reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
//===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing Microsoft CodeView debug info.
//
//===----------------------------------------------------------------------===//

#include "CodeViewDebug.h"
#include "DwarfExpression.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
#include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
#include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
#include "llvm/DebugInfo/CodeView/EnumTables.h"
#include "llvm/DebugInfo/CodeView/Line.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
#include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
#include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::codeview;

namespace {
class CVMCAdapter : public CodeViewRecordStreamer {
public:
  CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
      : OS(&OS), TypeTable(TypeTable) {}

  void EmitBytes(StringRef Data) { OS->EmitBytes(Data); }

  void EmitIntValue(uint64_t Value, unsigned Size) {
    OS->EmitIntValueInHex(Value, Size);
  }

  void EmitBinaryData(StringRef Data) { OS->EmitBinaryData(Data); }

  void AddComment(const Twine &T) { OS->AddComment(T); }

  void AddRawComment(const Twine &T) { OS->emitRawComment(T); }

  bool isVerboseAsm() { return OS->isVerboseAsm(); }

  std::string getTypeName(TypeIndex TI) {
    std::string TypeName;
    if (!TI.isNoneType()) {
      if (TI.isSimple())
        TypeName = TypeIndex::simpleTypeName(TI);
      else
        TypeName = TypeTable.getTypeName(TI);
    }
    return TypeName;
  }

private:
  MCStreamer *OS = nullptr;
  TypeCollection &TypeTable;
};
} // namespace

static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
  switch (Type) {
  case Triple::ArchType::x86:
    return CPUType::Pentium3;
  case Triple::ArchType::x86_64:
    return CPUType::X64;
  case Triple::ArchType::thumb:
    return CPUType::Thumb;
  case Triple::ArchType::aarch64:
    return CPUType::ARM64;
  default:
    report_fatal_error("target architecture doesn't map to a CodeView CPUType");
  }
}

CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
    : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
  // If module doesn't have named metadata anchors or COFF debug section
  // is not available, skip any debug info related stuff.
  if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
      !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
    Asm = nullptr;
    MMI->setDebugInfoAvailability(false);
    return;
  }
  // Tell MMI that we have debug info.
  MMI->setDebugInfoAvailability(true);

  TheCPU =
      mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());

  collectGlobalVariableInfo();

  // Check if we should emit type record hashes.
  ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
      MMI->getModule()->getModuleFlag("CodeViewGHash"));
  EmitDebugGlobalHashes = GH && !GH->isZero();
}

StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
  std::string &Filepath = FileToFilepathMap[File];
  if (!Filepath.empty())
    return Filepath;

  StringRef Dir = File->getDirectory(), Filename = File->getFilename();

  // If this is a Unix-style path, just use it as is. Don't try to canonicalize
  // it textually because one of the path components could be a symlink.
  if (Dir.startswith("/") || Filename.startswith("/")) {
    if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
      return Filename;
    Filepath = Dir;
    if (Dir.back() != '/')
      Filepath += '/';
    Filepath += Filename;
    return Filepath;
  }

  // Clang emits directory and relative filename info into the IR, but CodeView
  // operates on full paths.  We could change Clang to emit full paths too, but
  // that would increase the IR size and probably not needed for other users.
  // For now, just concatenate and canonicalize the path here.
  if (Filename.find(':') == 1)
    Filepath = Filename;
  else
    Filepath = (Dir + "\\" + Filename).str();

  // Canonicalize the path.  We have to do it textually because we may no longer
  // have access the file in the filesystem.
  // First, replace all slashes with backslashes.
  std::replace(Filepath.begin(), Filepath.end(), '/', '\\');

  // Remove all "\.\" with "\".
  size_t Cursor = 0;
  while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
    Filepath.erase(Cursor, 2);

  // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
  // path should be well-formatted, e.g. start with a drive letter, etc.
  Cursor = 0;
  while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
    // Something's wrong if the path starts with "\..\", abort.
    if (Cursor == 0)
      break;

    size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
    if (PrevSlash == std::string::npos)
      // Something's wrong, abort.
      break;

    Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
    // The next ".." might be following the one we've just erased.
    Cursor = PrevSlash;
  }

  // Remove all duplicate backslashes.
  Cursor = 0;
  while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
    Filepath.erase(Cursor, 1);

  return Filepath;
}

unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
  StringRef FullPath = getFullFilepath(F);
  unsigned NextId = FileIdMap.size() + 1;
  auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
  if (Insertion.second) {
    // We have to compute the full filepath and emit a .cv_file directive.
    ArrayRef<uint8_t> ChecksumAsBytes;
    FileChecksumKind CSKind = FileChecksumKind::None;
    if (F->getChecksum()) {
      std::string Checksum = fromHex(F->getChecksum()->Value);
      void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
      memcpy(CKMem, Checksum.data(), Checksum.size());
      ChecksumAsBytes = ArrayRef<uint8_t>(
          reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
      switch (F->getChecksum()->Kind) {
      case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break;
      case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
      }
    }
    bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
                                          static_cast<unsigned>(CSKind));
    (void)Success;
    assert(Success && ".cv_file directive failed");
  }
  return Insertion.first->second;
}

CodeViewDebug::InlineSite &
CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
                             const DISubprogram *Inlinee) {
  auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
  InlineSite *Site = &SiteInsertion.first->second;
  if (SiteInsertion.second) {
    unsigned ParentFuncId = CurFn->FuncId;
    if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
      ParentFuncId =
          getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
              .SiteFuncId;

    Site->SiteFuncId = NextFuncId++;
    OS.EmitCVInlineSiteIdDirective(
        Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
        InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
    Site->Inlinee = Inlinee;
    InlinedSubprograms.insert(Inlinee);
    getFuncIdForSubprogram(Inlinee);
  }
  return *Site;
}

static StringRef getPrettyScopeName(const DIScope *Scope) {
  StringRef ScopeName = Scope->getName();
  if (!ScopeName.empty())
    return ScopeName;

  switch (Scope->getTag()) {
  case dwarf::DW_TAG_enumeration_type:
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_union_type:
    return "<unnamed-tag>";
  case dwarf::DW_TAG_namespace:
    return "`anonymous namespace'";
  }

  return StringRef();
}

static const DISubprogram *getQualifiedNameComponents(
    const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
  const DISubprogram *ClosestSubprogram = nullptr;
  while (Scope != nullptr) {
    if (ClosestSubprogram == nullptr)
      ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
    StringRef ScopeName = getPrettyScopeName(Scope);
    if (!ScopeName.empty())
      QualifiedNameComponents.push_back(ScopeName);
    Scope = Scope->getScope();
  }
  return ClosestSubprogram;
}

static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
                                    StringRef TypeName) {
  std::string FullyQualifiedName;
  for (StringRef QualifiedNameComponent :
       llvm::reverse(QualifiedNameComponents)) {
    FullyQualifiedName.append(QualifiedNameComponent);
    FullyQualifiedName.append("::");
  }
  FullyQualifiedName.append(TypeName);
  return FullyQualifiedName;
}

static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
  SmallVector<StringRef, 5> QualifiedNameComponents;
  getQualifiedNameComponents(Scope, QualifiedNameComponents);
  return getQualifiedName(QualifiedNameComponents, Name);
}

struct CodeViewDebug::TypeLoweringScope {
  TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
  ~TypeLoweringScope() {
    // Don't decrement TypeEmissionLevel until after emitting deferred types, so
    // inner TypeLoweringScopes don't attempt to emit deferred types.
    if (CVD.TypeEmissionLevel == 1)
      CVD.emitDeferredCompleteTypes();
    --CVD.TypeEmissionLevel;
  }
  CodeViewDebug &CVD;
};

static std::string getFullyQualifiedName(const DIScope *Ty) {
  const DIScope *Scope = Ty->getScope();
  return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
}

TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
  // No scope means global scope and that uses the zero index.
  if (!Scope || isa<DIFile>(Scope))
    return TypeIndex();

  assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");

  // Check if we've already translated this scope.
  auto I = TypeIndices.find({Scope, nullptr});
  if (I != TypeIndices.end())
    return I->second;

  // Build the fully qualified name of the scope.
  std::string ScopeName = getFullyQualifiedName(Scope);
  StringIdRecord SID(TypeIndex(), ScopeName);
  auto TI = TypeTable.writeLeafType(SID);
  return recordTypeIndexForDINode(Scope, TI);
}

TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
  assert(SP);

  // Check if we've already translated this subprogram.
  auto I = TypeIndices.find({SP, nullptr});
  if (I != TypeIndices.end())
    return I->second;

  // The display name includes function template arguments. Drop them to match
  // MSVC.
  StringRef DisplayName = SP->getName().split('<').first;

  const DIScope *Scope = SP->getScope();
  TypeIndex TI;
  if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
    // If the scope is a DICompositeType, then this must be a method. Member
    // function types take some special handling, and require access to the
    // subprogram.
    TypeIndex ClassType = getTypeIndex(Class);
    MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
                               DisplayName);
    TI = TypeTable.writeLeafType(MFuncId);
  } else {
    // Otherwise, this must be a free function.
    TypeIndex ParentScope = getScopeIndex(Scope);
    FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
    TI = TypeTable.writeLeafType(FuncId);
  }

  return recordTypeIndexForDINode(SP, TI);
}

static bool isNonTrivial(const DICompositeType *DCTy) {
  return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
}

static FunctionOptions
getFunctionOptions(const DISubroutineType *Ty,
                   const DICompositeType *ClassTy = nullptr,
                   StringRef SPName = StringRef("")) {
  FunctionOptions FO = FunctionOptions::None;
  const DIType *ReturnTy = nullptr;
  if (auto TypeArray = Ty->getTypeArray()) {
    if (TypeArray.size())
      ReturnTy = TypeArray[0];
  }

  if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
    if (isNonTrivial(ReturnDCTy))
      FO |= FunctionOptions::CxxReturnUdt;
  }

  // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
  if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
    FO |= FunctionOptions::Constructor;

  // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.

  }
  return FO;
}

TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
                                               const DICompositeType *Class) {
  // Always use the method declaration as the key for the function type. The
  // method declaration contains the this adjustment.
  if (SP->getDeclaration())
    SP = SP->getDeclaration();
  assert(!SP->getDeclaration() && "should use declaration as key");

  // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
  // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
  auto I = TypeIndices.find({SP, Class});
  if (I != TypeIndices.end())
    return I->second;

  // Make sure complete type info for the class is emitted *after* the member
  // function type, as the complete class type is likely to reference this
  // member function type.
  TypeLoweringScope S(*this);
  const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;

  FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
  TypeIndex TI = lowerTypeMemberFunction(
      SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
  return recordTypeIndexForDINode(SP, TI, Class);
}

TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
                                                  TypeIndex TI,
                                                  const DIType *ClassTy) {
  auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
  (void)InsertResult;
  assert(InsertResult.second && "DINode was already assigned a type index");
  return TI;
}

unsigned CodeViewDebug::getPointerSizeInBytes() {
  return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
}

void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
                                        const LexicalScope *LS) {
  if (const DILocation *InlinedAt = LS->getInlinedAt()) {
    // This variable was inlined. Associate it with the InlineSite.
    const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
    InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
    Site.InlinedLocals.emplace_back(Var);
  } else {
    // This variable goes into the corresponding lexical scope.
    ScopeVariables[LS].emplace_back(Var);
  }
}

static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
                               const DILocation *Loc) {
  auto B = Locs.begin(), E = Locs.end();
  if (std::find(B, E, Loc) == E)
    Locs.push_back(Loc);
}

void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
                                        const MachineFunction *MF) {
  // Skip this instruction if it has the same location as the previous one.
  if (!DL || DL == PrevInstLoc)
    return;

  const DIScope *Scope = DL.get()->getScope();
  if (!Scope)
    return;

  // Skip this line if it is longer than the maximum we can record.
  LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
  if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
      LI.isNeverStepInto())
    return;

  ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
  if (CI.getStartColumn() != DL.getCol())
    return;

  if (!CurFn->HaveLineInfo)
    CurFn->HaveLineInfo = true;
  unsigned FileId = 0;
  if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
    FileId = CurFn->LastFileId;
  else
    FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
  PrevInstLoc = DL;

  unsigned FuncId = CurFn->FuncId;
  if (const DILocation *SiteLoc = DL->getInlinedAt()) {
    const DILocation *Loc = DL.get();

    // If this location was actually inlined from somewhere else, give it the ID
    // of the inline call site.
    FuncId =
        getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;

    // Ensure we have links in the tree of inline call sites.
    bool FirstLoc = true;
    while ((SiteLoc = Loc->getInlinedAt())) {
      InlineSite &Site =
          getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
      if (!FirstLoc)
        addLocIfNotPresent(Site.ChildSites, Loc);
      FirstLoc = false;
      Loc = SiteLoc;
    }
    addLocIfNotPresent(CurFn->ChildSites, Loc);
  }

  OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
                        /*PrologueEnd=*/false, /*IsStmt=*/false,
                        DL->getFilename(), SMLoc());
}

void CodeViewDebug::emitCodeViewMagicVersion() {
  OS.EmitValueToAlignment(4);
  OS.AddComment("Debug section magic");
  OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
}

void CodeViewDebug::endModule() {
  if (!Asm || !MMI->hasDebugInfo())
    return;

  assert(Asm != nullptr);

  // The COFF .debug$S section consists of several subsections, each starting
  // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
  // of the payload followed by the payload itself.  The subsections are 4-byte
  // aligned.

