1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
| //===-- RegisterValue.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Args.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-private-types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include <cstdint>
#include <string>
#include <tuple>
#include <vector>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
using namespace lldb;
using namespace lldb_private;
bool RegisterValue::GetData(DataExtractor &data) const {
return data.SetData(GetBytes(), GetByteSize(), GetByteOrder()) > 0;
}
uint32_t RegisterValue::GetAsMemoryData(const RegisterInfo *reg_info, void *dst,
uint32_t dst_len,
lldb::ByteOrder dst_byte_order,
Status &error) const {
if (reg_info == nullptr) {
error.SetErrorString("invalid register info argument.");
return 0;
}
// ReadRegister should have already been called on this object prior to
// calling this.
if (GetType() == eTypeInvalid) {
// No value has been read into this object...
error.SetErrorStringWithFormat(
"invalid register value type for register %s", reg_info->name);
return 0;
}
if (dst_len > kMaxRegisterByteSize) {
error.SetErrorString("destination is too big");
return 0;
}
const uint32_t src_len = reg_info->byte_size;
// Extract the register data into a data extractor
DataExtractor reg_data;
if (!GetData(reg_data)) {
error.SetErrorString("invalid register value to copy into");
return 0;
}
// Prepare a memory buffer that contains some or all of the register value
const uint32_t bytes_copied =
reg_data.CopyByteOrderedData(0, // src offset
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorStringWithFormat(
"failed to copy data for register write of %s", reg_info->name);
return bytes_copied;
}
uint32_t RegisterValue::SetFromMemoryData(const RegisterInfo *reg_info,
const void *src, uint32_t src_len,
lldb::ByteOrder src_byte_order,
Status &error) {
if (reg_info == nullptr) {
error.SetErrorString("invalid register info argument.");
return 0;
}
// Moving from addr into a register
//
// Case 1: src_len == dst_len
//
// |AABBCCDD| Address contents
// |AABBCCDD| Register contents
//
// Case 2: src_len > dst_len
//
// Status! (The register should always be big enough to hold the data)
//
// Case 3: src_len < dst_len
//
// |AABB| Address contents
// |AABB0000| Register contents [on little-endian hardware]
// |0000AABB| Register contents [on big-endian hardware]
if (src_len > kMaxRegisterByteSize) {
error.SetErrorStringWithFormat(
"register buffer is too small to receive %u bytes of data.", src_len);
return 0;
}
const uint32_t dst_len = reg_info->byte_size;
if (src_len > dst_len) {
error.SetErrorStringWithFormat(
"%u bytes is too big to store in register %s (%u bytes)", src_len,
reg_info->name, dst_len);
return 0;
}
// Use a data extractor to correctly copy and pad the bytes read into the
// register value
DataExtractor src_data(src, src_len, src_byte_order, 4);
error = SetValueFromData(reg_info, src_data, 0, true);
if (error.Fail())
return 0;
// If SetValueFromData succeeded, we must have copied all of src_len
return src_len;
}
bool RegisterValue::GetScalarValue(Scalar &scalar) const {
switch (m_type) {
case eTypeInvalid:
break;
case eTypeBytes: {
switch (buffer.length) {
default:
break;
case 1:
scalar = *(const uint8_t *)buffer.bytes;
return true;
case 2:
scalar = *reinterpret_cast<const uint16_t *>(buffer.bytes);
return true;
case 4:
scalar = *reinterpret_cast<const uint32_t *>(buffer.bytes);
return true;
case 8:
scalar = *reinterpret_cast<const uint64_t *>(buffer.bytes);
return true;
case 16:
case 32:
case 64:
if (buffer.length % sizeof(uint64_t) == 0) {
const auto length_in_bits = buffer.length * 8;
const auto length_in_uint64 = buffer.length / sizeof(uint64_t);
scalar =
llvm::APInt(length_in_bits,
llvm::ArrayRef<uint64_t>(
reinterpret_cast<const uint64_t *>(buffer.bytes),
length_in_uint64));
return true;
}
break;
}
} break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
scalar = m_scalar;
return true;
}
return false;
}
void RegisterValue::Clear() { m_type = eTypeInvalid; }
RegisterValue::Type RegisterValue::SetType(const RegisterInfo *reg_info) {
// To change the type, we simply copy the data in again, using the new format
RegisterValue copy;
DataExtractor copy_data;
if (copy.CopyValue(*this) && copy.GetData(copy_data))
SetValueFromData(reg_info, copy_data, 0, true);
return m_type;
}
Status RegisterValue::SetValueFromData(const RegisterInfo *reg_info,
DataExtractor &src,
lldb::offset_t src_offset,
bool partial_data_ok) {
Status error;
if (src.GetByteSize() == 0) {
error.SetErrorString("empty data.");
return error;
}
if (reg_info->byte_size == 0) {
error.SetErrorString("invalid register info.");
return error;
}
uint32_t src_len = src.GetByteSize() - src_offset;
if (!partial_data_ok && (src_len < reg_info->byte_size)) {
error.SetErrorString("not enough data.");
return error;
}
// Cap the data length if there is more than enough bytes for this register
// value
if (src_len > reg_info->byte_size)
src_len = reg_info->byte_size;
// Zero out the value in case we get partial data...
