reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
//===-- ConstString.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef liblldb_ConstString_h_
#define liblldb_ConstString_h_

#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/FormatVariadic.h"

#include <stddef.h>

namespace lldb_private {
class Stream;
}
namespace llvm {
class raw_ostream;
}

namespace lldb_private {

/// \class ConstString ConstString.h "lldb/Utility/ConstString.h"
/// A uniqued constant string class.
///
/// Provides an efficient way to store strings as uniqued strings. After the
/// strings are uniqued, finding strings that are equal to one another is very
/// fast as just the pointers need to be compared. It also allows for many
/// common strings from many different sources to be shared to keep the memory
/// footprint low.
///
/// No reference counting is done on strings that are added to the string
/// pool, once strings are added they are in the string pool for the life of
/// the program.
class ConstString {
public:
  /// Default constructor
  ///
  /// Initializes the string to an empty string.
  ConstString() : m_string(nullptr) {}

  /// Copy constructor
  ///
  /// Copies the string value in \a rhs into this object.
  ///
  /// \param[in] rhs
  ///     Another string object to copy.
  ConstString(const ConstString &rhs) : m_string(rhs.m_string) {}

  explicit ConstString(const llvm::StringRef &s);

  /// Construct with C String value
  ///
  /// Constructs this object with a C string by looking to see if the
  /// C string already exists in the global string pool. If it doesn't
  /// exist, it is added to the string pool.
  ///
  /// \param[in] cstr
  ///     A NULL terminated C string to add to the string pool.
  explicit ConstString(const char *cstr);

  /// Construct with C String value with max length
  ///
  /// Constructs this object with a C string with a length. If \a max_cstr_len
  /// is greater than the actual length of the string, the string length will
  /// be truncated. This allows substrings to be created without the need to
  /// NULL terminate the string as it is passed into this function.
  ///
  /// \param[in] cstr
  ///     A pointer to the first character in the C string. The C
  ///     string can be NULL terminated in a buffer that contains
  ///     more characters than the length of the string, or the
  ///     string can be part of another string and a new substring
  ///     can be created.
  ///
  /// \param[in] max_cstr_len
  ///     The max length of \a cstr. If the string length of \a cstr
  ///     is less than \a max_cstr_len, then the string will be
  ///     truncated. If the string length of \a cstr is greater than
  ///     \a max_cstr_len, then only max_cstr_len bytes will be used
  ///     from \a cstr.
  explicit ConstString(const char *cstr, size_t max_cstr_len);

  /// Destructor
  ///
  /// Since constant string values are currently not reference counted, there
  /// isn't much to do here.
  ~ConstString() = default;

  /// C string equality binary predicate function object for ConstString
  /// objects.
  struct StringIsEqual {
    /// C equality test.
    ///
    /// Two C strings are equal when they are contained in ConstString objects
    /// when their pointer values are equal to each other.
    ///
    /// \return
    ///     Returns \b true if the C string in \a lhs is equal to
    ///     the C string value in \a rhs, \b false otherwise.
    bool operator()(const char *lhs, const char *rhs) const {
      return lhs == rhs;
    }
  };

  /// Convert to bool operator.
  ///
  /// This allows code to check a ConstString object to see if it contains a
  /// valid string using code such as:
  ///
  /// \code
  /// ConstString str(...);
  /// if (str)
  /// { ...
  /// \endcode
  ///
  /// \return
  ///     /b True this object contains a valid non-empty C string, \b
  ///     false otherwise.
  explicit operator bool() const { return !IsEmpty(); }

  /// Assignment operator
  ///
  /// Assigns the string in this object with the value from \a rhs.
  ///
  /// \param[in] rhs
  ///     Another string object to copy into this object.
  ///
  /// \return
  ///     A const reference to this object.
  ConstString operator=(ConstString rhs) {
    m_string = rhs.m_string;
    return *this;
  }