  // Use the generic .debug$S section, and make a subsection for all the inlined
  // subprograms.
  switchToDebugSectionForSymbol(nullptr);

  MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
  emitCompilerInformation();
  endCVSubsection(CompilerInfo);

  emitInlineeLinesSubsection();

  // Emit per-function debug information.
  for (auto &P : FnDebugInfo)
    if (!P.first->isDeclarationForLinker())
      emitDebugInfoForFunction(P.first, *P.second);

  // Emit global variable debug information.
  setCurrentSubprogram(nullptr);
  emitDebugInfoForGlobals();

  // Emit retained types.
  emitDebugInfoForRetainedTypes();

  // Switch back to the generic .debug$S section after potentially processing
  // comdat symbol sections.
  switchToDebugSectionForSymbol(nullptr);

  // Emit UDT records for any types used by global variables.
  if (!GlobalUDTs.empty()) {
    MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
    emitDebugInfoForUDTs(GlobalUDTs);
    endCVSubsection(SymbolsEnd);
  }

  // This subsection holds a file index to offset in string table table.
  OS.AddComment("File index to string table offset subsection");
  OS.EmitCVFileChecksumsDirective();

  // This subsection holds the string table.
  OS.AddComment("String table");
  OS.EmitCVStringTableDirective();

  // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
  // subsection in the generic .debug$S section at the end. There is no
  // particular reason for this ordering other than to match MSVC.
  emitBuildInfo();

  // Emit type information and hashes last, so that any types we translate while
  // emitting function info are included.
  emitTypeInformation();

  if (EmitDebugGlobalHashes)
    emitTypeGlobalHashes();

  clear();
}

static void
emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
                             unsigned MaxFixedRecordLength = 0xF00) {
  // The maximum CV record length is 0xFF00. Most of the strings we emit appear
  // after a fixed length portion of the record. The fixed length portion should
  // always be less than 0xF00 (3840) bytes, so truncate the string so that the
  // overall record size is less than the maximum allowed.
  SmallString<32> NullTerminatedString(
      S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
  NullTerminatedString.push_back('\0');
  OS.EmitBytes(NullTerminatedString);
}

void CodeViewDebug::emitTypeInformation() {
  if (TypeTable.empty())
    return;

  // Start the .debug$T or .debug$P section with 0x4.
  OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
  emitCodeViewMagicVersion();

  TypeTableCollection Table(TypeTable.records());
  TypeVisitorCallbackPipeline Pipeline;

  // To emit type record using Codeview MCStreamer adapter
  CVMCAdapter CVMCOS(OS, Table);
  TypeRecordMapping typeMapping(CVMCOS);
  Pipeline.addCallbackToPipeline(typeMapping);

  Optional<TypeIndex> B = Table.getFirst();
  while (B) {
    // This will fail if the record data is invalid.
    CVType Record = Table.getType(*B);

    Error E = codeview::visitTypeRecord(Record, *B, Pipeline);

    if (E) {
      logAllUnhandledErrors(std::move(E), errs(), "error: ");
      llvm_unreachable("produced malformed type record");
    }

    B = Table.getNext(*B);
  }
}

void CodeViewDebug::emitTypeGlobalHashes() {
  if (TypeTable.empty())
    return;

  // Start the .debug$H section with the version and hash algorithm, currently
  // hardcoded to version 0, SHA1.
  OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());

  OS.EmitValueToAlignment(4);
  OS.AddComment("Magic");
  OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
  OS.AddComment("Section Version");
  OS.EmitIntValue(0, 2);
  OS.AddComment("Hash Algorithm");
  OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);

  TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
  for (const auto &GHR : TypeTable.hashes()) {
    if (OS.isVerboseAsm()) {
      // Emit an EOL-comment describing which TypeIndex this hash corresponds
      // to, as well as the stringified SHA1 hash.
      SmallString<32> Comment;
      raw_svector_ostream CommentOS(Comment);
      CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
      OS.AddComment(Comment);
      ++TI;
    }
    assert(GHR.Hash.size() == 8);
    StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
                GHR.Hash.size());
    OS.EmitBinaryData(S);
  }
}

static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
  switch (DWLang) {
  case dwarf::DW_LANG_C:
  case dwarf::DW_LANG_C89:
  case dwarf::DW_LANG_C99:
  case dwarf::DW_LANG_C11:
  case dwarf::DW_LANG_ObjC:
    return SourceLanguage::C;
  case dwarf::DW_LANG_C_plus_plus:
  case dwarf::DW_LANG_C_plus_plus_03:
  case dwarf::DW_LANG_C_plus_plus_11:
  case dwarf::DW_LANG_C_plus_plus_14:
    return SourceLanguage::Cpp;
  case dwarf::DW_LANG_Fortran77:
  case dwarf::DW_LANG_Fortran90:
  case dwarf::DW_LANG_Fortran03:
  case dwarf::DW_LANG_Fortran08:
    return SourceLanguage::Fortran;
  case dwarf::DW_LANG_Pascal83:
    return SourceLanguage::Pascal;
  case dwarf::DW_LANG_Cobol74:
  case dwarf::DW_LANG_Cobol85:
    return SourceLanguage::Cobol;
  case dwarf::DW_LANG_Java:
    return SourceLanguage::Java;
  case dwarf::DW_LANG_D:
    return SourceLanguage::D;
  case dwarf::DW_LANG_Swift:
    return SourceLanguage::Swift;
  default:
    // There's no CodeView representation for this language, and CV doesn't
    // have an "unknown" option for the language field, so we'll use MASM,
    // as it's very low level.
    return SourceLanguage::Masm;
  }
}

namespace {
struct Version {
  int Part[4];
};
} // end anonymous namespace

// Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
// the version number.
static Version parseVersion(StringRef Name) {
  Version V = {{0}};
  int N = 0;
  for (const char C : Name) {
    if (isdigit(C)) {
      V.Part[N] *= 10;
      V.Part[N] += C - '0';
    } else if (C == '.') {
      ++N;
      if (N >= 4)
        return V;
    } else if (N > 0)
      return V;
  }
  return V;
}

void CodeViewDebug::emitCompilerInformation() {
  MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
  uint32_t Flags = 0;

  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
  const MDNode *Node = *CUs->operands().begin();
  const auto *CU = cast<DICompileUnit>(Node);

  // The low byte of the flags indicates the source language.
  Flags = MapDWLangToCVLang(CU->getSourceLanguage());
  // TODO:  Figure out which other flags need to be set.

  OS.AddComment("Flags and language");
  OS.EmitIntValue(Flags, 4);

  OS.AddComment("CPUType");
  OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);

  StringRef CompilerVersion = CU->getProducer();
  Version FrontVer = parseVersion(CompilerVersion);
  OS.AddComment("Frontend version");
  for (int N = 0; N < 4; ++N)
    OS.EmitIntValue(FrontVer.Part[N], 2);

  // Some Microsoft tools, like Binscope, expect a backend version number of at
  // least 8.something, so we'll coerce the LLVM version into a form that
  // guarantees it'll be big enough without really lying about the version.
  int Major = 1000 * LLVM_VERSION_MAJOR +
              10 * LLVM_VERSION_MINOR +
              LLVM_VERSION_PATCH;
  // Clamp it for builds that use unusually large version numbers.
  Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
  Version BackVer = {{ Major, 0, 0, 0 }};
  OS.AddComment("Backend version");
  for (int N = 0; N < 4; ++N)
    OS.EmitIntValue(BackVer.Part[N], 2);

  OS.AddComment("Null-terminated compiler version string");
  emitNullTerminatedSymbolName(OS, CompilerVersion);

  endSymbolRecord(CompilerEnd);
}

static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
                                    StringRef S) {
  StringIdRecord SIR(TypeIndex(0x0), S);
  return TypeTable.writeLeafType(SIR);
}

void CodeViewDebug::emitBuildInfo() {
  // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
  // build info. The known prefix is:
  // - Absolute path of current directory
  // - Compiler path
  // - Main source file path, relative to CWD or absolute
  // - Type server PDB file
  // - Canonical compiler command line
  // If frontend and backend compilation are separated (think llc or LTO), it's
  // not clear if the compiler path should refer to the executable for the
  // frontend or the backend. Leave it blank for now.
  TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
  const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
  const auto *CU = cast<DICompileUnit>(Node);
  const DIFile *MainSourceFile = CU->getFile();
  BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
      getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
  BuildInfoArgs[BuildInfoRecord::SourceFile] =
      getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
  // FIXME: Path to compiler and command line. PDB is intentionally blank unless
  // we implement /Zi type servers.
  BuildInfoRecord BIR(BuildInfoArgs);
  TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);

  // Make a new .debug$S subsection for the S_BUILDINFO record, which points
  // from the module symbols into the type stream.
  MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
  MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
  OS.AddComment("LF_BUILDINFO index");
  OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
  endSymbolRecord(BIEnd);
  endCVSubsection(BISubsecEnd);
}

void CodeViewDebug::emitInlineeLinesSubsection() {
  if (InlinedSubprograms.empty())
    return;

  OS.AddComment("Inlinee lines subsection");
  MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);

  // We emit the checksum info for files.  This is used by debuggers to
  // determine if a pdb matches the source before loading it.  Visual Studio,
  // for instance, will display a warning that the breakpoints are not valid if
  // the pdb does not match the source.
  OS.AddComment("Inlinee lines signature");
  OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);

  for (const DISubprogram *SP : InlinedSubprograms) {
    assert(TypeIndices.count({SP, nullptr}));
    TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];

    OS.AddBlankLine();
    unsigned FileId = maybeRecordFile(SP->getFile());
    OS.AddComment("Inlined function " + SP->getName() + " starts at " +
                  SP->getFilename() + Twine(':') + Twine(SP->getLine()));
    OS.AddBlankLine();
    OS.AddComment("Type index of inlined function");
    OS.EmitIntValue(InlineeIdx.getIndex(), 4);
    OS.AddComment("Offset into filechecksum table");
    OS.EmitCVFileChecksumOffsetDirective(FileId);
    OS.AddComment("Starting line number");
    OS.EmitIntValue(SP->getLine(), 4);
  }

  endCVSubsection(InlineEnd);
}

void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
                                        const DILocation *InlinedAt,
                                        const InlineSite &Site) {
  assert(TypeIndices.count({Site.Inlinee, nullptr}));
  TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];

  // SymbolRecord
  MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);

  OS.AddComment("PtrParent");
  OS.EmitIntValue(0, 4);
  OS.AddComment("PtrEnd");
  OS.EmitIntValue(0, 4);
  OS.AddComment("Inlinee type index");
  OS.EmitIntValue(InlineeIdx.getIndex(), 4);

  unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
  unsigned StartLineNum = Site.Inlinee->getLine();

  OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
                                    FI.Begin, FI.End);

  endSymbolRecord(InlineEnd);

  emitLocalVariableList(FI, Site.InlinedLocals);

  // Recurse on child inlined call sites before closing the scope.
  for (const DILocation *ChildSite : Site.ChildSites) {
    auto I = FI.InlineSites.find(ChildSite);
    assert(I != FI.InlineSites.end() &&
           "child site not in function inline site map");
    emitInlinedCallSite(FI, ChildSite, I->second);
  }

  // Close the scope.
  emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
}

void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
  // If we have a symbol, it may be in a section that is COMDAT. If so, find the
  // comdat key. A section may be comdat because of -ffunction-sections or
  // because it is comdat in the IR.
  MCSectionCOFF *GVSec =
      GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
  const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;

  MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
      Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
  DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);

  OS.SwitchSection(DebugSec);

  // Emit the magic version number if this is the first time we've switched to
  // this section.
  if (ComdatDebugSections.insert(DebugSec).second)
    emitCodeViewMagicVersion();
}

// Emit an S_THUNK32/S_END symbol pair for a thunk routine.
// The only supported thunk ordinal is currently the standard type.
void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
                                          FunctionInfo &FI,
                                          const MCSymbol *Fn) {
  std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
  const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.