memset(buffer.bytes, 0, sizeof(buffer.bytes));
type128 int128;
m_type = eTypeInvalid;
switch (reg_info->encoding) {
case eEncodingInvalid:
break;
case eEncodingUint:
case eEncodingSint:
if (reg_info->byte_size == 1)
SetUInt8(src.GetMaxU32(&src_offset, src_len));
else if (reg_info->byte_size <= 2)
SetUInt16(src.GetMaxU32(&src_offset, src_len));
else if (reg_info->byte_size <= 4)
SetUInt32(src.GetMaxU32(&src_offset, src_len));
else if (reg_info->byte_size <= 8)
SetUInt64(src.GetMaxU64(&src_offset, src_len));
else if (reg_info->byte_size <= 16) {
uint64_t data1 = src.GetU64(&src_offset);
uint64_t data2 = src.GetU64(&src_offset);
if (src.GetByteSize() == eByteOrderBig) {
int128.x[0] = data1;
int128.x[1] = data2;
} else {
int128.x[0] = data2;
int128.x[1] = data1;
}
SetUInt128(llvm::APInt(128, 2, int128.x));
}
break;
case eEncodingIEEE754:
if (reg_info->byte_size == sizeof(float))
SetFloat(src.GetFloat(&src_offset));
else if (reg_info->byte_size == sizeof(double))
SetDouble(src.GetDouble(&src_offset));
else if (reg_info->byte_size == sizeof(long double))
SetLongDouble(src.GetLongDouble(&src_offset));
break;
case eEncodingVector: {
m_type = eTypeBytes;
buffer.length = reg_info->byte_size;
buffer.byte_order = src.GetByteOrder();
assert(buffer.length <= kMaxRegisterByteSize);
if (buffer.length > kMaxRegisterByteSize)
buffer.length = kMaxRegisterByteSize;
if (src.CopyByteOrderedData(
src_offset, // offset within "src" to start extracting data
src_len, // src length
buffer.bytes, // dst buffer
buffer.length, // dst length
buffer.byte_order) == 0) // dst byte order
{
error.SetErrorStringWithFormat(
"failed to copy data for register write of %s", reg_info->name);
return error;
}
}
}
if (m_type == eTypeInvalid)
error.SetErrorStringWithFormat(
"invalid register value type for register %s", reg_info->name);
return error;
}
// Helper function for RegisterValue::SetValueFromString()
static bool ParseVectorEncoding(const RegisterInfo *reg_info,
llvm::StringRef vector_str,
const uint32_t byte_size,
RegisterValue *reg_value) {
// Example: vector_str = "{0x2c 0x4b 0x2a 0x3e 0xd0 0x4f 0x2a 0x3e 0xac 0x4a
// 0x2a 0x3e 0x84 0x4f 0x2a 0x3e}".
vector_str = vector_str.trim();
vector_str.consume_front("{");
vector_str.consume_back("}");
vector_str = vector_str.trim();
char Sep = ' ';
// The first split should give us:
// ('0x2c', '0x4b 0x2a 0x3e 0xd0 0x4f 0x2a 0x3e 0xac 0x4a 0x2a 0x3e 0x84 0x4f
// 0x2a 0x3e').
llvm::StringRef car;
llvm::StringRef cdr = vector_str;
std::tie(car, cdr) = vector_str.split(Sep);
std::vector<uint8_t> bytes;
unsigned byte = 0;
// Using radix auto-sensing by passing 0 as the radix. Keep on processing the
// vector elements as long as the parsing succeeds and the vector size is <
// byte_size.
while (!car.getAsInteger(0, byte) && bytes.size() < byte_size) {
bytes.push_back(byte);
std::tie(car, cdr) = cdr.split(Sep);
}
// Check for vector of exact byte_size elements.