  /// Equal to operator
  ///
  /// Returns true if this string is equal to the string in \a rhs. This
  /// operation is very fast as it results in a pointer comparison since all
  /// strings are in a uniqued in a global string pool.
  ///
  /// \param[in] rhs
  ///     Another string object to compare this object to.
  ///
  /// \return
  ///     \li \b true if this object is equal to \a rhs.
  ///     \li \b false if this object is not equal to \a rhs.
  bool operator==(ConstString rhs) const {
    // We can do a pointer compare to compare these strings since they must
    // come from the same pool in order to be equal.
    return m_string == rhs.m_string;
  }

  /// Equal to operator against a non-ConstString value.
  ///
  /// Returns true if this string is equal to the string in \a rhs. This
  /// overload is usually slower than comparing against a ConstString value.
  /// However, if the rhs string not already a ConstString and it is impractical
  /// to turn it into a non-temporary variable, then this overload is faster.
  ///
  /// \param[in] rhs
  ///     Another string object to compare this object to.
  ///
  /// \return
  ///     \li \b true if this object is equal to \a rhs.
  ///     \li \b false if this object is not equal to \a rhs.
  bool operator==(const char *rhs) const {
    // ConstString differentiates between empty strings and nullptr strings, but
    // StringRef doesn't. Therefore we have to do this check manually now.
    if (m_string == nullptr && rhs != nullptr)
      return false;
    if (m_string != nullptr && rhs == nullptr)
      return false;

    return GetStringRef() == rhs;
  }

  /// Not equal to operator
  ///
  /// Returns true if this string is not equal to the string in \a rhs. This
  /// operation is very fast as it results in a pointer comparison since all
  /// strings are in a uniqued in a global string pool.
  ///
  /// \param[in] rhs
  ///     Another string object to compare this object to.
  ///
  /// \return
  ///     \li \b true if this object is not equal to \a rhs.
  ///     \li \b false if this object is equal to \a rhs.
  bool operator!=(ConstString rhs) const {
    return m_string != rhs.m_string;
  }

  /// Not equal to operator against a non-ConstString value.
  ///
  /// Returns true if this string is not equal to the string in \a rhs. This
  /// overload is usually slower than comparing against a ConstString value.
  /// However, if the rhs string not already a ConstString and it is impractical
  /// to turn it into a non-temporary variable, then this overload is faster.
  ///
  /// \param[in] rhs
  ///     Another string object to compare this object to.
  ///
  /// \return \b true if this object is not equal to \a rhs, false otherwise.
  bool operator!=(const char *rhs) const { return !(*this == rhs); }

  bool operator<(ConstString rhs) const;

  /// Get the string value as a C string.
  ///
  /// Get the value of the contained string as a NULL terminated C string
  /// value.
  ///
  /// If \a value_if_empty is nullptr, then nullptr will be returned.
  ///
  /// \return Returns \a value_if_empty if the string is empty, otherwise
  ///     the C string value contained in this object.
  const char *AsCString(const char *value_if_empty = nullptr) const {
    return (IsEmpty() ? value_if_empty : m_string);
  }

  /// Get the string value as a llvm::StringRef
  ///
  /// \return
  ///     Returns a new llvm::StringRef object filled in with the
  ///     needed data.
  llvm::StringRef GetStringRef() const {
    return llvm::StringRef(m_string, GetLength());
  }

  /// Get the string value as a C string.
  ///
  /// Get the value of the contained string as a NULL terminated C string
  /// value. Similar to the ConstString::AsCString() function, yet this
  /// function will always return nullptr if the string is not valid. So this
  /// function is a direct accessor to the string pointer value.
  ///
  /// \return
  ///     Returns nullptr the string is invalid, otherwise the C string
  ///     value contained in this object.
  const char *GetCString() const { return m_string; }

  /// Get the length in bytes of string value.
  ///
  /// The string pool stores the length of the string, so we can avoid calling
  /// strlen() on the pointer value with this function.
  ///
  /// \return
  ///     Returns the number of bytes that this string occupies in
  ///     memory, not including the NULL termination byte.
  size_t GetLength() const;

  /// Clear this object's state.
  ///
  /// Clear any contained string and reset the value to the empty string
  /// value.
  void Clear() { m_string = nullptr; }