  OS.AddComment("Symbol subsection for " + Twine(FuncName));
  MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);

  // Emit S_THUNK32
  MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
  OS.AddComment("PtrParent");
  OS.EmitIntValue(0, 4);
  OS.AddComment("PtrEnd");
  OS.EmitIntValue(0, 4);
  OS.AddComment("PtrNext");
  OS.EmitIntValue(0, 4);
  OS.AddComment("Thunk section relative address");
  OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
  OS.AddComment("Thunk section index");
  OS.EmitCOFFSectionIndex(Fn);
  OS.AddComment("Code size");
  OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
  OS.AddComment("Ordinal");
  OS.EmitIntValue(unsigned(ordinal), 1);
  OS.AddComment("Function name");
  emitNullTerminatedSymbolName(OS, FuncName);
  // Additional fields specific to the thunk ordinal would go here.
  endSymbolRecord(ThunkRecordEnd);

  // Local variables/inlined routines are purposely omitted here.  The point of
  // marking this as a thunk is so Visual Studio will NOT stop in this routine.

  // Emit S_PROC_ID_END
  emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);

  endCVSubsection(SymbolsEnd);
}

void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
                                             FunctionInfo &FI) {
  // For each function there is a separate subsection which holds the PC to
  // file:line table.
  const MCSymbol *Fn = Asm->getSymbol(GV);
  assert(Fn);

  // Switch to the to a comdat section, if appropriate.
  switchToDebugSectionForSymbol(Fn);

  std::string FuncName;
  auto *SP = GV->getSubprogram();
  assert(SP);
  setCurrentSubprogram(SP);

  if (SP->isThunk()) {
    emitDebugInfoForThunk(GV, FI, Fn);
    return;
  }

  // If we have a display name, build the fully qualified name by walking the
  // chain of scopes.
  if (!SP->getName().empty())
    FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());

  // If our DISubprogram name is empty, use the mangled name.
  if (FuncName.empty())
    FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());

  // Emit FPO data, but only on 32-bit x86. No other platforms use it.
  if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
    OS.EmitCVFPOData(Fn);

  // Emit a symbol subsection, required by VS2012+ to find function boundaries.
  OS.AddComment("Symbol subsection for " + Twine(FuncName));
  MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
  {
    SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
                                                : SymbolKind::S_GPROC32_ID;
    MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);

    // These fields are filled in by tools like CVPACK which run after the fact.
    OS.AddComment("PtrParent");
    OS.EmitIntValue(0, 4);
    OS.AddComment("PtrEnd");
    OS.EmitIntValue(0, 4);
    OS.AddComment("PtrNext");
    OS.EmitIntValue(0, 4);
    // This is the important bit that tells the debugger where the function
    // code is located and what's its size:
    OS.AddComment("Code size");
    OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
    OS.AddComment("Offset after prologue");
    OS.EmitIntValue(0, 4);
    OS.AddComment("Offset before epilogue");
    OS.EmitIntValue(0, 4);
    OS.AddComment("Function type index");
    OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
    OS.AddComment("Function section relative address");
    OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
    OS.AddComment("Function section index");
    OS.EmitCOFFSectionIndex(Fn);
    OS.AddComment("Flags");
    OS.EmitIntValue(0, 1);
    // Emit the function display name as a null-terminated string.
    OS.AddComment("Function name");
    // Truncate the name so we won't overflow the record length field.
    emitNullTerminatedSymbolName(OS, FuncName);
    endSymbolRecord(ProcRecordEnd);

    MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
    // Subtract out the CSR size since MSVC excludes that and we include it.
    OS.AddComment("FrameSize");
    OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
    OS.AddComment("Padding");
    OS.EmitIntValue(0, 4);
    OS.AddComment("Offset of padding");
    OS.EmitIntValue(0, 4);
    OS.AddComment("Bytes of callee saved registers");
    OS.EmitIntValue(FI.CSRSize, 4);
    OS.AddComment("Exception handler offset");
    OS.EmitIntValue(0, 4);
    OS.AddComment("Exception handler section");
    OS.EmitIntValue(0, 2);
    OS.AddComment("Flags (defines frame register)");
    OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
    endSymbolRecord(FrameProcEnd);

    emitLocalVariableList(FI, FI.Locals);
    emitGlobalVariableList(FI.Globals);
    emitLexicalBlockList(FI.ChildBlocks, FI);

    // Emit inlined call site information. Only emit functions inlined directly
    // into the parent function. We'll emit the other sites recursively as part
    // of their parent inline site.
    for (const DILocation *InlinedAt : FI.ChildSites) {
      auto I = FI.InlineSites.find(InlinedAt);
      assert(I != FI.InlineSites.end() &&
             "child site not in function inline site map");
      emitInlinedCallSite(FI, InlinedAt, I->second);
    }

    for (auto Annot : FI.Annotations) {
      MCSymbol *Label = Annot.first;
      MDTuple *Strs = cast<MDTuple>(Annot.second);
      MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
      OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
      // FIXME: Make sure we don't overflow the max record size.
      OS.EmitCOFFSectionIndex(Label);
      OS.EmitIntValue(Strs->getNumOperands(), 2);
      for (Metadata *MD : Strs->operands()) {
        // MDStrings are null terminated, so we can do EmitBytes and get the
        // nice .asciz directive.
        StringRef Str = cast<MDString>(MD)->getString();
        assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
        OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
      }
      endSymbolRecord(AnnotEnd);
    }

    for (auto HeapAllocSite : FI.HeapAllocSites) {
      const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
      const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
      const DIType *DITy = std::get<2>(HeapAllocSite);
      MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
      OS.AddComment("Call site offset");
      OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
      OS.AddComment("Call site section index");
      OS.EmitCOFFSectionIndex(BeginLabel);
      OS.AddComment("Call instruction length");
      OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
      OS.AddComment("Type index");
      OS.EmitIntValue(getCompleteTypeIndex(DITy).getIndex(), 4);
      endSymbolRecord(HeapAllocEnd);
    }

    if (SP != nullptr)
      emitDebugInfoForUDTs(LocalUDTs);

    // We're done with this function.
    emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
  }
  endCVSubsection(SymbolsEnd);

  // We have an assembler directive that takes care of the whole line table.
  OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
}

CodeViewDebug::LocalVarDefRange
CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
  LocalVarDefRange DR;
  DR.InMemory = -1;
  DR.DataOffset = Offset;
  assert(DR.DataOffset == Offset && "truncation");
  DR.IsSubfield = 0;
  DR.StructOffset = 0;
  DR.CVRegister = CVRegister;
  return DR;
}

void CodeViewDebug::collectVariableInfoFromMFTable(
    DenseSet<InlinedEntity> &Processed) {
  const MachineFunction &MF = *Asm->MF;
  const TargetSubtargetInfo &TSI = MF.getSubtarget();
  const TargetFrameLowering *TFI = TSI.getFrameLowering();
  const TargetRegisterInfo *TRI = TSI.getRegisterInfo();

  for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
    if (!VI.Var)
      continue;
    assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
           "Expected inlined-at fields to agree");

    Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
    LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);

    // If variable scope is not found then skip this variable.
    if (!Scope)
      continue;

    // If the variable has an attached offset expression, extract it.
    // FIXME: Try to handle DW_OP_deref as well.
    int64_t ExprOffset = 0;
    bool Deref = false;
    if (VI.Expr) {
      // If there is one DW_OP_deref element, use offset of 0 and keep going.
      if (VI.Expr->getNumElements() == 1 &&
          VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
        Deref = true;
      else if (!VI.Expr->extractIfOffset(ExprOffset))
        continue;
    }

    // Get the frame register used and the offset.
    unsigned FrameReg = 0;
    int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
    uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);

    // Calculate the label ranges.
    LocalVarDefRange DefRange =
        createDefRangeMem(CVReg, FrameOffset + ExprOffset);

    for (const InsnRange &Range : Scope->getRanges()) {
      const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
      const MCSymbol *End = getLabelAfterInsn(Range.second);
      End = End ? End : Asm->getFunctionEnd();
      DefRange.Ranges.emplace_back(Begin, End);
    }

    LocalVariable Var;
    Var.DIVar = VI.Var;
    Var.DefRanges.emplace_back(std::move(DefRange));
    if (Deref)
      Var.UseReferenceType = true;

    recordLocalVariable(std::move(Var), Scope);
  }
}

static bool canUseReferenceType(const DbgVariableLocation &Loc) {
  return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
}

static bool needsReferenceType(const DbgVariableLocation &Loc) {
  return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
}

void CodeViewDebug::calculateRanges(
    LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
  const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();

  // Calculate the definition ranges.
  for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
    const auto &Entry = *I;
    if (!Entry.isDbgValue())
      continue;
    const MachineInstr *DVInst = Entry.getInstr();
    assert(DVInst->isDebugValue() && "Invalid History entry");
    // FIXME: Find a way to represent constant variables, since they are
    // relatively common.
    Optional<DbgVariableLocation> Location =
        DbgVariableLocation::extractFromMachineInstruction(*DVInst);
    if (!Location)
      continue;

    // CodeView can only express variables in register and variables in memory
    // at a constant offset from a register. However, for variables passed
    // indirectly by pointer, it is common for that pointer to be spilled to a
    // stack location. For the special case of one offseted load followed by a
    // zero offset load (a pointer spilled to the stack), we change the type of
    // the local variable from a value type to a reference type. This tricks the
    // debugger into doing the load for us.
    if (Var.UseReferenceType) {
      // We're using a reference type. Drop the last zero offset load.
      if (canUseReferenceType(*Location))
        Location->LoadChain.pop_back();
      else
        continue;
    } else if (needsReferenceType(*Location)) {
      // This location can't be expressed without switching to a reference type.
      // Start over using that.
      Var.UseReferenceType = true;
      Var.DefRanges.clear();
      calculateRanges(Var, Entries);
      return;
    }

    // We can only handle a register or an offseted load of a register.
    if (Location->Register == 0 || Location->LoadChain.size() > 1)
      continue;
    {
      LocalVarDefRange DR;
      DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
      DR.InMemory = !Location->LoadChain.empty();
      DR.DataOffset =
          !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
      if (Location->FragmentInfo) {
        DR.IsSubfield = true;
        DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
      } else {
        DR.IsSubfield = false;
        DR.StructOffset = 0;
      }

      if (Var.DefRanges.empty() ||
          Var.DefRanges.back().isDifferentLocation(DR)) {
        Var.DefRanges.emplace_back(std::move(DR));
      }
    }

