reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "GDBRemoteRegisterContext.h"

#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/StreamString.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"
#include "lldb/Utility/StringExtractorGDBRemote.h"

#include <memory>

using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;

// GDBRemoteRegisterContext constructor
GDBRemoteRegisterContext::GDBRemoteRegisterContext(
    ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
    GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
    : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
      m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
  // Resize our vector of bools to contain one bool for every register. We will
  // use these boolean values to know when a register value is valid in
  // m_reg_data.
  m_reg_valid.resize(reg_info.GetNumRegisters());

  // Make a heap based buffer that is big enough to store all registers
  DataBufferSP reg_data_sp(
      new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
  m_reg_data.SetData(reg_data_sp);
  m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}

// Destructor
GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}

void GDBRemoteRegisterContext::InvalidateAllRegisters() {
  SetAllRegisterValid(false);
}

void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
  std::vector<bool>::iterator pos, end = m_reg_valid.end();
  for (pos = m_reg_valid.begin(); pos != end; ++pos)
    *pos = b;
}

size_t GDBRemoteRegisterContext::GetRegisterCount() {
  return m_reg_info.GetNumRegisters();
}

const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
  RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);

  if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
    const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
    uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
    reg_info->byte_size = reg_size;
  }
  return reg_info;
}

size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
  return m_reg_info.GetNumRegisterSets();
}

const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
  return m_reg_info.GetRegisterSet(reg_set);
}

bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
                                            RegisterValue &value) {
  // Read the register
  if (ReadRegisterBytes(reg_info, m_reg_data)) {
    const bool partial_data_ok = false;
    Status error(value.SetValueFromData(
        reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
    return error.Success();
  }
  return false;
}

bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
    uint32_t reg, llvm::ArrayRef<uint8_t> data) {
  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
  if (reg_info == nullptr)
    return false;

  // Invalidate if needed
  InvalidateIfNeeded(false);

  const size_t reg_byte_size = reg_info->byte_size;
  memcpy(const_cast<uint8_t *>(
             m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
         data.data(), std::min(data.size(), reg_byte_size));
  bool success = data.size() >= reg_byte_size;
  if (success) {
    SetRegisterIsValid(reg, true);
  } else if (data.size() > 0) {
    // Only set register is valid to false if we copied some bytes, else leave
    // it as it was.
    SetRegisterIsValid(reg, false);
  }
  return success;
}

bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
                                                       uint64_t new_reg_val) {
  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
  if (reg_info == nullptr)
    return false;

  // Early in process startup, we can get a thread that has an invalid byte
  // order because the process hasn't been completely set up yet (see the ctor
  // where the byte order is setfrom the process).  If that's the case, we
  // can't set the value here.
  if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
    return false;
  }

  // Invalidate if needed
  InvalidateIfNeeded(false);

  DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
  DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));

  // If our register context and our register info disagree, which should never
  // happen, don't overwrite past the end of the buffer.
  if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
    return false;

  // Grab a pointer to where we are going to put this register
  uint8_t *dst = const_cast<uint8_t *>(
      m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

  if (dst == nullptr)
    return false;

  if (data.CopyByteOrderedData(0,                          // src offset
                               reg_info->byte_size,        // src length
                               dst,                        // dst
                               reg_info->byte_size,        // dst length
                               m_reg_data.GetByteOrder())) // dst byte order
  {
    SetRegisterIsValid(reg, true);
    return true;
  }
  return false;
}

// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool GDBRemoteRegisterContext::GetPrimordialRegister(
    const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
  const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
  const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];

  if (DataBufferSP buffer_sp =
          gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
    return PrivateSetRegisterValue(
        lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
                                          buffer_sp->GetByteSize()));
  return false;
}

bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
                                                 DataExtractor &data) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  InvalidateIfNeeded(false);

  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

  if (!GetRegisterIsValid(reg)) {
    if (m_read_all_at_once) {
      if (DataBufferSP buffer_sp =
              gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
        memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
               buffer_sp->GetBytes(),
               std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
        if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
          SetAllRegisterValid(true);
          return true;
        } else {
          Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                                GDBR_LOG_PACKETS));
          LLDB_LOGF(
              log,
              "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
              "to read the "
              "entire register context at once, expected at least %" PRId64
              " bytes "
              "but only got %" PRId64 " bytes.",
              m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
        }
      }
      return false;
    }
    if (reg_info->value_regs) {
      // Process this composite register request by delegating to the
      // constituent primordial registers.

