
void RegAllocFast::dumpState() {
  for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
    if (PhysRegState[Reg] == regDisabled) continue;
    dbgs() << " " << printReg(Reg, TRI);
    switch(PhysRegState[Reg]) {
    case regFree:
      break;
    case regReserved:
      dbgs() << "*";
      break;
    default: {
      dbgs() << '=' << printReg(PhysRegState[Reg]);
      LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
      assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
             "Missing VirtReg entry");
      if (LRI->Dirty)
        dbgs() << "*";
      assert(LRI->PhysReg == Reg && "Bad inverse map");
      break;
    }
    }
  }
  dbgs() << '\n';
  // Check that LiveVirtRegs is the inverse.
  for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
       e = LiveVirtRegs.end(); i != e; ++i) {
    if (!i->PhysReg)
      continue;
    assert(Register::isVirtualRegister(i->VirtReg) && "Bad map key");
    assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value");
    assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
  }
}
#endif

void RegAllocFast::allocateInstruction(MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // If this is a copy, we may be able to coalesce.
  unsigned CopySrcReg = 0;
  unsigned CopyDstReg = 0;
  unsigned CopySrcSub = 0;
  unsigned CopyDstSub = 0;
  if (MI.isCopy()) {
    CopyDstReg = MI.getOperand(0).getReg();
    CopySrcReg = MI.getOperand(1).getReg();
    CopyDstSub = MI.getOperand(0).getSubReg();
    CopySrcSub = MI.getOperand(1).getSubReg();
  }

  // Track registers used by instruction.
  UsedInInstr.clear();

  // First scan.
  // Mark physreg uses and early clobbers as used.
  // Find the end of the virtreg operands
  unsigned VirtOpEnd = 0;
  bool hasTiedOps = false;
  bool hasEarlyClobbers = false;
  bool hasPartialRedefs = false;
  bool hasPhysDefs = false;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    // Make sure MRI knows about registers clobbered by regmasks.
    if (MO.isRegMask()) {
      MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
      continue;
    }
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Reg) continue;
    if (Register::isVirtualRegister(Reg)) {
      VirtOpEnd = i+1;
      if (MO.isUse()) {
        hasTiedOps = hasTiedOps ||
                            MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
      } else {
        if (MO.isEarlyClobber())
          hasEarlyClobbers = true;
        if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
          hasPartialRedefs = true;
      }
      continue;
    }
    if (!MRI->isAllocatable(Reg)) continue;
    if (MO.isUse()) {
      usePhysReg(MO);
    } else if (MO.isEarlyClobber()) {
      definePhysReg(MI, Reg,
                    (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
      hasEarlyClobbers = true;
    } else
      hasPhysDefs = true;
  }

  // The instruction may have virtual register operands that must be allocated
  // the same register at use-time and def-time: early clobbers and tied
  // operands. If there are also physical defs, these registers must avoid
  // both physical defs and uses, making them more constrained than normal
  // operands.
  // Similarly, if there are multiple defs and tied operands, we must make
  // sure the same register is allocated to uses and defs.
  // We didn't detect inline asm tied operands above, so just make this extra
  // pass for all inline asm.
  if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
      (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
    handleThroughOperands(MI, VirtDead);
    // Don't attempt coalescing when we have funny stuff going on.
    CopyDstReg = 0;
    // Pretend we have early clobbers so the use operands get marked below.
    // This is not necessary for the common case of a single tied use.
    hasEarlyClobbers = true;
  }

  // Second scan.
  // Allocate virtreg uses.
  bool HasUndefUse = false;
  for (unsigned I = 0; I != VirtOpEnd; ++I) {
    MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isUse()) {
      if (MO.isUndef()) {
        HasUndefUse = true;
        // There is no need to allocate a register for an undef use.
        continue;
      }

      // Populate MayLiveAcrossBlocks in case the use block is allocated before
      // the def block (removing the vreg uses).
      mayLiveIn(Reg);

      LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
      MCPhysReg PhysReg = LR.PhysReg;
      CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
      if (setPhysReg(MI, MO, PhysReg))
        killVirtReg(LR);
    }
  }

  // Allocate undef operands. This is a separate step because in a situation
  // like  ` = OP undef %X, %X`    both operands need the same register assign
  // so we should perform the normal assignment first.
  if (HasUndefUse) {
    for (MachineOperand &MO : MI.uses()) {
      if (!MO.isReg() || !MO.isUse())
        continue;
      Register Reg = MO.getReg();
      if (!Register::isVirtualRegister(Reg))
        continue;

      assert(MO.isUndef() && "Should only have undef virtreg uses left");
      allocVirtRegUndef(MO);
    }
  }