  /// Equal to operator
  ///
  /// Returns true if this string is equal to the string in \a rhs. If case
  /// sensitive equality is tested, this operation is very fast as it results
  /// in a pointer comparison since all strings are in a uniqued in a global
  /// string pool.
  ///
  /// \param[in] lhs
  ///     The Left Hand Side const ConstString object reference.
  ///
  /// \param[in] rhs
  ///     The Right Hand Side const ConstString object reference.
  ///
  /// \param[in] case_sensitive
  ///     Case sensitivity. If true, case sensitive equality
  ///     will be tested, otherwise character case will be ignored
  ///
  /// \return \b true if this object is equal to \a rhs, \b false otherwise.
  static bool Equals(ConstString lhs, ConstString rhs,
                     const bool case_sensitive = true);

  /// Compare two string objects.
  ///
  /// Compares the C string values contained in \a lhs and \a rhs and returns
  /// an integer result.
  ///
  /// NOTE: only call this function when you want a true string
  /// comparison. If you want string equality use the, use the == operator as
  /// it is much more efficient. Also if you want string inequality, use the
  /// != operator for the same reasons.
  ///
  /// \param[in] lhs
  ///     The Left Hand Side const ConstString object reference.
  ///
  /// \param[in] rhs
  ///     The Right Hand Side const ConstString object reference.
  ///
  /// \param[in] case_sensitive
  ///     Case sensitivity of compare. If true, case sensitive compare
  ///     will be performed, otherwise character case will be ignored
  ///
  /// \return -1 if lhs < rhs, 0 if lhs == rhs, 1 if lhs > rhs
  static int Compare(ConstString lhs, ConstString rhs,
                     const bool case_sensitive = true);

  /// Dump the object description to a stream.
  ///
  /// Dump the string value to the stream \a s. If the contained string is
  /// empty, print \a value_if_empty to the stream instead. If \a
  /// value_if_empty is nullptr, then nothing will be dumped to the stream.
  ///
  /// \param[in] s
  ///     The stream that will be used to dump the object description.
  ///
  /// \param[in] value_if_empty
  ///     The value to dump if the string is empty. If nullptr, nothing
  ///     will be output to the stream.
  void Dump(Stream *s, const char *value_if_empty = nullptr) const;

  /// Dump the object debug description to a stream.
  ///
  /// \param[in] s
  ///     The stream that will be used to dump the object description.
  void DumpDebug(Stream *s) const;

  /// Test for empty string.
  ///
  /// \return
  ///     \li \b true if the contained string is empty.
  ///     \li \b false if the contained string is not empty.
  bool IsEmpty() const { return m_string == nullptr || m_string[0] == '\0'; }

  /// Test for null string.
  ///
  /// \return
  ///     \li \b true if there is no string associated with this instance.
  ///     \li \b false if there is a string associated with this instance.
  bool IsNull() const { return m_string == nullptr; }

  /// Set the C string value.
  ///
  /// Set the string value in the object by uniquing the \a cstr string value
  /// in our global string pool.
  ///
  /// If the C string already exists in the global string pool, it finds the
  /// current entry and returns the existing value. If it doesn't exist, it is
  /// added to the string pool.
  ///
  /// \param[in] cstr
  ///     A NULL terminated C string to add to the string pool.
  void SetCString(const char *cstr);

  void SetString(const llvm::StringRef &s);

  /// Set the C string value and its mangled counterpart.
  ///
  /// Object files and debug symbols often use mangled string to represent the
  /// linkage name for a symbol, function or global. The string pool can
  /// efficiently store these values and their counterparts so when we run
  /// into another instance of a mangled name, we can avoid calling the name
  /// demangler over and over on the same strings and then trying to unique
  /// them.
  ///
  /// \param[in] demangled
  ///     The demangled string to correlate with the \a mangled name.
  ///
  /// \param[in] mangled
  ///     The already uniqued mangled ConstString to correlate the
  ///     soon to be uniqued version of \a demangled.
  void SetStringWithMangledCounterpart(llvm::StringRef demangled,
                                       ConstString mangled);