      // Index of the primordial register.
      bool success = true;
      for (uint32_t idx = 0; success; ++idx) {
        const uint32_t prim_reg = reg_info->value_regs[idx];
        if (prim_reg == LLDB_INVALID_REGNUM)
          break;
        // We have a valid primordial register as our constituent. Grab the
        // corresponding register info.
        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
        if (prim_reg_info == nullptr)
          success = false;
        else {
          // Read the containing register if it hasn't already been read
          if (!GetRegisterIsValid(prim_reg))
            success = GetPrimordialRegister(prim_reg_info, gdb_comm);
        }
      }

      if (success) {
        // If we reach this point, all primordial register requests have
        // succeeded. Validate this composite register.
        SetRegisterIsValid(reg_info, true);
      }
    } else {
      // Get each register individually
      GetPrimordialRegister(reg_info, gdb_comm);
    }

    // Make sure we got a valid register value after reading it
    if (!GetRegisterIsValid(reg))
      return false;
  }

  if (&data != &m_reg_data) {
    assert(m_reg_data.GetByteSize() >=
           reg_info->byte_offset + reg_info->byte_size);
    // If our register context and our register info disagree, which should
    // never happen, don't read past the end of the buffer.
    if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
      return false;

    // If we aren't extracting into our own buffer (which only happens when
    // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
    // we transfer bytes from our buffer into the data buffer that was passed
    // in

    data.SetByteOrder(m_reg_data.GetByteOrder());
    data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
  }
  return true;
}

bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
                                             const RegisterValue &value) {
  DataExtractor data;
  if (value.GetData(data))
    return WriteRegisterBytes(reg_info, data, 0);
  return false;
}

// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool GDBRemoteRegisterContext::SetPrimordialRegister(
    const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
  StreamString packet;
  StringExtractorGDBRemote response;
  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
  // Invalidate just this register
  SetRegisterIsValid(reg, false);

  return gdb_comm.WriteRegister(
      m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
      {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
       reg_info->byte_size});
}

bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
                                                  DataExtractor &data,
                                                  uint32_t data_offset) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  assert(m_reg_data.GetByteSize() >=
         reg_info->byte_offset + reg_info->byte_size);

  // If our register context and our register info disagree, which should never
  // happen, don't overwrite past the end of the buffer.
  if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
    return false;

  // Grab a pointer to where we are going to put this register
  uint8_t *dst = const_cast<uint8_t *>(
      m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

  if (dst == nullptr)
    return false;

  if (data.CopyByteOrderedData(data_offset,                // src offset
                               reg_info->byte_size,        // src length
                               dst,                        // dst
                               reg_info->byte_size,        // dst length
                               m_reg_data.GetByteOrder())) // dst byte order
  {
    GDBRemoteClientBase::Lock lock(gdb_comm, false);
    if (lock) {
      if (m_read_all_at_once) {
        // Invalidate all register values
        InvalidateIfNeeded(true);

        // Set all registers in one packet
        if (gdb_comm.WriteAllRegisters(
                m_thread.GetProtocolID(),
                {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))

        {
          SetAllRegisterValid(false);
          return true;
        }
      } else {
        bool success = true;

        if (reg_info->value_regs) {
          // This register is part of another register. In this case we read
          // the actual register data for any "value_regs", and once all that
          // data is read, we will have enough data in our register context
          // bytes for the value of this register

          // Invalidate this composite register first.

          for (uint32_t idx = 0; success; ++idx) {
            const uint32_t reg = reg_info->value_regs[idx];
            if (reg == LLDB_INVALID_REGNUM)
              break;
            // We have a valid primordial register as our constituent. Grab the
            // corresponding register info.
            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
            if (value_reg_info == nullptr)
              success = false;
            else
              success = SetPrimordialRegister(value_reg_info, gdb_comm);
          }
        } else {
          // This is an actual register, write it
          success = SetPrimordialRegister(reg_info, gdb_comm);
        }