    // Compute the label range.
    const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
    const MCSymbol *End;
    if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
      auto &EndingEntry = Entries[Entry.getEndIndex()];
      End = EndingEntry.isDbgValue()
                ? getLabelBeforeInsn(EndingEntry.getInstr())
                : getLabelAfterInsn(EndingEntry.getInstr());
    } else
      End = Asm->getFunctionEnd();

    // If the last range end is our begin, just extend the last range.
    // Otherwise make a new range.
    SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
        Var.DefRanges.back().Ranges;
    if (!R.empty() && R.back().second == Begin)
      R.back().second = End;
    else
      R.emplace_back(Begin, End);

    // FIXME: Do more range combining.
  }
}

void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
  DenseSet<InlinedEntity> Processed;
  // Grab the variable info that was squirreled away in the MMI side-table.
  collectVariableInfoFromMFTable(Processed);

  for (const auto &I : DbgValues) {
    InlinedEntity IV = I.first;
    if (Processed.count(IV))
      continue;
    const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
    const DILocation *InlinedAt = IV.second;

    // Instruction ranges, specifying where IV is accessible.
    const auto &Entries = I.second;

    LexicalScope *Scope = nullptr;
    if (InlinedAt)
      Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
    else
      Scope = LScopes.findLexicalScope(DIVar->getScope());
    // If variable scope is not found then skip this variable.
    if (!Scope)
      continue;

    LocalVariable Var;
    Var.DIVar = DIVar;

    calculateRanges(Var, Entries);
    recordLocalVariable(std::move(Var), Scope);
  }
}

void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
  const TargetSubtargetInfo &TSI = MF->getSubtarget();
  const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
  const MachineFrameInfo &MFI = MF->getFrameInfo();
  const Function &GV = MF->getFunction();
  auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
  assert(Insertion.second && "function already has info");
  CurFn = Insertion.first->second.get();
  CurFn->FuncId = NextFuncId++;
  CurFn->Begin = Asm->getFunctionBegin();

  // The S_FRAMEPROC record reports the stack size, and how many bytes of
  // callee-saved registers were used. For targets that don't use a PUSH
  // instruction (AArch64), this will be zero.
  CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
  CurFn->FrameSize = MFI.getStackSize();
  CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
  CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);

  // For this function S_FRAMEPROC record, figure out which codeview register
  // will be the frame pointer.
  CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
  CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
  if (CurFn->FrameSize > 0) {
    if (!TSI.getFrameLowering()->hasFP(*MF)) {
      CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
      CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
    } else {
      // If there is an FP, parameters are always relative to it.
      CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
      if (CurFn->HasStackRealignment) {
        // If the stack needs realignment, locals are relative to SP or VFRAME.
        CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
      } else {
        // Otherwise, locals are relative to EBP, and we probably have VLAs or
        // other stack adjustments.
        CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
      }
    }
  }

  // Compute other frame procedure options.
  FrameProcedureOptions FPO = FrameProcedureOptions::None;
  if (MFI.hasVarSizedObjects())
    FPO |= FrameProcedureOptions::HasAlloca;
  if (MF->exposesReturnsTwice())
    FPO |= FrameProcedureOptions::HasSetJmp;
  // FIXME: Set HasLongJmp if we ever track that info.
  if (MF->hasInlineAsm())
    FPO |= FrameProcedureOptions::HasInlineAssembly;
  if (GV.hasPersonalityFn()) {
    if (isAsynchronousEHPersonality(
            classifyEHPersonality(GV.getPersonalityFn())))
      FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
    else
      FPO |= FrameProcedureOptions::HasExceptionHandling;
  }
  if (GV.hasFnAttribute(Attribute::InlineHint))
    FPO |= FrameProcedureOptions::MarkedInline;
  if (GV.hasFnAttribute(Attribute::Naked))
    FPO |= FrameProcedureOptions::Naked;
  if (MFI.hasStackProtectorIndex())
    FPO |= FrameProcedureOptions::SecurityChecks;
  FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
  FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
  if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
      !GV.hasOptSize() && !GV.hasOptNone())
    FPO |= FrameProcedureOptions::OptimizedForSpeed;
  // FIXME: Set GuardCfg when it is implemented.
  CurFn->FrameProcOpts = FPO;

  OS.EmitCVFuncIdDirective(CurFn->FuncId);

  // Find the end of the function prolog.  First known non-DBG_VALUE and
  // non-frame setup location marks the beginning of the function body.
  // FIXME: is there a simpler a way to do this? Can we just search
  // for the first instruction of the function, not the last of the prolog?
  DebugLoc PrologEndLoc;
  bool EmptyPrologue = true;
  for (const auto &MBB : *MF) {
    for (const auto &MI : MBB) {
      if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
          MI.getDebugLoc()) {
        PrologEndLoc = MI.getDebugLoc();
        break;
      } else if (!MI.isMetaInstruction()) {
        EmptyPrologue = false;
      }
    }
  }

  // Record beginning of function if we have a non-empty prologue.
  if (PrologEndLoc && !EmptyPrologue) {
    DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
    maybeRecordLocation(FnStartDL, MF);
  }

  // Find heap alloc sites and emit labels around them.
  for (const auto &MBB : *MF) {
    for (const auto &MI : MBB) {
      if (MI.getHeapAllocMarker()) {
        requestLabelBeforeInsn(&MI);
        requestLabelAfterInsn(&MI);
      }
    }
  }
}

static bool shouldEmitUdt(const DIType *T) {
  if (!T)
    return false;

  // MSVC does not emit UDTs for typedefs that are scoped to classes.
  if (T->getTag() == dwarf::DW_TAG_typedef) {
    if (DIScope *Scope = T->getScope()) {
      switch (Scope->getTag()) {
      case dwarf::DW_TAG_structure_type:
      case dwarf::DW_TAG_class_type:
      case dwarf::DW_TAG_union_type:
        return false;
      }
    }
  }

  while (true) {
    if (!T || T->isForwardDecl())
      return false;

    const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
    if (!DT)
      return true;
    T = DT->getBaseType();
  }
  return true;
}

void CodeViewDebug::addToUDTs(const DIType *Ty) {
  // Don't record empty UDTs.
  if (Ty->getName().empty())
    return;
  if (!shouldEmitUdt(Ty))
    return;

  SmallVector<StringRef, 5> QualifiedNameComponents;
  const DISubprogram *ClosestSubprogram =
      getQualifiedNameComponents(Ty->getScope(), QualifiedNameComponents);

  std::string FullyQualifiedName =
      getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));

  if (ClosestSubprogram == nullptr) {
    GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
  } else if (ClosestSubprogram == CurrentSubprogram) {
    LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
  }

  // TODO: What if the ClosestSubprogram is neither null or the current
  // subprogram?  Currently, the UDT just gets dropped on the floor.
  //
  // The current behavior is not desirable.  To get maximal fidelity, we would
  // need to perform all type translation before beginning emission of .debug$S
  // and then make LocalUDTs a member of FunctionInfo
}

TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
  // Generic dispatch for lowering an unknown type.
  switch (Ty->getTag()) {
  case dwarf::DW_TAG_array_type:
    return lowerTypeArray(cast<DICompositeType>(Ty));
  case dwarf::DW_TAG_typedef:
    return lowerTypeAlias(cast<DIDerivedType>(Ty));
  case dwarf::DW_TAG_base_type:
    return lowerTypeBasic(cast<DIBasicType>(Ty));
  case dwarf::DW_TAG_pointer_type:
    if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
      return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
    LLVM_FALLTHROUGH;
  case dwarf::DW_TAG_reference_type:
  case dwarf::DW_TAG_rvalue_reference_type:
    return lowerTypePointer(cast<DIDerivedType>(Ty));
  case dwarf::DW_TAG_ptr_to_member_type:
    return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
  case dwarf::DW_TAG_restrict_type:
  case dwarf::DW_TAG_const_type:
  case dwarf::DW_TAG_volatile_type:
  // TODO: add support for DW_TAG_atomic_type here
    return lowerTypeModifier(cast<DIDerivedType>(Ty));
  case dwarf::DW_TAG_subroutine_type:
    if (ClassTy) {
      // The member function type of a member function pointer has no
      // ThisAdjustment.
      return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
                                     /*ThisAdjustment=*/0,
                                     /*IsStaticMethod=*/false);
    }
    return lowerTypeFunction(cast<DISubroutineType>(Ty));
  case dwarf::DW_TAG_enumeration_type:
    return lowerTypeEnum(cast<DICompositeType>(Ty));
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_structure_type:
    return lowerTypeClass(cast<DICompositeType>(Ty));
  case dwarf::DW_TAG_union_type:
    return lowerTypeUnion(cast<DICompositeType>(Ty));
  case dwarf::DW_TAG_unspecified_type:
    if (Ty->getName() == "decltype(nullptr)")
      return TypeIndex::NullptrT();
    return TypeIndex::None();
  default:
    // Use the null type index.
    return TypeIndex();
  }
}

TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
  TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
  StringRef TypeName = Ty->getName();

  addToUDTs(Ty);

  if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
      TypeName == "HRESULT")
    return TypeIndex(SimpleTypeKind::HResult);
  if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
      TypeName == "wchar_t")
    return TypeIndex(SimpleTypeKind::WideCharacter);

  return UnderlyingTypeIndex;
}

TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
  const DIType *ElementType = Ty->getBaseType();
  TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
  // IndexType is size_t, which depends on the bitness of the target.
  TypeIndex IndexType = getPointerSizeInBytes() == 8
                            ? TypeIndex(SimpleTypeKind::UInt64Quad)
                            : TypeIndex(SimpleTypeKind::UInt32Long);

  uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;

  // Add subranges to array type.
  DINodeArray Elements = Ty->getElements();
  for (int i = Elements.size() - 1; i >= 0; --i) {
    const DINode *Element = Elements[i];
    assert(Element->getTag() == dwarf::DW_TAG_subrange_type);

    const DISubrange *Subrange = cast<DISubrange>(Element);
    assert(Subrange->getLowerBound() == 0 &&
           "codeview doesn't support subranges with lower bounds");
    int64_t Count = -1;
    if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
      Count = CI->getSExtValue();

    // Forward declarations of arrays without a size and VLAs use a count of -1.
    // Emit a count of zero in these cases to match what MSVC does for arrays
    // without a size. MSVC doesn't support VLAs, so it's not clear what we
    // should do for them even if we could distinguish them.
    if (Count == -1)
      Count = 0;

    // Update the element size and element type index for subsequent subranges.
    ElementSize *= Count;

    // If this is the outermost array, use the size from the array. It will be
    // more accurate if we had a VLA or an incomplete element type size.
    uint64_t ArraySize =
        (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;

    StringRef Name = (i == 0) ? Ty->getName() : "";
    ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
    ElementTypeIndex = TypeTable.writeLeafType(AR);
  }

  return ElementTypeIndex;
}

TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
  TypeIndex Index;
  dwarf::TypeKind Kind;
  uint32_t ByteSize;

  Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
  ByteSize = Ty->getSizeInBits() / 8;

