reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
//===-- Scalar.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLDB_UTILITY_SCALAR_H
#define LLDB_UTILITY_SCALAR_H

#include "lldb/Utility/Status.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-private-types.h"
#include "lldb/Utility/LLDBAssert.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include <cstddef>
#include <cstdint>

namespace lldb_private {
class DataExtractor;
class Stream;
} // namespace lldb_private

#define NUM_OF_WORDS_INT128 2
#define BITWIDTH_INT128 128
#define NUM_OF_WORDS_INT256 4
#define BITWIDTH_INT256 256
#define NUM_OF_WORDS_INT512 8
#define BITWIDTH_INT512 512

namespace lldb_private {

// A class designed to hold onto values and their corresponding types.
// Operators are defined and Scalar objects will correctly promote their types
// and values before performing these operations. Type promotion currently
// follows the ANSI C type promotion rules.
class Scalar {
public:
  // FIXME: These are host types which seems to be an odd choice.
  enum Type {
    e_void = 0,
    e_sint,
    e_uint,
    e_slong,
    e_ulong,
    e_slonglong,
    e_ulonglong,
    e_sint128,
    e_uint128,
    e_sint256,
    e_uint256,
    e_sint512,
    e_uint512,
    e_float,
    e_double,
    e_long_double
  };

  // Constructors and Destructors
  Scalar();
  Scalar(int v) : m_type(e_sint), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(sizeof(int) * 8, v, true);
  }
  Scalar(unsigned int v) : m_type(e_uint), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(sizeof(int) * 8, v);
  }
  Scalar(long v) : m_type(e_slong), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(sizeof(long) * 8, v, true);
  }
  Scalar(unsigned long v) : m_type(e_ulong), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(sizeof(long) * 8, v);
  }
  Scalar(long long v) : m_type(e_slonglong), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(sizeof(long long) * 8, v, true);
  }
  Scalar(unsigned long long v)
      : m_type(e_ulonglong), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(sizeof(long long) * 8, v);
  }
  Scalar(float v) : m_type(e_float), m_float(v) { m_float = llvm::APFloat(v); }
  Scalar(double v) : m_type(e_double), m_float(v) {
    m_float = llvm::APFloat(v);
  }
  Scalar(long double v, bool ieee_quad)
      : m_type(e_long_double), m_float(static_cast<float>(0)),
        m_ieee_quad(ieee_quad) {
    if (ieee_quad)
      m_float =
          llvm::APFloat(llvm::APFloat::IEEEquad(),
                        llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128,
                                    (reinterpret_cast<type128 *>(&v))->x));
    else
      m_float =
          llvm::APFloat(llvm::APFloat::x87DoubleExtended(),
                        llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128,
                                    (reinterpret_cast<type128 *>(&v))->x));
  }
  Scalar(llvm::APInt v) : m_type(), m_float(static_cast<float>(0)) {
    m_integer = llvm::APInt(v);
    m_type = GetBestTypeForBitSize(m_integer.getBitWidth(), true);
  }
  // Scalar(const RegisterValue& reg_value);
  virtual ~Scalar();

  /// Return the most efficient Scalar::Type for the requested bit size.
  static Type GetBestTypeForBitSize(size_t bit_size, bool sign);

  bool SignExtend(uint32_t bit_pos);

  bool ExtractBitfield(uint32_t bit_size, uint32_t bit_offset);

  bool SetBit(uint32_t bit);

  bool ClearBit(uint32_t bit);

  const void *GetBytes() const;

  size_t GetByteSize() const;

  bool GetData(DataExtractor &data, size_t limit_byte_size = UINT32_MAX) const;

  size_t GetAsMemoryData(void *dst, size_t dst_len,
                         lldb::ByteOrder dst_byte_order, Status &error) const;

  bool IsZero() const;

  void Clear() {
    m_type = e_void;
    m_integer.clearAllBits();
  }

  const char *GetTypeAsCString() const;

  void GetValue(Stream *s, bool show_type) const;

  bool IsValid() const {
    return (m_type >= e_sint) && (m_type <= e_long_double);
  }