        // Check if writing this register will invalidate any other register
        // values? If so, invalidate them
        if (reg_info->invalidate_regs) {
          for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
               reg != LLDB_INVALID_REGNUM;
               reg = reg_info->invalidate_regs[++idx]) {
            SetRegisterIsValid(reg, false);
          }
        }

        return success;
      }
    } else {
      Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                             GDBR_LOG_PACKETS));
      if (log) {
        if (log->GetVerbose()) {
          StreamString strm;
          gdb_comm.DumpHistory(strm);
          LLDB_LOGF(log,
                    "error: failed to get packet sequence mutex, not sending "
                    "write register for \"%s\":\n%s",
                    reg_info->name, strm.GetData());
        } else
          LLDB_LOGF(log,
                    "error: failed to get packet sequence mutex, not sending "
                    "write register for \"%s\"",
                    reg_info->name);
      }
    }
  }
  return false;
}

bool GDBRemoteRegisterContext::ReadAllRegisterValues(
    RegisterCheckpoint &reg_checkpoint) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  uint32_t save_id = 0;
  if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
    reg_checkpoint.SetID(save_id);
    reg_checkpoint.GetData().reset();
    return true;
  } else {
    reg_checkpoint.SetID(0); // Invalid save ID is zero
    return ReadAllRegisterValues(reg_checkpoint.GetData());
  }
}

bool GDBRemoteRegisterContext::WriteAllRegisterValues(
    const RegisterCheckpoint &reg_checkpoint) {
  uint32_t save_id = reg_checkpoint.GetID();
  if (save_id != 0) {
    ExecutionContext exe_ctx(CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == nullptr || thread == nullptr)
      return false;

    GDBRemoteCommunicationClient &gdb_comm(
        ((ProcessGDBRemote *)process)->GetGDBRemote());

    return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
  } else {
    return WriteAllRegisterValues(reg_checkpoint.GetData());
  }
}

bool GDBRemoteRegisterContext::ReadAllRegisterValues(
    lldb::DataBufferSP &data_sp) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  const bool use_g_packet =
      !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);

  GDBRemoteClientBase::Lock lock(gdb_comm, false);
  if (lock) {
    if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
      InvalidateAllRegisters();

    if (use_g_packet &&
        (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
      return true;

    // We're going to read each register
    // individually and store them as binary data in a buffer.
    const RegisterInfo *reg_info;

    for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
         i++) {
      if (reg_info
              ->value_regs) // skip registers that are slices of real registers
        continue;
      ReadRegisterBytes(reg_info, m_reg_data);
      // ReadRegisterBytes saves the contents of the register in to the
      // m_reg_data buffer
    }
    data_sp = std::make_shared<DataBufferHeap>(
        m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
    return true;
  } else {

    Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                           GDBR_LOG_PACKETS));
    if (log) {
      if (log->GetVerbose()) {
        StreamString strm;
        gdb_comm.DumpHistory(strm);
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "read all registers:\n%s",
                  strm.GetData());
      } else
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "read all registers");
    }
  }

  data_sp.reset();
  return false;
}

bool GDBRemoteRegisterContext::WriteAllRegisterValues(
    const lldb::DataBufferSP &data_sp) {
  if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
    return false;

  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  const bool use_g_packet =
      !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);

  GDBRemoteClientBase::Lock lock(gdb_comm, false);
  if (lock) {
    // The data_sp contains the G response packet.
    if (use_g_packet) {
      if (gdb_comm.WriteAllRegisters(
              m_thread.GetProtocolID(),
              {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
        return true;

      uint32_t num_restored = 0;
      // We need to manually go through all of the registers and restore them
      // manually
      DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
                                 m_reg_data.GetAddressByteSize());

      const RegisterInfo *reg_info;

      // The g packet contents may either include the slice registers
      // (registers defined in terms of other registers, e.g. eax is a subset
      // of rax) or not.  The slice registers should NOT be in the g packet,
      // but some implementations may incorrectly include them.
      //
      // If the slice registers are included in the packet, we must step over
      // the slice registers when parsing the packet -- relying on the
      // RegisterInfo byte_offset field would be incorrect. If the slice
      // registers are not included, then using the byte_offset values into the
      // data buffer is the best way to find individual register values.

      uint64_t size_including_slice_registers = 0;
      uint64_t size_not_including_slice_registers = 0;
      uint64_t size_by_highest_offset = 0;

      for (uint32_t reg_idx = 0;
           (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
        size_including_slice_registers += reg_info->byte_size;
        if (reg_info->value_regs == nullptr)
          size_not_including_slice_registers += reg_info->byte_size;
        if (reg_info->byte_offset >= size_by_highest_offset)
          size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
      }

      bool use_byte_offset_into_buffer;
      if (size_by_highest_offset == restore_data.GetByteSize()) {
        // The size of the packet agrees with the highest offset: + size in the
        // register file
        use_byte_offset_into_buffer = true;
      } else if (size_not_including_slice_registers ==
                 restore_data.GetByteSize()) {
        // The size of the packet is the same as concatenating all of the
        // registers sequentially, skipping the slice registers
        use_byte_offset_into_buffer = true;
      } else if (size_including_slice_registers == restore_data.GetByteSize()) {
        // The slice registers are present in the packet (when they shouldn't
        // be). Don't try to use the RegisterInfo byte_offset into the
        // restore_data, it will point to the wrong place.
        use_byte_offset_into_buffer = false;
      } else {
        // None of our expected sizes match the actual g packet data we're
        // looking at. The most conservative approach here is to use the
        // running total byte offset.
        use_byte_offset_into_buffer = false;
      }

