reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Common functionality for different debug information format backends.
// LLVM currently supports DWARF and CodeView.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/DebugHandlerBase.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/MC/MCStreamer.h"

using namespace llvm;

#define DEBUG_TYPE "dwarfdebug"

Optional<DbgVariableLocation>
DbgVariableLocation::extractFromMachineInstruction(
    const MachineInstr &Instruction) {
  DbgVariableLocation Location;
  if (!Instruction.isDebugValue())
    return None;
  if (!Instruction.getOperand(0).isReg())
    return None;
  Location.Register = Instruction.getOperand(0).getReg();
  Location.FragmentInfo.reset();
  // We only handle expressions generated by DIExpression::appendOffset,
  // which doesn't require a full stack machine.
  int64_t Offset = 0;
  const DIExpression *DIExpr = Instruction.getDebugExpression();
  auto Op = DIExpr->expr_op_begin();
  while (Op != DIExpr->expr_op_end()) {
    switch (Op->getOp()) {
    case dwarf::DW_OP_constu: {
      int Value = Op->getArg(0);
      ++Op;
      if (Op != DIExpr->expr_op_end()) {
        switch (Op->getOp()) {
        case dwarf::DW_OP_minus:
          Offset -= Value;
          break;
        case dwarf::DW_OP_plus:
          Offset += Value;
          break;
        default:
          continue;
        }
      }
    } break;
    case dwarf::DW_OP_plus_uconst:
      Offset += Op->getArg(0);
      break;
    case dwarf::DW_OP_LLVM_fragment:
      Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
      break;
    case dwarf::DW_OP_deref:
      Location.LoadChain.push_back(Offset);
      Offset = 0;
      break;
    default:
      return None;
    }
    ++Op;
  }

  // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
  // instruction.
  // FIXME: Replace these with DIExpression.
  if (Instruction.isIndirectDebugValue())
    Location.LoadChain.push_back(Offset);

  return Location;
}

DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}

// Each LexicalScope has first instruction and last instruction to mark
// beginning and end of a scope respectively. Create an inverse map that list
// scopes starts (and ends) with an instruction. One instruction may start (or
// end) multiple scopes. Ignore scopes that are not reachable.
void DebugHandlerBase::identifyScopeMarkers() {
  SmallVector<LexicalScope *, 4> WorkList;
  WorkList.push_back(LScopes.getCurrentFunctionScope());
  while (!WorkList.empty()) {
    LexicalScope *S = WorkList.pop_back_val();

    const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
    if (!Children.empty())
      WorkList.append(Children.begin(), Children.end());

    if (S->isAbstractScope())
      continue;

    for (const InsnRange &R : S->getRanges()) {
      assert(R.first && "InsnRange does not have first instruction!");
      assert(R.second && "InsnRange does not have second instruction!");
      requestLabelBeforeInsn(R.first);
      requestLabelAfterInsn(R.second);
    }
  }
}

// Return Label preceding the instruction.
MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
  MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
  assert(Label && "Didn't insert label before instruction");
  return Label;
}

// Return Label immediately following the instruction.
MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
  return LabelsAfterInsn.lookup(MI);
}

// Return the function-local offset of an instruction.
const MCExpr *
DebugHandlerBase::getFunctionLocalOffsetAfterInsn(const MachineInstr *MI) {
  MCContext &MC = Asm->OutContext;

  MCSymbol *Start = Asm->getFunctionBegin();
  const auto *StartRef = MCSymbolRefExpr::create(Start, MC);

  MCSymbol *AfterInsn = getLabelAfterInsn(MI);
  assert(AfterInsn && "Expected label after instruction");
  const auto *AfterRef = MCSymbolRefExpr::create(AfterInsn, MC);

  return MCBinaryExpr::createSub(AfterRef, StartRef, MC);
}

/// If this type is derived from a base type then return base type size.
uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
  assert(Ty);
  const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
  if (!DDTy)
    return Ty->getSizeInBits();

  unsigned Tag = DDTy->getTag();

  if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
      Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
      Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type)
    return DDTy->getSizeInBits();

  DIType *BaseType = DDTy->getBaseType();

  if (!BaseType)
    return 0;

  // If this is a derived type, go ahead and get the base type, unless it's a
  // reference then it's just the size of the field. Pointer types have no need
  // of this since they're a different type of qualification on the type.
  if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
      BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
    return Ty->getSizeInBits();

  return getBaseTypeSize(BaseType);
}

static bool hasDebugInfo(const MachineModuleInfo *MMI,
                         const MachineFunction *MF) {
  if (!MMI->hasDebugInfo())
    return false;
  auto *SP = MF->getFunction().getSubprogram();
  if (!SP)
    return false;
  assert(SP->getUnit());
  auto EK = SP->getUnit()->getEmissionKind();
  if (EK == DICompileUnit::NoDebug)
    return false;
  return true;
}

void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
  PrevInstBB = nullptr;

  if (!Asm || !hasDebugInfo(MMI, MF)) {
    skippedNonDebugFunction();
    return;
  }