if (bytes.size() != byte_size)
return false;
reg_value->SetBytes(&(bytes.front()), byte_size, eByteOrderLittle);
return true;
}
Status RegisterValue::SetValueFromString(const RegisterInfo *reg_info,
llvm::StringRef value_str) {
Status error;
if (reg_info == nullptr) {
error.SetErrorString("Invalid register info argument.");
return error;
}
m_type = eTypeInvalid;
if (value_str.empty()) {
error.SetErrorString("Invalid c-string value string.");
return error;
}
const uint32_t byte_size = reg_info->byte_size;
uint64_t uval64;
int64_t ival64;
float flt_val;
double dbl_val;
long double ldbl_val;
switch (reg_info->encoding) {
case eEncodingInvalid:
error.SetErrorString("Invalid encoding.");
break;
case eEncodingUint:
if (byte_size > sizeof(uint64_t)) {
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %u", byte_size);
break;
}
if (value_str.getAsInteger(0, uval64)) {
error.SetErrorStringWithFormat(
"'%s' is not a valid unsigned integer string value",
value_str.str().c_str());
break;
}
if (!Args::UInt64ValueIsValidForByteSize(uval64, byte_size)) {
error.SetErrorStringWithFormat(
"value 0x%" PRIx64
" is too large to fit in a %u byte unsigned integer value",
uval64, byte_size);
break;
}
if (!SetUInt(uval64, reg_info->byte_size)) {
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %u", byte_size);
break;
}
break;
case eEncodingSint:
if (byte_size > sizeof(long long)) {
error.SetErrorStringWithFormat("unsupported signed integer byte size: %u",
byte_size);
break;
}
if (value_str.getAsInteger(0, ival64)) {
error.SetErrorStringWithFormat(
"'%s' is not a valid signed integer string value",
value_str.str().c_str());
break;
}
if (!Args::SInt64ValueIsValidForByteSize(ival64, byte_size)) {
error.SetErrorStringWithFormat(
"value 0x%" PRIx64
" is too large to fit in a %u byte signed integer value",
ival64, byte_size);
break;
}
if (!SetUInt(ival64, reg_info->byte_size)) {
error.SetErrorStringWithFormat("unsupported signed integer byte size: %u",
byte_size);
break;
}
break;
case eEncodingIEEE754: {
std::string value_string = value_str;
if (byte_size == sizeof(float)) {
if (::sscanf(value_string.c_str(), "%f", &flt_val) != 1) {
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_string.c_str());
break;
}
m_scalar = flt_val;
m_type = eTypeFloat;
} else if (byte_size == sizeof(double)) {
if (::sscanf(value_string.c_str(), "%lf", &dbl_val) != 1) {
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_string.c_str());
break;
}
m_scalar = dbl_val;
m_type = eTypeDouble;
} else if (byte_size == sizeof(long double)) {
if (::sscanf(value_string.c_str(), "%Lf", &ldbl_val) != 1) {
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_string.c_str());
break;
}
m_scalar = ldbl_val;
m_type = eTypeLongDouble;
} else {
error.SetErrorStringWithFormat("unsupported float byte size: %u",
byte_size);
return error;
}
break;
}
case eEncodingVector:
if (!ParseVectorEncoding(reg_info, value_str, byte_size, this))
error.SetErrorString("unrecognized vector encoding string value.");
break;
}
return error;
}
bool RegisterValue::SignExtend(uint32_t sign_bitpos) {
switch (m_type) {
case eTypeInvalid:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
return m_scalar.SignExtend(sign_bitpos);
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
case eTypeBytes:
break;
}
return false;
}
bool RegisterValue::CopyValue(const RegisterValue &rhs) {
if (this == &rhs)
return rhs.m_type != eTypeInvalid;
m_type = rhs.m_type;
switch (m_type) {
case eTypeInvalid:
return false;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
m_scalar = rhs.m_scalar;
break;
case eTypeBytes:
assert(rhs.buffer.length <= kMaxRegisterByteSize);
::memcpy(buffer.bytes, rhs.buffer.bytes, kMaxRegisterByteSize);
buffer.length = rhs.buffer.length;
buffer.byte_order = rhs.buffer.byte_order;
break;
}
return true;
}
uint16_t RegisterValue::GetAsUInt16(uint16_t fail_value,
bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt8:
case eTypeUInt16:
return m_scalar.UShort(fail_value);
case eTypeBytes: {
switch (buffer.length) {
default:
break;
case 1:
case 2:
return *reinterpret_cast<const uint16_t *>(buffer.bytes);
}
} break;
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
uint32_t RegisterValue::GetAsUInt32(uint32_t fail_value,
bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.UInt(fail_value);
case eTypeBytes: {
switch (buffer.length) {
default:
break;
case 1:
case 2:
case 4:
return *reinterpret_cast<const uint32_t *>(buffer.bytes);
}
} break;
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
uint64_t RegisterValue::GetAsUInt64(uint64_t fail_value,
bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.ULongLong(fail_value);
case eTypeBytes: {
switch (buffer.length) {
default:
break;
case 1:
return *(const uint8_t *)buffer.bytes;