  SimpleTypeKind STK = SimpleTypeKind::None;
  switch (Kind) {
  case dwarf::DW_ATE_address:
    // FIXME: Translate
    break;
  case dwarf::DW_ATE_boolean:
    switch (ByteSize) {
    case 1:  STK = SimpleTypeKind::Boolean8;   break;
    case 2:  STK = SimpleTypeKind::Boolean16;  break;
    case 4:  STK = SimpleTypeKind::Boolean32;  break;
    case 8:  STK = SimpleTypeKind::Boolean64;  break;
    case 16: STK = SimpleTypeKind::Boolean128; break;
    }
    break;
  case dwarf::DW_ATE_complex_float:
    switch (ByteSize) {
    case 2:  STK = SimpleTypeKind::Complex16;  break;
    case 4:  STK = SimpleTypeKind::Complex32;  break;
    case 8:  STK = SimpleTypeKind::Complex64;  break;
    case 10: STK = SimpleTypeKind::Complex80;  break;
    case 16: STK = SimpleTypeKind::Complex128; break;
    }
    break;
  case dwarf::DW_ATE_float:
    switch (ByteSize) {
    case 2:  STK = SimpleTypeKind::Float16;  break;
    case 4:  STK = SimpleTypeKind::Float32;  break;
    case 6:  STK = SimpleTypeKind::Float48;  break;
    case 8:  STK = SimpleTypeKind::Float64;  break;
    case 10: STK = SimpleTypeKind::Float80;  break;
    case 16: STK = SimpleTypeKind::Float128; break;
    }
    break;
  case dwarf::DW_ATE_signed:
    switch (ByteSize) {
    case 1:  STK = SimpleTypeKind::SignedCharacter; break;
    case 2:  STK = SimpleTypeKind::Int16Short;      break;
    case 4:  STK = SimpleTypeKind::Int32;           break;
    case 8:  STK = SimpleTypeKind::Int64Quad;       break;
    case 16: STK = SimpleTypeKind::Int128Oct;       break;
    }
    break;
  case dwarf::DW_ATE_unsigned:
    switch (ByteSize) {
    case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
    case 2:  STK = SimpleTypeKind::UInt16Short;       break;
    case 4:  STK = SimpleTypeKind::UInt32;            break;
    case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
    case 16: STK = SimpleTypeKind::UInt128Oct;        break;
    }
    break;
  case dwarf::DW_ATE_UTF:
    switch (ByteSize) {
    case 2: STK = SimpleTypeKind::Character16; break;
    case 4: STK = SimpleTypeKind::Character32; break;
    }
    break;
  case dwarf::DW_ATE_signed_char:
    if (ByteSize == 1)
      STK = SimpleTypeKind::SignedCharacter;
    break;
  case dwarf::DW_ATE_unsigned_char:
    if (ByteSize == 1)
      STK = SimpleTypeKind::UnsignedCharacter;
    break;
  default:
    break;
  }

  // Apply some fixups based on the source-level type name.
  if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
    STK = SimpleTypeKind::Int32Long;
  if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
    STK = SimpleTypeKind::UInt32Long;
  if (STK == SimpleTypeKind::UInt16Short &&
      (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
    STK = SimpleTypeKind::WideCharacter;
  if ((STK == SimpleTypeKind::SignedCharacter ||
       STK == SimpleTypeKind::UnsignedCharacter) &&
      Ty->getName() == "char")
    STK = SimpleTypeKind::NarrowCharacter;

  return TypeIndex(STK);
}

TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
                                          PointerOptions PO) {
  TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());

  // Pointers to simple types without any options can use SimpleTypeMode, rather
  // than having a dedicated pointer type record.
  if (PointeeTI.isSimple() && PO == PointerOptions::None &&
      PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
      Ty->getTag() == dwarf::DW_TAG_pointer_type) {
    SimpleTypeMode Mode = Ty->getSizeInBits() == 64
                              ? SimpleTypeMode::NearPointer64
                              : SimpleTypeMode::NearPointer32;
    return TypeIndex(PointeeTI.getSimpleKind(), Mode);
  }

  PointerKind PK =
      Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
  PointerMode PM = PointerMode::Pointer;
  switch (Ty->getTag()) {
  default: llvm_unreachable("not a pointer tag type");
  case dwarf::DW_TAG_pointer_type:
    PM = PointerMode::Pointer;
    break;
  case dwarf::DW_TAG_reference_type:
    PM = PointerMode::LValueReference;
    break;
  case dwarf::DW_TAG_rvalue_reference_type:
    PM = PointerMode::RValueReference;
    break;
  }

  if (Ty->isObjectPointer())
    PO |= PointerOptions::Const;

  PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
  return TypeTable.writeLeafType(PR);
}

static PointerToMemberRepresentation
translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
  // SizeInBytes being zero generally implies that the member pointer type was
  // incomplete, which can happen if it is part of a function prototype. In this
  // case, use the unknown model instead of the general model.
  if (IsPMF) {
    switch (Flags & DINode::FlagPtrToMemberRep) {
    case 0:
      return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
                              : PointerToMemberRepresentation::GeneralFunction;
    case DINode::FlagSingleInheritance:
      return PointerToMemberRepresentation::SingleInheritanceFunction;
    case DINode::FlagMultipleInheritance:
      return PointerToMemberRepresentation::MultipleInheritanceFunction;
    case DINode::FlagVirtualInheritance:
      return PointerToMemberRepresentation::VirtualInheritanceFunction;
    }
  } else {
    switch (Flags & DINode::FlagPtrToMemberRep) {
    case 0:
      return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
                              : PointerToMemberRepresentation::GeneralData;
    case DINode::FlagSingleInheritance:
      return PointerToMemberRepresentation::SingleInheritanceData;
    case DINode::FlagMultipleInheritance:
      return PointerToMemberRepresentation::MultipleInheritanceData;
    case DINode::FlagVirtualInheritance:
      return PointerToMemberRepresentation::VirtualInheritanceData;
    }
  }
  llvm_unreachable("invalid ptr to member representation");
}

TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
                                                PointerOptions PO) {
  assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
  TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
  TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
  PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
                                                : PointerKind::Near32;
  bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
  PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
                         : PointerMode::PointerToDataMember;

  assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
  uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
  MemberPointerInfo MPI(
      ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
  PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
  return TypeTable.writeLeafType(PR);
}

/// Given a DWARF calling convention, get the CodeView equivalent. If we don't
/// have a translation, use the NearC convention.
static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
  switch (DwarfCC) {
  case dwarf::DW_CC_normal:             return CallingConvention::NearC;
  case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
  case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
  case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
  case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
  case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
  }
  return CallingConvention::NearC;
}

TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
  ModifierOptions Mods = ModifierOptions::None;
  PointerOptions PO = PointerOptions::None;
  bool IsModifier = true;
  const DIType *BaseTy = Ty;
  while (IsModifier && BaseTy) {
    // FIXME: Need to add DWARF tags for __unaligned and _Atomic
    switch (BaseTy->getTag()) {
    case dwarf::DW_TAG_const_type:
      Mods |= ModifierOptions::Const;
      PO |= PointerOptions::Const;
      break;
    case dwarf::DW_TAG_volatile_type:
      Mods |= ModifierOptions::Volatile;
      PO |= PointerOptions::Volatile;
      break;
    case dwarf::DW_TAG_restrict_type:
      // Only pointer types be marked with __restrict. There is no known flag
      // for __restrict in LF_MODIFIER records.
      PO |= PointerOptions::Restrict;
      break;
    default:
      IsModifier = false;
      break;
    }
    if (IsModifier)
      BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
  }

  // Check if the inner type will use an LF_POINTER record. If so, the
  // qualifiers will go in the LF_POINTER record. This comes up for types like
  // 'int *const' and 'int *__restrict', not the more common cases like 'const
  // char *'.
  if (BaseTy) {
    switch (BaseTy->getTag()) {
    case dwarf::DW_TAG_pointer_type:
    case dwarf::DW_TAG_reference_type:
    case dwarf::DW_TAG_rvalue_reference_type:
      return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
    case dwarf::DW_TAG_ptr_to_member_type:
      return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
    default:
      break;
    }
  }

  TypeIndex ModifiedTI = getTypeIndex(BaseTy);

  // Return the base type index if there aren't any modifiers. For example, the
  // metadata could contain restrict wrappers around non-pointer types.
  if (Mods == ModifierOptions::None)
    return ModifiedTI;

  ModifierRecord MR(ModifiedTI, Mods);
  return TypeTable.writeLeafType(MR);
}

TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
  SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
  for (const DIType *ArgType : Ty->getTypeArray())
    ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));

  // MSVC uses type none for variadic argument.
  if (ReturnAndArgTypeIndices.size() > 1 &&
      ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
    ReturnAndArgTypeIndices.back() = TypeIndex::None();
  }
  TypeIndex ReturnTypeIndex = TypeIndex::Void();
  ArrayRef<TypeIndex> ArgTypeIndices = None;
  if (!ReturnAndArgTypeIndices.empty()) {
    auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
    ReturnTypeIndex = ReturnAndArgTypesRef.front();
    ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
  }

  ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
  TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);

  CallingConvention CC = dwarfCCToCodeView(Ty->getCC());

  FunctionOptions FO = getFunctionOptions(Ty);
  ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
                            ArgListIndex);
  return TypeTable.writeLeafType(Procedure);
}

TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
                                                 const DIType *ClassTy,
                                                 int ThisAdjustment,
                                                 bool IsStaticMethod,
                                                 FunctionOptions FO) {
  // Lower the containing class type.
  TypeIndex ClassType = getTypeIndex(ClassTy);

  DITypeRefArray ReturnAndArgs = Ty->getTypeArray();

  unsigned Index = 0;
  SmallVector<TypeIndex, 8> ArgTypeIndices;
  TypeIndex ReturnTypeIndex = TypeIndex::Void();
  if (ReturnAndArgs.size() > Index) {
    ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
  }

  // If the first argument is a pointer type and this isn't a static method,
  // treat it as the special 'this' parameter, which is encoded separately from
  // the arguments.
  TypeIndex ThisTypeIndex;
  if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
    if (const DIDerivedType *PtrTy =
            dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
      if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
        ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
        Index++;
      }
    }
  }

  while (Index < ReturnAndArgs.size())
    ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));

  // MSVC uses type none for variadic argument.
  if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
    ArgTypeIndices.back() = TypeIndex::None();

  ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
  TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);

  CallingConvention CC = dwarfCCToCodeView(Ty->getCC());

  MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
                           ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
  return TypeTable.writeLeafType(MFR);
}

TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
  unsigned VSlotCount =
      Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
  SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);

  VFTableShapeRecord VFTSR(Slots);
  return TypeTable.writeLeafType(VFTSR);
}

static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
  switch (Flags & DINode::FlagAccessibility) {
  case DINode::FlagPrivate:   return MemberAccess::Private;
  case DINode::FlagPublic:    return MemberAccess::Public;
  case DINode::FlagProtected: return MemberAccess::Protected;
  case 0:
    // If there was no explicit access control, provide the default for the tag.
    return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
                                                 : MemberAccess::Public;
  }
  llvm_unreachable("access flags are exclusive");
}

static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
  if (SP->isArtificial())
    return MethodOptions::CompilerGenerated;

  // FIXME: Handle other MethodOptions.

  return MethodOptions::None;
}

static MethodKind translateMethodKindFlags(const DISubprogram *SP,
                                           bool Introduced) {
  if (SP->getFlags() & DINode::FlagStaticMember)
    return MethodKind::Static;

  switch (SP->getVirtuality()) {
  case dwarf::DW_VIRTUALITY_none:
    break;
  case dwarf::DW_VIRTUALITY_virtual:
    return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
  case dwarf::DW_VIRTUALITY_pure_virtual:
    return Introduced ? MethodKind::PureIntroducingVirtual
                      : MethodKind::PureVirtual;
  default:
    llvm_unreachable("unhandled virtuality case");
  }

  return MethodKind::Vanilla;
}

static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
  switch (Ty->getTag()) {
  case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
  case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
  }
  llvm_unreachable("unexpected tag");
}

/// Return ClassOptions that should be present on both the forward declaration
/// and the defintion of a tag type.
static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
  ClassOptions CO = ClassOptions::None;

  // MSVC always sets this flag, even for local types. Clang doesn't always
  // appear to give every type a linkage name, which may be problematic for us.
  // FIXME: Investigate the consequences of not following them here.
  if (!Ty->getIdentifier().empty())
    CO |= ClassOptions::HasUniqueName;

  // Put the Nested flag on a type if it appears immediately inside a tag type.
  // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
  // here. That flag is only set on definitions, and not forward declarations.
  const DIScope *ImmediateScope = Ty->getScope();
  if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
    CO |= ClassOptions::Nested;