  // Grab the lexical scopes for the function, if we don't have any of those
  // then we're not going to be able to do anything.
  LScopes.initialize(*MF);
  if (LScopes.empty()) {
    beginFunctionImpl(MF);
    return;
  }

  // Make sure that each lexical scope will have a begin/end label.
  identifyScopeMarkers();

  // Calculate history for local variables.
  assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
  assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
  calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
                            DbgValues, DbgLabels);
  LLVM_DEBUG(DbgValues.dump());

  // Request labels for the full history.
  for (const auto &I : DbgValues) {
    const auto &Entries = I.second;
    if (Entries.empty())
      continue;

    auto IsDescribedByReg = [](const MachineInstr *MI) {
      return MI->getOperand(0).isReg() && MI->getOperand(0).getReg();
    };

    // The first mention of a function argument gets the CurrentFnBegin label,
    // so arguments are visible when breaking at function entry.
    //
    // We do not change the label for values that are described by registers,
    // as that could place them above their defining instructions. We should
    // ideally not change the labels for constant debug values either, since
    // doing that violates the ranges that are calculated in the history map.
    // However, we currently do not emit debug values for constant arguments
    // directly at the start of the function, so this code is still useful.
    const DILocalVariable *DIVar =
        Entries.front().getInstr()->getDebugVariable();
    if (DIVar->isParameter() &&
        getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
      if (!IsDescribedByReg(Entries.front().getInstr()))
        LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
      if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
        // Mark all non-overlapping initial fragments.
        for (auto I = Entries.begin(); I != Entries.end(); ++I) {
          if (!I->isDbgValue())
            continue;
          const DIExpression *Fragment = I->getInstr()->getDebugExpression();
          if (std::any_of(Entries.begin(), I,
                          [&](DbgValueHistoryMap::Entry Pred) {
                            return Pred.isDbgValue() &&
                                   Fragment->fragmentsOverlap(
                                       Pred.getInstr()->getDebugExpression());
                          }))
            break;
          // The code that generates location lists for DWARF assumes that the
          // entries' start labels are monotonically increasing, and since we
          // don't change the label for fragments that are described by
          // registers, we must bail out when encountering such a fragment.
          if (IsDescribedByReg(I->getInstr()))
            break;
          LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
        }
      }
    }

    for (const auto &Entry : Entries) {
      if (Entry.isDbgValue())
        requestLabelBeforeInsn(Entry.getInstr());
      else
        requestLabelAfterInsn(Entry.getInstr());
    }
  }

  // Ensure there is a symbol before DBG_LABEL.
  for (const auto &I : DbgLabels) {
    const MachineInstr *MI = I.second;
    requestLabelBeforeInsn(MI);
  }

  PrevInstLoc = DebugLoc();
  PrevLabel = Asm->getFunctionBegin();
  beginFunctionImpl(MF);
}

void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
  if (!MMI->hasDebugInfo())
    return;

  assert(CurMI == nullptr);
  CurMI = MI;

  // Insert labels where requested.
  DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
      LabelsBeforeInsn.find(MI);

  // No label needed.
  if (I == LabelsBeforeInsn.end())
    return;

  // Label already assigned.
  if (I->second)
    return;

  if (!PrevLabel) {
    PrevLabel = MMI->getContext().createTempSymbol();
    Asm->OutStreamer->EmitLabel(PrevLabel);
  }
  I->second = PrevLabel;
}

void DebugHandlerBase::endInstruction() {
  if (!MMI->hasDebugInfo())
    return;

  assert(CurMI != nullptr);
  // Don't create a new label after DBG_VALUE and other instructions that don't
  // generate code.
  if (!CurMI->isMetaInstruction()) {
    PrevLabel = nullptr;
    PrevInstBB = CurMI->getParent();
  }

  DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
      LabelsAfterInsn.find(CurMI);
  CurMI = nullptr;

  // No label needed.
  if (I == LabelsAfterInsn.end())
    return;

  // Label already assigned.
  if (I->second)
    return;

  // We need a label after this instruction.
  if (!PrevLabel) {
    PrevLabel = MMI->getContext().createTempSymbol();
    Asm->OutStreamer->EmitLabel(PrevLabel);
  }
  I->second = PrevLabel;
}

void DebugHandlerBase::endFunction(const MachineFunction *MF) {
  if (hasDebugInfo(MMI, MF))
    endFunctionImpl(MF);
  DbgValues.clear();
  DbgLabels.clear();
  LabelsBeforeInsn.clear();
  LabelsAfterInsn.clear();
}