case 2:
return *reinterpret_cast<const uint16_t *>(buffer.bytes);
case 4:
return *reinterpret_cast<const uint32_t *>(buffer.bytes);
case 8:
return *reinterpret_cast<const uint64_t *>(buffer.bytes);
}
} break;
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
llvm::APInt RegisterValue::GetAsUInt128(const llvm::APInt &fail_value,
bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.UInt128(fail_value);
case eTypeBytes: {
switch (buffer.length) {
default:
break;
case 1:
case 2:
case 4:
case 8:
case 16:
return llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128,
(reinterpret_cast<const type128 *>(buffer.bytes))->x);
}
} break;
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
float RegisterValue::GetAsFloat(float fail_value, bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.Float(fail_value);
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
double RegisterValue::GetAsDouble(double fail_value, bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.Double(fail_value);
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
long double RegisterValue::GetAsLongDouble(long double fail_value,
bool *success_ptr) const {
if (success_ptr)
*success_ptr = true;
switch (m_type) {
default:
break;
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.LongDouble();
}
if (success_ptr)
*success_ptr = false;
return fail_value;
}
const void *RegisterValue::GetBytes() const {
switch (m_type) {
case eTypeInvalid:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.GetBytes();
case eTypeBytes:
return buffer.bytes;
}
return nullptr;
}
uint32_t RegisterValue::GetByteSize() const {
switch (m_type) {
case eTypeInvalid:
break;
case eTypeUInt8:
return 1;
case eTypeUInt16:
return 2;
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar.GetByteSize();
case eTypeBytes:
return buffer.length;
}
return 0;
}
bool RegisterValue::SetUInt(uint64_t uint, uint32_t byte_size) {
if (byte_size == 0) {
SetUInt64(uint);
} else if (byte_size == 1) {
SetUInt8(uint);
} else if (byte_size <= 2) {
SetUInt16(uint);
} else if (byte_size <= 4) {
SetUInt32(uint);
} else if (byte_size <= 8) {
SetUInt64(uint);
} else if (byte_size <= 16) {
SetUInt128(llvm::APInt(128, uint));
} else
return false;
return true;
}
void RegisterValue::SetBytes(const void *bytes, size_t length,
lldb::ByteOrder byte_order) {
// If this assertion fires off we need to increase the size of buffer.bytes,
// or make it something that is allocated on the heap. Since the data buffer
// is in a union, we can't make it a collection class like SmallVector...
if (bytes && length > 0) {
assert(length <= sizeof(buffer.bytes) &&
"Storing too many bytes in a RegisterValue.");
m_type = eTypeBytes;
buffer.length = length;
memcpy(buffer.bytes, bytes, length);
buffer.byte_order = byte_order;
} else {
m_type = eTypeInvalid;
buffer.length = 0;
}
}
bool RegisterValue::operator==(const RegisterValue &rhs) const {
if (m_type == rhs.m_type) {
switch (m_type) {
case eTypeInvalid:
return true;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
return m_scalar == rhs.m_scalar;
case eTypeBytes:
if (buffer.length != rhs.buffer.length)
return false;
else {
uint8_t length = buffer.length;
if (length > kMaxRegisterByteSize)
length = kMaxRegisterByteSize;
return memcmp(buffer.bytes, rhs.buffer.bytes, length) == 0;
}
break;
}
}
return false;
}
bool RegisterValue::operator!=(const RegisterValue &rhs) const {
return !(*this == rhs);
}
bool RegisterValue::ClearBit(uint32_t bit) {
switch (m_type) {
case eTypeInvalid:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
if (bit < (GetByteSize() * 8)) {
return m_scalar.ClearBit(bit);
}
break;
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
break;
case eTypeBytes:
if (buffer.byte_order == eByteOrderBig ||
buffer.byte_order == eByteOrderLittle) {
uint32_t byte_idx;
if (buffer.byte_order == eByteOrderBig)
byte_idx = buffer.length - (bit / 8) - 1;
else
byte_idx = bit / 8;
const uint32_t byte_bit = bit % 8;
if (byte_idx < buffer.length) {
buffer.bytes[byte_idx] &= ~(1u << byte_bit);
return true;
}
}
break;
}
return false;
}
bool RegisterValue::SetBit(uint32_t bit) {
switch (m_type) {
case eTypeInvalid:
break;
case eTypeUInt8:
case eTypeUInt16:
case eTypeUInt32:
case eTypeUInt64:
case eTypeUInt128:
if (bit < (GetByteSize() * 8)) {
return m_scalar.SetBit(bit);
}
break;
case eTypeFloat:
case eTypeDouble:
case eTypeLongDouble:
break;
case eTypeBytes:
if (buffer.byte_order == eByteOrderBig ||
buffer.byte_order == eByteOrderLittle) {
uint32_t byte_idx;
if (buffer.byte_order == eByteOrderBig)
byte_idx = buffer.length - (bit / 8) - 1;
else
byte_idx = bit / 8;
const uint32_t byte_bit = bit % 8;
if (byte_idx < buffer.length) {
buffer.bytes[byte_idx] |= (1u << byte_bit);
return true;
}
}
break;
}
return false;
}
|