  // Put the Scoped flag on function-local types. MSVC puts this flag for enum
  // type only when it has an immediate function scope. Clang never puts enums
  // inside DILexicalBlock scopes. Enum types, as generated by clang, are
  // always in function, class, or file scopes.
  if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
    if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
      CO |= ClassOptions::Scoped;
  } else {
    for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
         Scope = Scope->getScope()) {
      if (isa<DISubprogram>(Scope)) {
        CO |= ClassOptions::Scoped;
        break;
      }
    }
  }

  return CO;
}

void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
  switch (Ty->getTag()) {
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_union_type:
  case dwarf::DW_TAG_enumeration_type:
    break;
  default:
    return;
  }

  if (const auto *File = Ty->getFile()) {
    StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
    TypeIndex SIDI = TypeTable.writeLeafType(SIDR);

    UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
    TypeTable.writeLeafType(USLR);
  }
}

TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
  ClassOptions CO = getCommonClassOptions(Ty);
  TypeIndex FTI;
  unsigned EnumeratorCount = 0;

  if (Ty->isForwardDecl()) {
    CO |= ClassOptions::ForwardReference;
  } else {
    ContinuationRecordBuilder ContinuationBuilder;
    ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
    for (const DINode *Element : Ty->getElements()) {
      // We assume that the frontend provides all members in source declaration
      // order, which is what MSVC does.
      if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
        EnumeratorRecord ER(MemberAccess::Public,
                            APSInt::getUnsigned(Enumerator->getValue()),
                            Enumerator->getName());
        ContinuationBuilder.writeMemberType(ER);
        EnumeratorCount++;
      }
    }
    FTI = TypeTable.insertRecord(ContinuationBuilder);
  }

  std::string FullName = getFullyQualifiedName(Ty);

  EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
                getTypeIndex(Ty->getBaseType()));
  TypeIndex EnumTI = TypeTable.writeLeafType(ER);

  addUDTSrcLine(Ty, EnumTI);

  return EnumTI;
}

//===----------------------------------------------------------------------===//
// ClassInfo
//===----------------------------------------------------------------------===//

struct llvm::ClassInfo {
  struct MemberInfo {
    const DIDerivedType *MemberTypeNode;
    uint64_t BaseOffset;
  };
  // [MemberInfo]
  using MemberList = std::vector<MemberInfo>;

  using MethodsList = TinyPtrVector<const DISubprogram *>;
  // MethodName -> MethodsList
  using MethodsMap = MapVector<MDString *, MethodsList>;

  /// Base classes.
  std::vector<const DIDerivedType *> Inheritance;

  /// Direct members.
  MemberList Members;
  // Direct overloaded methods gathered by name.
  MethodsMap Methods;

  TypeIndex VShapeTI;

  std::vector<const DIType *> NestedTypes;
};

void CodeViewDebug::clear() {
  assert(CurFn == nullptr);
  FileIdMap.clear();
  FnDebugInfo.clear();
  FileToFilepathMap.clear();
  LocalUDTs.clear();
  GlobalUDTs.clear();
  TypeIndices.clear();
  CompleteTypeIndices.clear();
  ScopeGlobals.clear();
}

void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
                                      const DIDerivedType *DDTy) {
  if (!DDTy->getName().empty()) {
    Info.Members.push_back({DDTy, 0});
    return;
  }

  // An unnamed member may represent a nested struct or union. Attempt to
  // interpret the unnamed member as a DICompositeType possibly wrapped in
  // qualifier types. Add all the indirect fields to the current record if that
  // succeeds, and drop the member if that fails.
  assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
  uint64_t Offset = DDTy->getOffsetInBits();
  const DIType *Ty = DDTy->getBaseType();
  bool FullyResolved = false;
  while (!FullyResolved) {
    switch (Ty->getTag()) {
    case dwarf::DW_TAG_const_type:
    case dwarf::DW_TAG_volatile_type:
      // FIXME: we should apply the qualifier types to the indirect fields
      // rather than dropping them.
      Ty = cast<DIDerivedType>(Ty)->getBaseType();
      break;
    default:
      FullyResolved = true;
      break;
    }
  }

  const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
  if (!DCTy)
    return;

  ClassInfo NestedInfo = collectClassInfo(DCTy);
  for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
    Info.Members.push_back(
        {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
}

ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
  ClassInfo Info;
  // Add elements to structure type.
  DINodeArray Elements = Ty->getElements();
  for (auto *Element : Elements) {
    // We assume that the frontend provides all members in source declaration
    // order, which is what MSVC does.
    if (!Element)
      continue;
    if (auto *SP = dyn_cast<DISubprogram>(Element)) {
      Info.Methods[SP->getRawName()].push_back(SP);
    } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
      if (DDTy->getTag() == dwarf::DW_TAG_member) {
        collectMemberInfo(Info, DDTy);
      } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
        Info.Inheritance.push_back(DDTy);
      } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
                 DDTy->getName() == "__vtbl_ptr_type") {
        Info.VShapeTI = getTypeIndex(DDTy);
      } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
        Info.NestedTypes.push_back(DDTy);
      } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
        // Ignore friend members. It appears that MSVC emitted info about
        // friends in the past, but modern versions do not.
      }
    } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
      Info.NestedTypes.push_back(Composite);
    }
    // Skip other unrecognized kinds of elements.
  }
  return Info;
}

static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
  // This routine is used by lowerTypeClass and lowerTypeUnion to determine
  // if a complete type should be emitted instead of a forward reference.
  return Ty->getName().empty() && Ty->getIdentifier().empty() &&
      !Ty->isForwardDecl();
}

TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
  // Emit the complete type for unnamed structs.  C++ classes with methods
  // which have a circular reference back to the class type are expected to
  // be named by the front-end and should not be "unnamed".  C unnamed
  // structs should not have circular references.
  if (shouldAlwaysEmitCompleteClassType(Ty)) {
    // If this unnamed complete type is already in the process of being defined
    // then the description of the type is malformed and cannot be emitted
    // into CodeView correctly so report a fatal error.
    auto I = CompleteTypeIndices.find(Ty);
    if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
      report_fatal_error("cannot debug circular reference to unnamed type");
    return getCompleteTypeIndex(Ty);
  }

  // First, construct the forward decl.  Don't look into Ty to compute the
  // forward decl options, since it might not be available in all TUs.
  TypeRecordKind Kind = getRecordKind(Ty);
  ClassOptions CO =
      ClassOptions::ForwardReference | getCommonClassOptions(Ty);
  std::string FullName = getFullyQualifiedName(Ty);
  ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
                 FullName, Ty->getIdentifier());
  TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
  if (!Ty->isForwardDecl())
    DeferredCompleteTypes.push_back(Ty);
  return FwdDeclTI;
}

TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
  // Construct the field list and complete type record.
  TypeRecordKind Kind = getRecordKind(Ty);
  ClassOptions CO = getCommonClassOptions(Ty);
  TypeIndex FieldTI;
  TypeIndex VShapeTI;
  unsigned FieldCount;
  bool ContainsNestedClass;
  std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
      lowerRecordFieldList(Ty);

  if (ContainsNestedClass)
    CO |= ClassOptions::ContainsNestedClass;

  // MSVC appears to set this flag by searching any destructor or method with
  // FunctionOptions::Constructor among the emitted members. Clang AST has all
  // the members, however special member functions are not yet emitted into 
  // debug information. For now checking a class's non-triviality seems enough.
  // FIXME: not true for a nested unnamed struct.
  if (isNonTrivial(Ty))
    CO |= ClassOptions::HasConstructorOrDestructor;

  std::string FullName = getFullyQualifiedName(Ty);

  uint64_t SizeInBytes = Ty->getSizeInBits() / 8;

  ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
                 SizeInBytes, FullName, Ty->getIdentifier());
  TypeIndex ClassTI = TypeTable.writeLeafType(CR);

  addUDTSrcLine(Ty, ClassTI);

  addToUDTs(Ty);

  return ClassTI;
}

TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
  // Emit the complete type for unnamed unions.
  if (shouldAlwaysEmitCompleteClassType(Ty))
    return getCompleteTypeIndex(Ty);

  ClassOptions CO =
      ClassOptions::ForwardReference | getCommonClassOptions(Ty);
  std::string FullName = getFullyQualifiedName(Ty);
  UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
  TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
  if (!Ty->isForwardDecl())
    DeferredCompleteTypes.push_back(Ty);
  return FwdDeclTI;
}

TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
  ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
  TypeIndex FieldTI;
  unsigned FieldCount;
  bool ContainsNestedClass;
  std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
      lowerRecordFieldList(Ty);

  if (ContainsNestedClass)
    CO |= ClassOptions::ContainsNestedClass;

  uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
  std::string FullName = getFullyQualifiedName(Ty);

  UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
                 Ty->getIdentifier());
  TypeIndex UnionTI = TypeTable.writeLeafType(UR);

  addUDTSrcLine(Ty, UnionTI);

  addToUDTs(Ty);

  return UnionTI;
}

std::tuple<TypeIndex, TypeIndex, unsigned, bool>
CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
  // Manually count members. MSVC appears to count everything that generates a
  // field list record. Each individual overload in a method overload group
  // contributes to this count, even though the overload group is a single field
  // list record.
  unsigned MemberCount = 0;
  ClassInfo Info = collectClassInfo(Ty);
  ContinuationRecordBuilder ContinuationBuilder;
  ContinuationBuilder.begin(ContinuationRecordKind::FieldList);

  // Create base classes.
  for (const DIDerivedType *I : Info.Inheritance) {
    if (I->getFlags() & DINode::FlagVirtual) {
      // Virtual base.
      unsigned VBPtrOffset = I->getVBPtrOffset();
      // FIXME: Despite the accessor name, the offset is really in bytes.
      unsigned VBTableIndex = I->getOffsetInBits() / 4;
      auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
                            ? TypeRecordKind::IndirectVirtualBaseClass
                            : TypeRecordKind::VirtualBaseClass;
      VirtualBaseClassRecord VBCR(
          RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
          getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
          VBTableIndex);

      ContinuationBuilder.writeMemberType(VBCR);
      MemberCount++;
    } else {
      assert(I->getOffsetInBits() % 8 == 0 &&
             "bases must be on byte boundaries");
      BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
                          getTypeIndex(I->getBaseType()),
                          I->getOffsetInBits() / 8);
      ContinuationBuilder.writeMemberType(BCR);
      MemberCount++;
    }
  }

  // Create members.
  for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
    const DIDerivedType *Member = MemberInfo.MemberTypeNode;
    TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
    StringRef MemberName = Member->getName();
    MemberAccess Access =
        translateAccessFlags(Ty->getTag(), Member->getFlags());

    if (Member->isStaticMember()) {
      StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
      ContinuationBuilder.writeMemberType(SDMR);
      MemberCount++;
      continue;
    }

    // Virtual function pointer member.
    if ((Member->getFlags() & DINode::FlagArtificial) &&
        Member->getName().startswith("_vptr$")) {
      VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
      ContinuationBuilder.writeMemberType(VFPR);
      MemberCount++;
      continue;
    }

    // Data member.
    uint64_t MemberOffsetInBits =
        Member->getOffsetInBits() + MemberInfo.BaseOffset;
    if (Member->isBitField()) {
      uint64_t StartBitOffset = MemberOffsetInBits;
      if (const auto *CI =
              dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
        MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
      }
      StartBitOffset -= MemberOffsetInBits;
      BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
                         StartBitOffset);
      MemberBaseType = TypeTable.writeLeafType(BFR);
    }
    uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
    DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
                         MemberName);
    ContinuationBuilder.writeMemberType(DMR);
    MemberCount++;
  }

  // Create methods
  for (auto &MethodItr : Info.Methods) {
    StringRef Name = MethodItr.first->getString();

    std::vector<OneMethodRecord> Methods;
    for (const DISubprogram *SP : MethodItr.second) {
      TypeIndex MethodType = getMemberFunctionType(SP, Ty);
      bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;

      unsigned VFTableOffset = -1;
      if (Introduced)
        VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();