  /// Convert integer to \p type, limited to \p bits size.
  void TruncOrExtendTo(Scalar::Type type, uint16_t bits);

  bool Promote(Scalar::Type type);

  bool MakeSigned();

  bool MakeUnsigned();

  static const char *GetValueTypeAsCString(Scalar::Type value_type);

  static Scalar::Type
  GetValueTypeForSignedIntegerWithByteSize(size_t byte_size);

  static Scalar::Type
  GetValueTypeForUnsignedIntegerWithByteSize(size_t byte_size);

  static Scalar::Type GetValueTypeForFloatWithByteSize(size_t byte_size);

  // All operators can benefits from the implicit conversions that will happen
  // automagically by the compiler, so no temporary objects will need to be
  // created. As a result, we currently don't need a variety of overloaded set
  // value accessors.
  Scalar &operator=(const int i);
  Scalar &operator=(unsigned int v);
  Scalar &operator=(long v);
  Scalar &operator=(unsigned long v);
  Scalar &operator=(long long v);
  Scalar &operator=(unsigned long long v);
  Scalar &operator=(float v);
  Scalar &operator=(double v);
  Scalar &operator=(long double v);
  Scalar &operator=(llvm::APInt v);
  Scalar &operator=(const Scalar &rhs); // Assignment operator
  Scalar &operator+=(const Scalar &rhs);
  Scalar &operator<<=(const Scalar &rhs); // Shift left
  Scalar &operator>>=(const Scalar &rhs); // Shift right (arithmetic)
  Scalar &operator&=(const Scalar &rhs);

  // Shifts the current value to the right without maintaining the current sign
  // of the value (if it is signed).
  bool ShiftRightLogical(const Scalar &rhs); // Returns true on success

  // Takes the absolute value of the current value if it is signed, else the
  // value remains unchanged. Returns false if the contained value has a void
  // type.
  bool AbsoluteValue(); // Returns true on success
  // Negates the current value (even for unsigned values). Returns false if the
  // contained value has a void type.
  bool UnaryNegate(); // Returns true on success
  // Inverts all bits in the current value as long as it isn't void or a
  // float/double/long double type. Returns false if the contained value has a
  // void/float/double/long double type, else the value is inverted and true is
  // returned.
  bool OnesComplement(); // Returns true on success

  // Access the type of the current value.
  Scalar::Type GetType() const { return m_type; }

  // Returns a casted value of the current contained data without modifying the
  // current value. FAIL_VALUE will be returned if the type of the value is
  // void or invalid.
  int SInt(int fail_value = 0) const;

  unsigned char UChar(unsigned char fail_value = 0) const;

  signed char SChar(char fail_value = 0) const;

  unsigned short UShort(unsigned short fail_value = 0) const;

  short SShort(short fail_value = 0) const;

  unsigned int UInt(unsigned int fail_value = 0) const;

  long SLong(long fail_value = 0) const;

  unsigned long ULong(unsigned long fail_value = 0) const;

  long long SLongLong(long long fail_value = 0) const;

  unsigned long long ULongLong(unsigned long long fail_value = 0) const;

  llvm::APInt SInt128(llvm::APInt &fail_value) const;

  llvm::APInt UInt128(const llvm::APInt &fail_value) const;

  float Float(float fail_value = 0.0f) const;

  double Double(double fail_value = 0.0) const;

  long double LongDouble(long double fail_value = 0.0) const;

  Status SetValueFromCString(const char *s, lldb::Encoding encoding,
                             size_t byte_size);