      // In case our register definitions don't include the correct offsets,
      // keep track of the size of each reg & compute offset based on that.
      uint32_t running_byte_offset = 0;
      for (uint32_t reg_idx = 0;
           (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
           ++reg_idx, running_byte_offset += reg_info->byte_size) {
        // Skip composite aka slice registers (e.g. eax is a slice of rax).
        if (reg_info->value_regs)
          continue;

        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

        uint32_t register_offset;
        if (use_byte_offset_into_buffer) {
          register_offset = reg_info->byte_offset;
        } else {
          register_offset = running_byte_offset;
        }

        const uint32_t reg_byte_size = reg_info->byte_size;

        const uint8_t *restore_src =
            restore_data.PeekData(register_offset, reg_byte_size);
        if (restore_src) {
          SetRegisterIsValid(reg, false);
          if (gdb_comm.WriteRegister(
                  m_thread.GetProtocolID(),
                  reg_info->kinds[eRegisterKindProcessPlugin],
                  {restore_src, reg_byte_size}))
            ++num_restored;
        }
      }
      return num_restored > 0;
    } else {
      // For the use_g_packet == false case, we're going to write each register
      // individually.  The data buffer is binary data in this case, instead of
      // ascii characters.

      bool arm64_debugserver = false;
      if (m_thread.GetProcess().get()) {
        const ArchSpec &arch =
            m_thread.GetProcess()->GetTarget().GetArchitecture();
        if (arch.IsValid() && 
            (arch.GetMachine() == llvm::Triple::aarch64 ||
             arch.GetMachine() == llvm::Triple::aarch64_32) &&
            arch.GetTriple().getVendor() == llvm::Triple::Apple &&
            arch.GetTriple().getOS() == llvm::Triple::IOS) {
          arm64_debugserver = true;
        }
      }
      uint32_t num_restored = 0;
      const RegisterInfo *reg_info;
      for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
           i++) {
        if (reg_info->value_regs) // skip registers that are slices of real
                                  // registers
          continue;
        // Skip the fpsr and fpcr floating point status/control register
        // writing to work around a bug in an older version of debugserver that
        // would lead to register context corruption when writing fpsr/fpcr.
        if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
                                  strcmp(reg_info->name, "fpcr") == 0)) {
          continue;
        }

        SetRegisterIsValid(reg_info, false);
        if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
                                   reg_info->kinds[eRegisterKindProcessPlugin],
                                   {data_sp->GetBytes() + reg_info->byte_offset,
                                    reg_info->byte_size}))
          ++num_restored;
      }
      return num_restored > 0;
    }
  } else {
    Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                           GDBR_LOG_PACKETS));
    if (log) {
      if (log->GetVerbose()) {
        StreamString strm;
        gdb_comm.DumpHistory(strm);
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "write all registers:\n%s",
                  strm.GetData());
      } else
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "write all registers");
    }
  }
  return false;
}

uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
    lldb::RegisterKind kind, uint32_t num) {
  return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
}

void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
  // For Advanced SIMD and VFP register mapping.
  static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
  static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
  static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
  static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
  static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
  static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
  static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
  static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
  static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
  static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
  static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
  static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
  static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
  static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
  static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
  static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
  static uint32_t g_q0_regs[] = {
      26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
  static uint32_t g_q1_regs[] = {
      30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
  static uint32_t g_q2_regs[] = {
      34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
  static uint32_t g_q3_regs[] = {
      38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
  static uint32_t g_q4_regs[] = {
      42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
  static uint32_t g_q5_regs[] = {
      46, 47, 48, 49,
      LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
  static uint32_t g_q6_regs[] = {
      50, 51, 52, 53,
      LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
  static uint32_t g_q7_regs[] = {
      54, 55, 56, 57,
      LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
  static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
  static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
  static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
  static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
  static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
  static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
  static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
  static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)

  // This is our array of composite registers, with each element coming from
  // the above register mappings.
  static uint32_t *g_composites[] = {
      g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
      g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
      g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
      g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
      g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
      g_q14_regs, g_q15_regs};