      Methods.push_back(OneMethodRecord(
          MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
          translateMethodKindFlags(SP, Introduced),
          translateMethodOptionFlags(SP), VFTableOffset, Name));
      MemberCount++;
    }
    assert(!Methods.empty() && "Empty methods map entry");
    if (Methods.size() == 1)
      ContinuationBuilder.writeMemberType(Methods[0]);
    else {
      // FIXME: Make this use its own ContinuationBuilder so that
      // MethodOverloadList can be split correctly.
      MethodOverloadListRecord MOLR(Methods);
      TypeIndex MethodList = TypeTable.writeLeafType(MOLR);

      OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
      ContinuationBuilder.writeMemberType(OMR);
    }
  }

  // Create nested classes.
  for (const DIType *Nested : Info.NestedTypes) {
    NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
    ContinuationBuilder.writeMemberType(R);
    MemberCount++;
  }

  TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
  return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
                         !Info.NestedTypes.empty());
}

TypeIndex CodeViewDebug::getVBPTypeIndex() {
  if (!VBPType.getIndex()) {
    // Make a 'const int *' type.
    ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
    TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);

    PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
                                                  : PointerKind::Near32;
    PointerMode PM = PointerMode::Pointer;
    PointerOptions PO = PointerOptions::None;
    PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
    VBPType = TypeTable.writeLeafType(PR);
  }

  return VBPType;
}

TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
  // The null DIType is the void type. Don't try to hash it.
  if (!Ty)
    return TypeIndex::Void();

  // Check if we've already translated this type. Don't try to do a
  // get-or-create style insertion that caches the hash lookup across the
  // lowerType call. It will update the TypeIndices map.
  auto I = TypeIndices.find({Ty, ClassTy});
  if (I != TypeIndices.end())
    return I->second;

  TypeLoweringScope S(*this);
  TypeIndex TI = lowerType(Ty, ClassTy);
  return recordTypeIndexForDINode(Ty, TI, ClassTy);
}

codeview::TypeIndex
CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
                                      const DISubroutineType *SubroutineTy) {
  assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
         "this type must be a pointer type");

  PointerOptions Options = PointerOptions::None;
  if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
    Options = PointerOptions::LValueRefThisPointer;
  else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
    Options = PointerOptions::RValueRefThisPointer;

  // Check if we've already translated this type.  If there is no ref qualifier
  // on the function then we look up this pointer type with no associated class
  // so that the TypeIndex for the this pointer can be shared with the type
  // index for other pointers to this class type.  If there is a ref qualifier
  // then we lookup the pointer using the subroutine as the parent type.
  auto I = TypeIndices.find({PtrTy, SubroutineTy});
  if (I != TypeIndices.end())
    return I->second;

  TypeLoweringScope S(*this);
  TypeIndex TI = lowerTypePointer(PtrTy, Options);
  return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
}

TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
  PointerRecord PR(getTypeIndex(Ty),
                   getPointerSizeInBytes() == 8 ? PointerKind::Near64
                                                : PointerKind::Near32,
                   PointerMode::LValueReference, PointerOptions::None,
                   Ty->getSizeInBits() / 8);
  return TypeTable.writeLeafType(PR);
}

TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
  // The null DIType is the void type. Don't try to hash it.
  if (!Ty)
    return TypeIndex::Void();

  // Look through typedefs when getting the complete type index. Call
  // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
  // emitted only once.
  if (Ty->getTag() == dwarf::DW_TAG_typedef)
    (void)getTypeIndex(Ty);
  while (Ty->getTag() == dwarf::DW_TAG_typedef)
    Ty = cast<DIDerivedType>(Ty)->getBaseType();

  // If this is a non-record type, the complete type index is the same as the
  // normal type index. Just call getTypeIndex.
  switch (Ty->getTag()) {
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_union_type:
    break;
  default:
    return getTypeIndex(Ty);
  }

  const auto *CTy = cast<DICompositeType>(Ty);

  TypeLoweringScope S(*this);

  // Make sure the forward declaration is emitted first. It's unclear if this
  // is necessary, but MSVC does it, and we should follow suit until we can show
  // otherwise.
  // We only emit a forward declaration for named types.
  if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
    TypeIndex FwdDeclTI = getTypeIndex(CTy);

    // Just use the forward decl if we don't have complete type info. This
    // might happen if the frontend is using modules and expects the complete
    // definition to be emitted elsewhere.
    if (CTy->isForwardDecl())
      return FwdDeclTI;
  }

  // Check if we've already translated the complete record type.
  // Insert the type with a null TypeIndex to signify that the type is currently
  // being lowered.
  auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
  if (!InsertResult.second)
    return InsertResult.first->second;

  TypeIndex TI;
  switch (CTy->getTag()) {
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_structure_type:
    TI = lowerCompleteTypeClass(CTy);
    break;
  case dwarf::DW_TAG_union_type:
    TI = lowerCompleteTypeUnion(CTy);
    break;
  default:
    llvm_unreachable("not a record");
  }

  // Update the type index associated with this CompositeType.  This cannot
  // use the 'InsertResult' iterator above because it is potentially
  // invalidated by map insertions which can occur while lowering the class
  // type above.
  CompleteTypeIndices[CTy] = TI;
  return TI;
}

/// Emit all the deferred complete record types. Try to do this in FIFO order,
/// and do this until fixpoint, as each complete record type typically
/// references
/// many other record types.
void CodeViewDebug::emitDeferredCompleteTypes() {
  SmallVector<const DICompositeType *, 4> TypesToEmit;
  while (!DeferredCompleteTypes.empty()) {
    std::swap(DeferredCompleteTypes, TypesToEmit);
    for (const DICompositeType *RecordTy : TypesToEmit)
      getCompleteTypeIndex(RecordTy);
    TypesToEmit.clear();
  }
}

void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
                                          ArrayRef<LocalVariable> Locals) {
  // Get the sorted list of parameters and emit them first.
  SmallVector<const LocalVariable *, 6> Params;
  for (const LocalVariable &L : Locals)
    if (L.DIVar->isParameter())
      Params.push_back(&L);
  llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
    return L->DIVar->getArg() < R->DIVar->getArg();
  });
  for (const LocalVariable *L : Params)
    emitLocalVariable(FI, *L);

  // Next emit all non-parameters in the order that we found them.
  for (const LocalVariable &L : Locals)
    if (!L.DIVar->isParameter())
      emitLocalVariable(FI, L);
}

void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
                                      const LocalVariable &Var) {
  // LocalSym record, see SymbolRecord.h for more info.
  MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);

  LocalSymFlags Flags = LocalSymFlags::None;
  if (Var.DIVar->isParameter())
    Flags |= LocalSymFlags::IsParameter;
  if (Var.DefRanges.empty())
    Flags |= LocalSymFlags::IsOptimizedOut;

  OS.AddComment("TypeIndex");
  TypeIndex TI = Var.UseReferenceType
                     ? getTypeIndexForReferenceTo(Var.DIVar->getType())
                     : getCompleteTypeIndex(Var.DIVar->getType());
  OS.EmitIntValue(TI.getIndex(), 4);
  OS.AddComment("Flags");
  OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
  // Truncate the name so we won't overflow the record length field.
  emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
  endSymbolRecord(LocalEnd);

  // Calculate the on disk prefix of the appropriate def range record. The
  // records and on disk formats are described in SymbolRecords.h. BytePrefix
  // should be big enough to hold all forms without memory allocation.
  SmallString<20> BytePrefix;
  for (const LocalVarDefRange &DefRange : Var.DefRanges) {
    BytePrefix.clear();
    if (DefRange.InMemory) {
      int Offset = DefRange.DataOffset;
      unsigned Reg = DefRange.CVRegister;

      // 32-bit x86 call sequences often use PUSH instructions, which disrupt
      // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
      // instead. In frames without stack realignment, $T0 will be the CFA.
      if (RegisterId(Reg) == RegisterId::ESP) {
        Reg = unsigned(RegisterId::VFRAME);
        Offset += FI.OffsetAdjustment;
      }

      // If we can use the chosen frame pointer for the frame and this isn't a
      // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
      // Otherwise, use S_DEFRANGE_REGISTER_REL.
      EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
      if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
          (bool(Flags & LocalSymFlags::IsParameter)
               ? (EncFP == FI.EncodedParamFramePtrReg)
               : (EncFP == FI.EncodedLocalFramePtrReg))) {
        DefRangeFramePointerRelHeader DRHdr;
        DRHdr.Offset = Offset;
        OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
      } else {
        uint16_t RegRelFlags = 0;
        if (DefRange.IsSubfield) {
          RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
                        (DefRange.StructOffset
                         << DefRangeRegisterRelSym::OffsetInParentShift);
        }
        DefRangeRegisterRelHeader DRHdr;
        DRHdr.Register = Reg;
        DRHdr.Flags = RegRelFlags;
        DRHdr.BasePointerOffset = Offset;
        OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
      }
    } else {
      assert(DefRange.DataOffset == 0 && "unexpected offset into register");
      if (DefRange.IsSubfield) {
        DefRangeSubfieldRegisterHeader DRHdr;
        DRHdr.Register = DefRange.CVRegister;
        DRHdr.MayHaveNoName = 0;
        DRHdr.OffsetInParent = DefRange.StructOffset;
        OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
      } else {
        DefRangeRegisterHeader DRHdr;
        DRHdr.Register = DefRange.CVRegister;
        DRHdr.MayHaveNoName = 0;
        OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
      }
    }
  }
}

void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
                                         const FunctionInfo& FI) {
  for (LexicalBlock *Block : Blocks)
    emitLexicalBlock(*Block, FI);
}

/// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
/// lexical block scope.
void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
                                     const FunctionInfo& FI) {
  MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
  OS.AddComment("PtrParent");
  OS.EmitIntValue(0, 4);                                  // PtrParent
  OS.AddComment("PtrEnd");
  OS.EmitIntValue(0, 4);                                  // PtrEnd
  OS.AddComment("Code size");
  OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
  OS.AddComment("Function section relative address");
  OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
  OS.AddComment("Function section index");
  OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
  OS.AddComment("Lexical block name");
  emitNullTerminatedSymbolName(OS, Block.Name);           // Name
  endSymbolRecord(RecordEnd);

  // Emit variables local to this lexical block.
  emitLocalVariableList(FI, Block.Locals);
  emitGlobalVariableList(Block.Globals);

  // Emit lexical blocks contained within this block.
  emitLexicalBlockList(Block.Children, FI);

  // Close the lexical block scope.
  emitEndSymbolRecord(SymbolKind::S_END);
}

/// Convenience routine for collecting lexical block information for a list
/// of lexical scopes.
void CodeViewDebug::collectLexicalBlockInfo(
        SmallVectorImpl<LexicalScope *> &Scopes,
        SmallVectorImpl<LexicalBlock *> &Blocks,
        SmallVectorImpl<LocalVariable> &Locals,
        SmallVectorImpl<CVGlobalVariable> &Globals) {
  for (LexicalScope *Scope : Scopes)
    collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
}

/// Populate the lexical blocks and local variable lists of the parent with
/// information about the specified lexical scope.
void CodeViewDebug::collectLexicalBlockInfo(
    LexicalScope &Scope,
    SmallVectorImpl<LexicalBlock *> &ParentBlocks,
    SmallVectorImpl<LocalVariable> &ParentLocals,
    SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
  if (Scope.isAbstractScope())
    return;

  // Gather information about the lexical scope including local variables,
  // global variables, and address ranges.
  bool IgnoreScope = false;
  auto LI = ScopeVariables.find(&Scope);
  SmallVectorImpl<LocalVariable> *Locals =
      LI != ScopeVariables.end() ? &LI->second : nullptr;
  auto GI = ScopeGlobals.find(Scope.getScopeNode());
  SmallVectorImpl<CVGlobalVariable> *Globals =
      GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
  const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
  const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();

  // Ignore lexical scopes which do not contain variables.
  if (!Locals && !Globals)
    IgnoreScope = true;