  /// Retrieve the mangled or demangled counterpart for a mangled or demangled
  /// ConstString.
  ///
  /// Object files and debug symbols often use mangled string to represent the
  /// linkage name for a symbol, function or global. The string pool can
  /// efficiently store these values and their counterparts so when we run
  /// into another instance of a mangled name, we can avoid calling the name
  /// demangler over and over on the same strings and then trying to unique
  /// them.
  ///
  /// \param[in] counterpart
  ///     A reference to a ConstString object that might get filled in
  ///     with the demangled/mangled counterpart.
  ///
  /// \return
  ///     /b True if \a counterpart was filled in with the counterpart
  ///     /b false otherwise.
  bool GetMangledCounterpart(ConstString &counterpart) const;

  /// Set the C string value with length.
  ///
  /// Set the string value in the object by uniquing \a cstr_len bytes
  /// starting at the \a cstr string value in our global string pool. If trim
  /// is true, then \a cstr_len indicates a maximum length of the CString and
  /// if the actual length of the string is less, then it will be trimmed.
  ///
  /// If the C string already exists in the global string pool, it finds the
  /// current entry and returns the existing value. If it doesn't exist, it is
  /// added to the string pool.
  ///
  /// \param[in] cstr
  ///     A NULL terminated C string to add to the string pool.
  ///
  /// \param[in] cstr_len
  ///     The maximum length of the C string.
  void SetCStringWithLength(const char *cstr, size_t cstr_len);

  /// Set the C string value with the minimum length between \a fixed_cstr_len
  /// and the actual length of the C string. This can be used for data
  /// structures that have a fixed length to store a C string where the string
  /// might not be NULL terminated if the string takes the entire buffer.
  void SetTrimmedCStringWithLength(const char *cstr, size_t fixed_cstr_len);

  /// Get the memory cost of this object.
  ///
  /// Return the size in bytes that this object takes in memory. This returns
  /// the size in bytes of this object, which does not include any the shared
  /// string values it may refer to.
  ///
  /// \return
  ///     The number of bytes that this object occupies in memory.
  ///
  /// \see ConstString::StaticMemorySize ()
  size_t MemorySize() const { return sizeof(ConstString); }

  /// Get the size in bytes of the current global string pool.
  ///
  /// Reports the size in bytes of all shared C string values, containers and
  /// any other values as a byte size for the entire string pool.
  ///
  /// \return
  ///     The number of bytes that the global string pool occupies
  ///     in memory.
  static size_t StaticMemorySize();

protected:
  template <typename T> friend struct ::llvm::DenseMapInfo;
  /// Only used by DenseMapInfo.
  static ConstString FromStringPoolPointer(const char *ptr) {
    ConstString s;
    s.m_string = ptr;
    return s;
  };

  // Member variables
  const char *m_string;
};

/// Stream the string value \a str to the stream \a s
Stream &operator<<(Stream &s, ConstString str);

} // namespace lldb_private

namespace llvm {
template <> struct format_provider<lldb_private::ConstString> {
  static void format(const lldb_private::ConstString &CS, llvm::raw_ostream &OS,
                     llvm::StringRef Options);
};

/// DenseMapInfo implementation.
/// \{
template <> struct DenseMapInfo<lldb_private::ConstString> {
  static inline lldb_private::ConstString getEmptyKey() {
    return lldb_private::ConstString::FromStringPoolPointer(
        DenseMapInfo<const char *>::getEmptyKey());
  }
  static inline lldb_private::ConstString getTombstoneKey() {
    return lldb_private::ConstString::FromStringPoolPointer(
        DenseMapInfo<const char *>::getTombstoneKey());
  }
  static unsigned getHashValue(lldb_private::ConstString val) {
    return DenseMapInfo<const char *>::getHashValue(val.m_string);
  }
  static bool isEqual(lldb_private::ConstString LHS,
                      lldb_private::ConstString RHS) {
    return LHS == RHS;
  }
};
/// \}
}

#endif // liblldb_ConstString_h_