  // clang-format off
    static RegisterInfo g_register_infos[] = {
//   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
//   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
    { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
    { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
    { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
    { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
    { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
    { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
    { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
    { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
    { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
    { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
    { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
    { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
    { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
    { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
    { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
    { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
    { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
    { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
    { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
    { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
    { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
    { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
    { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
    { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
    { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
    { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
    { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
    { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
    { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
    { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
    { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
    { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
    { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
    { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
    { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
    { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
    { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
    { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
    { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
    { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
    { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
    { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
    { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
    { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
    { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
    { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
    { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
    { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
    { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
    { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
    { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
    { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
    { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
    { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
    { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
    { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
    { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
    { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
    { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
    { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
    { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
    { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
    { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
    { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
    { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
    { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
    { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
    { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
    { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
    { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
    { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
    { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
    { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
    { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
    { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
    { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
    { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
    { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
    { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
    { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
    { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
    { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
    { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
    { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
    { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
    { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
    { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
    { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
    { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
    { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
    { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
    { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
    { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
    { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
    { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
    { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
    { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
    { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
    { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
    { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
    { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
    { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
    { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
    { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
    { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
    { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
    { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
    };
  // clang-format on

  static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
  static ConstString gpr_reg_set("General Purpose Registers");
  static ConstString sfp_reg_set("Software Floating Point Registers");
  static ConstString vfp_reg_set("Floating Point Registers");
  size_t i;
  if (from_scratch) {
    // Calculate the offsets of the registers
    // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
    // which comes after the "primordial" registers is important.  This enables
    // us to calculate the offset of the composite register by using the offset
    // of its first primordial register.  For example, to calculate the offset
    // of q0, use s0's offset.
    if (g_register_infos[2].byte_offset == 0) {
      uint32_t byte_offset = 0;
      for (i = 0; i < num_registers; ++i) {
        // For primordial registers, increment the byte_offset by the byte_size
        // to arrive at the byte_offset for the next register.  Otherwise, we
        // have a composite register whose offset can be calculated by
        // consulting the offset of its first primordial register.
        if (!g_register_infos[i].value_regs) {
          g_register_infos[i].byte_offset = byte_offset;
          byte_offset += g_register_infos[i].byte_size;
        } else {
          const uint32_t first_primordial_reg =
              g_register_infos[i].value_regs[0];
          g_register_infos[i].byte_offset =
              g_register_infos[first_primordial_reg].byte_offset;
        }
      }
    }
    for (i = 0; i < num_registers; ++i) {
      ConstString name;
      ConstString alt_name;
      if (g_register_infos[i].name && g_register_infos[i].name[0])
        name.SetCString(g_register_infos[i].name);
      if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
        alt_name.SetCString(g_register_infos[i].alt_name);

      if (i <= 15 || i == 25)
        AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
      else if (i <= 24)
        AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
      else
        AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
    }
  } else {
    // Add composite registers to our primordial registers, then.
    const size_t num_composites = llvm::array_lengthof(g_composites);
    const size_t num_dynamic_regs = GetNumRegisters();
    const size_t num_common_regs = num_registers - num_composites;
    RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;

    // First we need to validate that all registers that we already have match
    // the non composite regs. If so, then we can add the registers, else we
    // need to bail
    bool match = true;
    if (num_dynamic_regs == num_common_regs) {
      for (i = 0; match && i < num_dynamic_regs; ++i) {
        // Make sure all register names match
        if (m_regs[i].name && g_register_infos[i].name) {
          if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
            match = false;
            break;
          }
        }

        // Make sure all register byte sizes match
        if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
          match = false;
          break;
        }
      }
    } else {
      // Wrong number of registers.
      match = false;
    }
    // If "match" is true, then we can add extra registers.
    if (match) {
      for (i = 0; i < num_composites; ++i) {
        ConstString name;
        ConstString alt_name;
        const uint32_t first_primordial_reg =
            g_comp_register_infos[i].value_regs[0];
        const char *reg_name = g_register_infos[first_primordial_reg].name;
        if (reg_name && reg_name[0]) {
          for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
            const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
            // Find a matching primordial register info entry.
            if (reg_info && reg_info->name &&
                ::strcasecmp(reg_info->name, reg_name) == 0) {
              // The name matches the existing primordial entry. Find and
              // assign the offset, and then add this composite register entry.
              g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
              name.SetCString(g_comp_register_infos[i].name);
              AddRegister(g_comp_register_infos[i], name, alt_name,
                          vfp_reg_set);
            }
          }
        }
      }
    }
  }
}