  Status SetValueFromData(DataExtractor &data, lldb::Encoding encoding,
                          size_t byte_size);

  static bool UIntValueIsValidForSize(uint64_t uval64, size_t total_byte_size) {
    if (total_byte_size > 8)
      return false;

    if (total_byte_size == 8)
      return true;

    const uint64_t max = (static_cast<uint64_t>(1)
                          << static_cast<uint64_t>(total_byte_size * 8)) -
                         1;
    return uval64 <= max;
  }

  static bool SIntValueIsValidForSize(int64_t sval64, size_t total_byte_size) {
    if (total_byte_size > 8)
      return false;

    if (total_byte_size == 8)
      return true;

    const int64_t max = (static_cast<int64_t>(1)
                         << static_cast<uint64_t>(total_byte_size * 8 - 1)) -
                        1;
    const int64_t min = ~(max);
    return min <= sval64 && sval64 <= max;
  }

protected:
  typedef char schar_t;
  typedef unsigned char uchar_t;
  typedef short sshort_t;
  typedef unsigned short ushort_t;
  typedef int sint_t;
  typedef unsigned int uint_t;
  typedef long slong_t;
  typedef unsigned long ulong_t;
  typedef long long slonglong_t;
  typedef unsigned long long ulonglong_t;
  typedef float float_t;
  typedef double double_t;
  typedef long double long_double_t;

  // Classes that inherit from Scalar can see and modify these
  Scalar::Type m_type;
  llvm::APInt m_integer;
  llvm::APFloat m_float;
  bool m_ieee_quad = false;

private:
  friend const Scalar operator+(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator-(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator/(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator*(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator&(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator|(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator%(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator^(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator<<(const Scalar &lhs, const Scalar &rhs);
  friend const Scalar operator>>(const Scalar &lhs, const Scalar &rhs);
  friend bool operator==(const Scalar &lhs, const Scalar &rhs);
  friend bool operator!=(const Scalar &lhs, const Scalar &rhs);
  friend bool operator<(const Scalar &lhs, const Scalar &rhs);
  friend bool operator<=(const Scalar &lhs, const Scalar &rhs);
  friend bool operator>(const Scalar &lhs, const Scalar &rhs);
  friend bool operator>=(const Scalar &lhs, const Scalar &rhs);
};

// Split out the operators into a format where the compiler will be able to
// implicitly convert numbers into Scalar objects.
//
// This allows code like:
//      Scalar two(2);
//      Scalar four = two * 2;
//      Scalar eight = 2 * four;    // This would cause an error if the
//                                  // operator* was implemented as a
//                                  // member function.
// SEE:
//  Item 19 of "Effective C++ Second Edition" by Scott Meyers
//  Differentiate among members functions, non-member functions, and
//  friend functions
const Scalar operator+(const Scalar &lhs, const Scalar &rhs);
const Scalar operator-(const Scalar &lhs, const Scalar &rhs);
const Scalar operator/(const Scalar &lhs, const Scalar &rhs);
const Scalar operator*(const Scalar &lhs, const Scalar &rhs);
const Scalar operator&(const Scalar &lhs, const Scalar &rhs);
const Scalar operator|(const Scalar &lhs, const Scalar &rhs);
const Scalar operator%(const Scalar &lhs, const Scalar &rhs);
const Scalar operator^(const Scalar &lhs, const Scalar &rhs);
const Scalar operator<<(const Scalar &lhs, const Scalar &rhs);
const Scalar operator>>(const Scalar &lhs, const Scalar &rhs);
bool operator==(const Scalar &lhs, const Scalar &rhs);
bool operator!=(const Scalar &lhs, const Scalar &rhs);
bool operator<(const Scalar &lhs, const Scalar &rhs);
bool operator<=(const Scalar &lhs, const Scalar &rhs);
bool operator>(const Scalar &lhs, const Scalar &rhs);
bool operator>=(const Scalar &lhs, const Scalar &rhs);

llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const Scalar &scalar);

} // namespace lldb_private

#endif // LLDB_UTILITY_SCALAR_H