  // Ignore lexical scopes which are not lexical blocks.
  if (!DILB)
    IgnoreScope = true;

  // Ignore scopes which have too many address ranges to represent in the
  // current CodeView format or do not have a valid address range.
  //
  // For lexical scopes with multiple address ranges you may be tempted to
  // construct a single range covering every instruction where the block is
  // live and everything in between.  Unfortunately, Visual Studio only
  // displays variables from the first matching lexical block scope.  If the
  // first lexical block contains exception handling code or cold code which
  // is moved to the bottom of the routine creating a single range covering
  // nearly the entire routine, then it will hide all other lexical blocks
  // and the variables they contain.
  if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
    IgnoreScope = true;

  if (IgnoreScope) {
    // This scope can be safely ignored and eliminating it will reduce the
    // size of the debug information. Be sure to collect any variable and scope
    // information from the this scope or any of its children and collapse them
    // into the parent scope.
    if (Locals)
      ParentLocals.append(Locals->begin(), Locals->end());
    if (Globals)
      ParentGlobals.append(Globals->begin(), Globals->end());
    collectLexicalBlockInfo(Scope.getChildren(),
                            ParentBlocks,
                            ParentLocals,
                            ParentGlobals);
    return;
  }

  // Create a new CodeView lexical block for this lexical scope.  If we've
  // seen this DILexicalBlock before then the scope tree is malformed and
  // we can handle this gracefully by not processing it a second time.
  auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
  if (!BlockInsertion.second)
    return;

  // Create a lexical block containing the variables and collect the the
  // lexical block information for the children.
  const InsnRange &Range = Ranges.front();
  assert(Range.first && Range.second);
  LexicalBlock &Block = BlockInsertion.first->second;
  Block.Begin = getLabelBeforeInsn(Range.first);
  Block.End = getLabelAfterInsn(Range.second);
  assert(Block.Begin && "missing label for scope begin");
  assert(Block.End && "missing label for scope end");
  Block.Name = DILB->getName();
  if (Locals)
    Block.Locals = std::move(*Locals);
  if (Globals)
    Block.Globals = std::move(*Globals);
  ParentBlocks.push_back(&Block);
  collectLexicalBlockInfo(Scope.getChildren(),
                          Block.Children,
                          Block.Locals,
                          Block.Globals);
}

void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
  const Function &GV = MF->getFunction();
  assert(FnDebugInfo.count(&GV));
  assert(CurFn == FnDebugInfo[&GV].get());

  collectVariableInfo(GV.getSubprogram());

  // Build the lexical block structure to emit for this routine.
  if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
    collectLexicalBlockInfo(*CFS,
                            CurFn->ChildBlocks,
                            CurFn->Locals,
                            CurFn->Globals);

  // Clear the scope and variable information from the map which will not be
  // valid after we have finished processing this routine.  This also prepares
  // the map for the subsequent routine.
  ScopeVariables.clear();

  // Don't emit anything if we don't have any line tables.
  // Thunks are compiler-generated and probably won't have source correlation.
  if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
    FnDebugInfo.erase(&GV);
    CurFn = nullptr;
    return;
  }

  // Find heap alloc sites and add to list.
  for (const auto &MBB : *MF) {
    for (const auto &MI : MBB) {
      if (MDNode *MD = MI.getHeapAllocMarker()) {
        CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
                                                        getLabelAfterInsn(&MI),
                                                        dyn_cast<DIType>(MD)));
      }
    }
  }

  CurFn->Annotations = MF->getCodeViewAnnotations();

  CurFn->End = Asm->getFunctionEnd();

  CurFn = nullptr;
}

// Usable locations are valid with non-zero line numbers. A line number of zero
// corresponds to optimized code that doesn't have a distinct source location.
// In this case, we try to use the previous or next source location depending on
// the context.
static bool isUsableDebugLoc(DebugLoc DL) {
  return DL && DL.getLine() != 0;
}

void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
  DebugHandlerBase::beginInstruction(MI);

  // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
  if (!Asm || !CurFn || MI->isDebugInstr() ||
      MI->getFlag(MachineInstr::FrameSetup))
    return;

  // If the first instruction of a new MBB has no location, find the first
  // instruction with a location and use that.
  DebugLoc DL = MI->getDebugLoc();
  if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
    for (const auto &NextMI : *MI->getParent()) {
      if (NextMI.isDebugInstr())
        continue;
      DL = NextMI.getDebugLoc();
      if (isUsableDebugLoc(DL))
        break;
    }
    // FIXME: Handle the case where the BB has no valid locations. This would
    // probably require doing a real dataflow analysis.
  }
  PrevInstBB = MI->getParent();

  // If we still don't have a debug location, don't record a location.
  if (!isUsableDebugLoc(DL))
    return;

  maybeRecordLocation(DL, Asm->MF);
}

MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
  MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
           *EndLabel = MMI->getContext().createTempSymbol();
  OS.EmitIntValue(unsigned(Kind), 4);
  OS.AddComment("Subsection size");
  OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
  OS.EmitLabel(BeginLabel);
  return EndLabel;
}

void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
  OS.EmitLabel(EndLabel);
  // Every subsection must be aligned to a 4-byte boundary.
  OS.EmitValueToAlignment(4);
}

static StringRef getSymbolName(SymbolKind SymKind) {
  for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
    if (EE.Value == SymKind)
      return EE.Name;
  return "";
}

MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
  MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
           *EndLabel = MMI->getContext().createTempSymbol();
  OS.AddComment("Record length");
  OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
  OS.EmitLabel(BeginLabel);
  if (OS.isVerboseAsm())
    OS.AddComment("Record kind: " + getSymbolName(SymKind));
  OS.EmitIntValue(unsigned(SymKind), 2);
  return EndLabel;
}

void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
  // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
  // an extra copy of every symbol record in LLD. This increases object file
  // size by less than 1% in the clang build, and is compatible with the Visual
  // C++ linker.
  OS.EmitValueToAlignment(4);
  OS.EmitLabel(SymEnd);
}

void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
  OS.AddComment("Record length");
  OS.EmitIntValue(2, 2);
  if (OS.isVerboseAsm())
    OS.AddComment("Record kind: " + getSymbolName(EndKind));
  OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind
}

void CodeViewDebug::emitDebugInfoForUDTs(
    ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
  for (const auto &UDT : UDTs) {
    const DIType *T = UDT.second;
    assert(shouldEmitUdt(T));

    MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
    OS.AddComment("Type");
    OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
    emitNullTerminatedSymbolName(OS, UDT.first);
    endSymbolRecord(UDTRecordEnd);
  }
}

void CodeViewDebug::collectGlobalVariableInfo() {
  DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
      GlobalMap;
  for (const GlobalVariable &GV : MMI->getModule()->globals()) {
    SmallVector<DIGlobalVariableExpression *, 1> GVEs;
    GV.getDebugInfo(GVEs);
    for (const auto *GVE : GVEs)
      GlobalMap[GVE] = &GV;
  }

  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
  for (const MDNode *Node : CUs->operands()) {
    const auto *CU = cast<DICompileUnit>(Node);
    for (const auto *GVE : CU->getGlobalVariables()) {
      const DIGlobalVariable *DIGV = GVE->getVariable();
      const DIExpression *DIE = GVE->getExpression();

      // Emit constant global variables in a global symbol section.
      if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
        CVGlobalVariable CVGV = {DIGV, DIE};
        GlobalVariables.emplace_back(std::move(CVGV));
      }

      const auto *GV = GlobalMap.lookup(GVE);
      if (!GV || GV->isDeclarationForLinker())
        continue;

      DIScope *Scope = DIGV->getScope();
      SmallVector<CVGlobalVariable, 1> *VariableList;
      if (Scope && isa<DILocalScope>(Scope)) {
        // Locate a global variable list for this scope, creating one if
        // necessary.
        auto Insertion = ScopeGlobals.insert(
            {Scope, std::unique_ptr<GlobalVariableList>()});
        if (Insertion.second)
          Insertion.first->second = std::make_unique<GlobalVariableList>();
        VariableList = Insertion.first->second.get();
      } else if (GV->hasComdat())
        // Emit this global variable into a COMDAT section.
        VariableList = &ComdatVariables;
      else
        // Emit this global variable in a single global symbol section.
        VariableList = &GlobalVariables;
      CVGlobalVariable CVGV = {DIGV, GV};
      VariableList->emplace_back(std::move(CVGV));
    }
  }
}

void CodeViewDebug::emitDebugInfoForGlobals() {
  // First, emit all globals that are not in a comdat in a single symbol
  // substream. MSVC doesn't like it if the substream is empty, so only open
  // it if we have at least one global to emit.
  switchToDebugSectionForSymbol(nullptr);
  if (!GlobalVariables.empty()) {
    OS.AddComment("Symbol subsection for globals");
    MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
    emitGlobalVariableList(GlobalVariables);
    endCVSubsection(EndLabel);
  }

  // Second, emit each global that is in a comdat into its own .debug$S
  // section along with its own symbol substream.
  for (const CVGlobalVariable &CVGV : ComdatVariables) {
    const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
    MCSymbol *GVSym = Asm->getSymbol(GV);
    OS.AddComment("Symbol subsection for " +
                  Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
    switchToDebugSectionForSymbol(GVSym);
    MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
    // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
    emitDebugInfoForGlobal(CVGV);
    endCVSubsection(EndLabel);
  }
}

void CodeViewDebug::emitDebugInfoForRetainedTypes() {
  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
  for (const MDNode *Node : CUs->operands()) {
    for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
      if (DIType *RT = dyn_cast<DIType>(Ty)) {
        getTypeIndex(RT);
        // FIXME: Add to global/local DTU list.
      }
    }
  }
}

// Emit each global variable in the specified array.
void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
  for (const CVGlobalVariable &CVGV : Globals) {
    // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
    emitDebugInfoForGlobal(CVGV);
  }
}

void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
  const DIGlobalVariable *DIGV = CVGV.DIGV;
  if (const GlobalVariable *GV =
          CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
    // DataSym record, see SymbolRecord.h for more info. Thread local data
    // happens to have the same format as global data.
    MCSymbol *GVSym = Asm->getSymbol(GV);
    SymbolKind DataSym = GV->isThreadLocal()
                             ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
                                                      : SymbolKind::S_GTHREAD32)
                             : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
                                                      : SymbolKind::S_GDATA32);
    MCSymbol *DataEnd = beginSymbolRecord(DataSym);
    OS.AddComment("Type");
    OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
    OS.AddComment("DataOffset");
    OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
    OS.AddComment("Segment");
    OS.EmitCOFFSectionIndex(GVSym);
    OS.AddComment("Name");
    const unsigned LengthOfDataRecord = 12;
    emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord);
    endSymbolRecord(DataEnd);
  } else {
    // FIXME: Currently this only emits the global variables in the IR metadata.
    // This should also emit enums and static data members.
    const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
    assert(DIE->isConstant() &&
           "Global constant variables must contain a constant expression.");
    uint64_t Val = DIE->getElement(1);

    MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
    OS.AddComment("Type");
    OS.EmitIntValue(getTypeIndex(DIGV->getType()).getIndex(), 4);
    OS.AddComment("Value");

    // Encoded integers shouldn't need more than 10 bytes.
    uint8_t data[10];
    BinaryStreamWriter Writer(data, llvm::support::endianness::little);
    CodeViewRecordIO IO(Writer);
    cantFail(IO.mapEncodedInteger(Val));
    StringRef SRef((char *)data, Writer.getOffset());
    OS.EmitBinaryData(SRef);

    OS.AddComment("Name");
    const DIScope *Scope = DIGV->getScope();
    // For static data members, get the scope from the declaration.
    if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
            DIGV->getRawStaticDataMemberDeclaration()))
      Scope = MemberDecl->getScope();
    emitNullTerminatedSymbolName(OS,
                                 getFullyQualifiedName(Scope, DIGV->getName()));
    endSymbolRecord(SConstantEnd);
  }
}