  // Track registers defined by instruction - early clobbers and tied uses at
  // this point.
  UsedInInstr.clear();
  if (hasEarlyClobbers) {
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg()) continue;
      Register Reg = MO.getReg();
      if (!Reg || !Register::isPhysicalRegister(Reg))
        continue;
      // Look for physreg defs and tied uses.
      if (!MO.isDef() && !MO.isTied()) continue;
      markRegUsedInInstr(Reg);
    }
  }

  unsigned DefOpEnd = MI.getNumOperands();
  if (MI.isCall()) {
    // Spill all virtregs before a call. This serves one purpose: If an
    // exception is thrown, the landing pad is going to expect to find
    // registers in their spill slots.
    // Note: although this is appealing to just consider all definitions
    // as call-clobbered, this is not correct because some of those
    // definitions may be used later on and we do not want to reuse
    // those for virtual registers in between.
    LLVM_DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
    spillAll(MI, /*OnlyLiveOut*/ false);
  }

  // Third scan.
  // Mark all physreg defs as used before allocating virtreg defs.
  for (unsigned I = 0; I != DefOpEnd; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
      continue;
    Register Reg = MO.getReg();

    if (!Reg || !Register::isPhysicalRegister(Reg) || !MRI->isAllocatable(Reg))
      continue;
    definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
  }

  // Fourth scan.
  // Allocate defs and collect dead defs.
  for (unsigned I = 0; I != DefOpEnd; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
      continue;
    Register Reg = MO.getReg();

    // We have already dealt with phys regs in the previous scan.
    if (Register::isPhysicalRegister(Reg))
      continue;
    MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
    if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
      VirtDead.push_back(Reg);
      CopyDstReg = 0; // cancel coalescing;
    } else
      CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
  }

  // Kill dead defs after the scan to ensure that multiple defs of the same
  // register are allocated identically. We didn't need to do this for uses
  // because we are crerating our own kill flags, and they are always at the
  // last use.
  for (unsigned VirtReg : VirtDead)
    killVirtReg(VirtReg);
  VirtDead.clear();

  LLVM_DEBUG(dbgs() << "<< " << MI);
  if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
    LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
    Coalesced.push_back(&MI);
  }
}

void RegAllocFast::handleDebugValue(MachineInstr &MI) {
  MachineOperand &MO = MI.getOperand(0);

  // Ignore DBG_VALUEs that aren't based on virtual registers. These are
  // mostly constants and frame indices.
  if (!MO.isReg())
    return;
  Register Reg = MO.getReg();
  if (!Register::isVirtualRegister(Reg))
    return;

  // See if this virtual register has already been allocated to a physical
  // register or spilled to a stack slot.
  LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    setPhysReg(MI, MO, LRI->PhysReg);
  } else {
    int SS = StackSlotForVirtReg[Reg];
    if (SS != -1) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      updateDbgValueForSpill(MI, SS);
      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
      return;
    }

    // We can't allocate a physreg for a DebugValue, sorry!
    LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
    MO.setReg(0);
  }

  // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
  // that future spills of Reg will have DBG_VALUEs.
  LiveDbgValueMap[Reg].push_back(&MI);
}

void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
  this->MBB = &MBB;
  LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);

  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");

  MachineBasicBlock::iterator MII = MBB.begin();

  // Add live-in registers as live.
  for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
    if (MRI->isAllocatable(LI.PhysReg))
      definePhysReg(MII, LI.PhysReg, regReserved);

  VirtDead.clear();
  Coalesced.clear();

  // Otherwise, sequentially allocate each instruction in the MBB.
  for (MachineInstr &MI : MBB) {
    LLVM_DEBUG(
      dbgs() << "\n>> " << MI << "Regs:";
      dumpState()
    );

    // Special handling for debug values. Note that they are not allowed to
    // affect codegen of the other instructions in any way.
    if (MI.isDebugValue()) {
      handleDebugValue(MI);
      continue;
    }

    allocateInstruction(MI);
  }

  // Spill all physical registers holding virtual registers now.
  LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
  spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);

  // Erase all the coalesced copies. We are delaying it until now because
  // LiveVirtRegs might refer to the instrs.
  for (MachineInstr *MI : Coalesced)
    MBB.erase(MI);
  NumCoalesced += Coalesced.size();

  LLVM_DEBUG(MBB.dump());
}

bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  MRI = &MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  TRI = STI.getRegisterInfo();
  TII = STI.getInstrInfo();
  MFI = &MF.getFrameInfo();
  MRI->freezeReservedRegs(MF);
  RegClassInfo.runOnMachineFunction(MF);
  UsedInInstr.clear();
  UsedInInstr.setUniverse(TRI->getNumRegUnits());

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  unsigned NumVirtRegs = MRI->getNumVirtRegs();
  StackSlotForVirtReg.resize(NumVirtRegs);
  LiveVirtRegs.setUniverse(NumVirtRegs);
  MayLiveAcrossBlocks.clear();
  MayLiveAcrossBlocks.resize(NumVirtRegs);

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineBasicBlock &MBB : MF)
    allocateBasicBlock(MBB);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers.
  MRI->clearVirtRegs();

  StackSlotForVirtReg.clear();
  LiveDbgValueMap.clear();
  return true;
}

FunctionPass *llvm::createFastRegisterAllocator() {
  return new RegAllocFast();
}