reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
//===- Writer.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "AArch64ErrataFix.h"
#include "ARMErrataFix.h"
#include "CallGraphSort.h"
#include "Config.h"
#include "LinkerScript.h"
#include "MapFile.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Filesystem.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "lld/Common/Threads.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/xxhash.h"
#include <climits>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;

namespace lld {
namespace elf {
namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
  Writer() : buffer(errorHandler().outputBuffer) {}
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Ehdr = typename ELFT::Ehdr;
  using Elf_Phdr = typename ELFT::Phdr;

  void run();

private:
  void copyLocalSymbols();
  void addSectionSymbols();
  void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
  void sortSections();
  void resolveShfLinkOrder();
  void finalizeAddressDependentContent();
  void sortInputSections();
  void finalizeSections();
  void checkExecuteOnly();
  void setReservedSymbolSections();

  std::vector<PhdrEntry *> createPhdrs(Partition &part);
  void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
                         unsigned pFlags);
  void assignFileOffsets();
  void assignFileOffsetsBinary();
  void setPhdrs(Partition &part);
  void checkSections();
  void fixSectionAlignments();
  void openFile();
  void writeTrapInstr();
  void writeHeader();
  void writeSections();
  void writeSectionsBinary();
  void writeBuildId();

  std::unique_ptr<FileOutputBuffer> &buffer;

  void addRelIpltSymbols();
  void addStartEndSymbols();
  void addStartStopSymbols(OutputSection *sec);

  uint64_t fileSize;
  uint64_t sectionHeaderOff;
};
} // anonymous namespace

static bool isSectionPrefix(StringRef prefix, StringRef name) {
  return name.startswith(prefix) || name == prefix.drop_back();
}

StringRef getOutputSectionName(const InputSectionBase *s) {
  if (config->relocatable)
    return s->name;

  // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
  // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
  // technically required, but not doing it is odd). This code guarantees that.
  if (auto *isec = dyn_cast<InputSection>(s)) {
    if (InputSectionBase *rel = isec->getRelocatedSection()) {
      OutputSection *out = rel->getOutputSection();
      if (s->type == SHT_RELA)
        return saver.save(".rela" + out->name);
      return saver.save(".rel" + out->name);
    }
  }

  // This check is for -z keep-text-section-prefix.  This option separates text
  // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
  // ".text.exit".
  // When enabled, this allows identifying the hot code region (.text.hot) in
  // the final binary which can be selectively mapped to huge pages or mlocked,
  // for instance.
  if (config->zKeepTextSectionPrefix)
    for (StringRef v :
         {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
      if (isSectionPrefix(v, s->name))
        return v.drop_back();

  for (StringRef v :
       {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
        ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
        ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
    if (isSectionPrefix(v, s->name))
      return v.drop_back();

  // CommonSection is identified as "COMMON" in linker scripts.
  // By default, it should go to .bss section.
  if (s->name == "COMMON")
    return ".bss";

  return s->name;
}

static bool needsInterpSection() {
  return !sharedFiles.empty() && !config->dynamicLinker.empty() &&
         script->needsInterpSection();
}

template <class ELFT> void writeResult() { Writer<ELFT>().run(); }

static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
  llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
    if (p->p_type != PT_LOAD)
      return false;
    if (!p->firstSec)
      return true;
    uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
    return size == 0;
  });
}

void copySectionsIntoPartitions() {
  std::vector<InputSectionBase *> newSections;
  for (unsigned part = 2; part != partitions.size() + 1; ++part) {
    for (InputSectionBase *s : inputSections) {
      if (!(s->flags & SHF_ALLOC) || !s->isLive())
        continue;
      InputSectionBase *copy;
      if (s->type == SHT_NOTE)
        copy = make<InputSection>(cast<InputSection>(*s));
      else if (auto *es = dyn_cast<EhInputSection>(s))
        copy = make<EhInputSection>(*es);
      else
        continue;
      copy->partition = part;
      newSections.push_back(copy);
    }
  }

  inputSections.insert(inputSections.end(), newSections.begin(),
                       newSections.end());
}

void combineEhSections() {
  for (InputSectionBase *&s : inputSections) {
    // Ignore dead sections and the partition end marker (.part.end),
    // whose partition number is out of bounds.
    if (!s->isLive() || s->partition == 255)
      continue;

    Partition &part = s->getPartition();
    if (auto *es = dyn_cast<EhInputSection>(s)) {
      part.ehFrame->addSection(es);
      s = nullptr;
    } else if (s->kind() == SectionBase::Regular && part.armExidx &&
               part.armExidx->addSection(cast<InputSection>(s))) {
      s = nullptr;
    }
  }

  std::vector<InputSectionBase *> &v = inputSections;
  v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
}

static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
                                   uint64_t val, uint8_t stOther = STV_HIDDEN,
                                   uint8_t binding = STB_GLOBAL) {
  Symbol *s = symtab->find(name);
  if (!s || s->isDefined())
    return nullptr;

  s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
                     /*size=*/0, sec});
  return cast<Defined>(s);
}

static Defined *addAbsolute(StringRef name) {
  Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
                                          STT_NOTYPE, 0, 0, nullptr});
  return cast<Defined>(sym);
}

// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
void addReservedSymbols() {
  if (config->emachine == EM_MIPS) {
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
    // so that it points to an absolute address which by default is relative
    // to GOT. Default offset is 0x7ff0.
    // See "Global Data Symbols" in Chapter 6 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    ElfSym::mipsGp = addAbsolute("_gp");

    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
    // start of function and 'gp' pointer into GOT.
    if (symtab->find("_gp_disp"))
      ElfSym::mipsGpDisp = addAbsolute("_gp_disp");

    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
    // in case of using -mno-shared option.
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
    if (symtab->find("__gnu_local_gp"))
      ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
  } else if (config->emachine == EM_PPC) {
    // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
    // support Small Data Area, define it arbitrarily as 0.
    addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
  }

  // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
  // combines the typical ELF GOT with the small data sections. It commonly
  // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
  // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
  // represent the TOC base which is offset by 0x8000 bytes from the start of
  // the .got section.
  // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
  // correctness of some relocations depends on its value.
  StringRef gotSymName =
      (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";

  if (Symbol *s = symtab->find(gotSymName)) {
    if (s->isDefined()) {
      error(toString(s->file) + " cannot redefine linker defined symbol '" +
            gotSymName + "'");
      return;
    }

    uint64_t gotOff = 0;
    if (config->emachine == EM_PPC64)
      gotOff = 0x8000;

    s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
                       STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
    ElfSym::globalOffsetTable = cast<Defined>(s);
  }

  // __ehdr_start is the location of ELF file headers. Note that we define
  // this symbol unconditionally even when using a linker script, which
  // differs from the behavior implemented by GNU linker which only define
  // this symbol if ELF headers are in the memory mapped segment.
  addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);

  // __executable_start is not documented, but the expectation of at
  // least the Android libc is that it points to the ELF header.
  addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);

  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
  // each DSO. The address of the symbol doesn't matter as long as they are
  // different in different DSOs, so we chose the start address of the DSO.
  addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);

  // If linker script do layout we do not need to create any standard symbols.
  if (script->hasSectionsCommand)
    return;

  auto add = [](StringRef s, int64_t pos) {
    return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
  };

  ElfSym::bss = add("__bss_start", 0);
  ElfSym::end1 = add("end", -1);
  ElfSym::end2 = add("_end", -1);
  ElfSym::etext1 = add("etext", -1);
  ElfSym::etext2 = add("_etext", -1);
  ElfSym::edata1 = add("edata", -1);
  ElfSym::edata2 = add("_edata", -1);
}

static OutputSection *findSection(StringRef name, unsigned partition = 1) {
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      if (sec->name == name && sec->partition == partition)
        return sec;
  return nullptr;
}

template <class ELFT> void createSyntheticSections() {
  // Initialize all pointers with NULL. This is needed because
  // you can call lld::elf::main more than once as a library.
  memset(&Out::first, 0, sizeof(Out));

  // Add the .interp section first because it is not a SyntheticSection.
  // The removeUnusedSyntheticSections() function relies on the
  // SyntheticSections coming last.
  if (needsInterpSection()) {
    for (size_t i = 1; i <= partitions.size(); ++i) {
      InputSection *sec = createInterpSection();
      sec->partition = i;
      inputSections.push_back(sec);
    }
  }

  auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };

  in.shStrTab = make<StringTableSection>(".shstrtab", false);

  Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
  Out::programHeaders->alignment = config->wordsize;

  if (config->strip != StripPolicy::All) {
    in.strTab = make<StringTableSection>(".strtab", false);
    in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
    in.symTabShndx = make<SymtabShndxSection>();
  }

  in.bss = make<BssSection>(".bss", 0, 1);
  add(in.bss);

  // If there is a SECTIONS command and a .data.rel.ro section name use name
  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
  // This makes sure our relro is contiguous.
  bool hasDataRelRo =
      script->hasSectionsCommand && findSection(".data.rel.ro", 0);
  in.bssRelRo =
      make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
  add(in.bssRelRo);

  // Add MIPS-specific sections.
  if (config->emachine == EM_MIPS) {
    if (!config->shared && config->hasDynSymTab) {
      in.mipsRldMap = make<MipsRldMapSection>();
      add(in.mipsRldMap);
    }
    if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
      add(sec);
    if (auto *sec = MipsOptionsSection<ELFT>::create())
      add(sec);
    if (auto *sec = MipsReginfoSection<ELFT>::create())
      add(sec);
  }

  StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";

  for (Partition &part : partitions) {
    auto add = [&](SyntheticSection *sec) {
      sec->partition = part.getNumber();
      inputSections.push_back(sec);
    };

    if (!part.name.empty()) {
      part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
      part.elfHeader->name = part.name;
      add(part.elfHeader);

      part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
      add(part.programHeaders);
    }

    if (config->buildId != BuildIdKind::None) {
      part.buildId = make<BuildIdSection>();
      add(part.buildId);
    }

    part.dynStrTab = make<StringTableSection>(".dynstr", true);
    part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
    part.dynamic = make<DynamicSection<ELFT>>();
    if (config->androidPackDynRelocs)
      part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
    else
      part.relaDyn =
          make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);

    if (config->hasDynSymTab) {
      part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
      add(part.dynSymTab);

      part.verSym = make<VersionTableSection>();
      add(part.verSym);

      if (!namedVersionDefs().empty()) {
        part.verDef = make<VersionDefinitionSection>();
        add(part.verDef);
      }

      part.verNeed = make<VersionNeedSection<ELFT>>();
      add(part.verNeed);

      if (config->gnuHash) {
        part.gnuHashTab = make<GnuHashTableSection>();
        add(part.gnuHashTab);
      }

      if (config->sysvHash) {
        part.hashTab = make<HashTableSection>();
        add(part.hashTab);
      }

      add(part.dynamic);
      add(part.dynStrTab);
      add(part.relaDyn);
    }

    if (config->relrPackDynRelocs) {
      part.relrDyn = make<RelrSection<ELFT>>();
      add(part.relrDyn);
    }

    if (!config->relocatable) {
      if (config->ehFrameHdr) {
        part.ehFrameHdr = make<EhFrameHeader>();
        add(part.ehFrameHdr);
      }
      part.ehFrame = make<EhFrameSection>();
      add(part.ehFrame);
    }

    if (config->emachine == EM_ARM && !config->relocatable) {
      // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
      // InputSections.
      part.armExidx = make<ARMExidxSyntheticSection>();
      add(part.armExidx);
    }
  }

  if (partitions.size() != 1) {
    // Create the partition end marker. This needs to be in partition number 255
    // so that it is sorted after all other partitions. It also has other
    // special handling (see createPhdrs() and combineEhSections()).
    in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
    in.partEnd->partition = 255;
    add(in.partEnd);

    in.partIndex = make<PartitionIndexSection>();
    addOptionalRegular("__part_index_begin", in.partIndex, 0);
    addOptionalRegular("__part_index_end", in.partIndex,
                       in.partIndex->getSize());
    add(in.partIndex);
  }

  // Add .got. MIPS' .got is so different from the other archs,
  // it has its own class.
  if (config->emachine == EM_MIPS) {
    in.mipsGot = make<MipsGotSection>();
    add(in.mipsGot);
  } else {
    in.got = make<GotSection>();
    add(in.got);
  }

  if (config->emachine == EM_PPC) {
    in.ppc32Got2 = make<PPC32Got2Section>();
    add(in.ppc32Got2);
  }

  if (config->emachine == EM_PPC64) {
    in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
    add(in.ppc64LongBranchTarget);
  }

  in.gotPlt = make<GotPltSection>();
  add(in.gotPlt);
  in.igotPlt = make<IgotPltSection>();
  add(in.igotPlt);

  // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
  // it as a relocation and ensure the referenced section is created.
  if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
    if (target->gotBaseSymInGotPlt)
      in.gotPlt->hasGotPltOffRel = true;
    else
      in.got->hasGotOffRel = true;
  }

  if (config->gdbIndex)
    add(GdbIndexSection::create<ELFT>());

  // We always need to add rel[a].plt to output if it has entries.
  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
  in.relaPlt = make<RelocationSection<ELFT>>(
      config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
  add(in.relaPlt);

  // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
  // relocations are processed last by the dynamic loader. We cannot place the
  // iplt section in .rel.dyn when Android relocation packing is enabled because
  // that would cause a section type mismatch. However, because the Android
  // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
  // behaviour by placing the iplt section in .rel.plt.
  in.relaIplt = make<RelocationSection<ELFT>>(
      config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
      /*sort=*/false);
  add(in.relaIplt);

  in.plt = make<PltSection>(false);
  add(in.plt);
  in.iplt = make<PltSection>(true);
  add(in.iplt);

  if (config->andFeatures)
    add(make<GnuPropertySection>());

  // .note.GNU-stack is always added when we are creating a re-linkable
  // object file. Other linkers are using the presence of this marker
  // section to control the executable-ness of the stack area, but that
  // is irrelevant these days. Stack area should always be non-executable
  // by default. So we emit this section unconditionally.
  if (config->relocatable)
    add(make<GnuStackSection>());

  if (in.symTab)
    add(in.symTab);
  if (in.symTabShndx)
    add(in.symTabShndx);
  add(in.shStrTab);
  if (in.strTab)
    add(in.strTab);
}

// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
  if (config->discard != DiscardPolicy::All)
    copyLocalSymbols();

  if (config->copyRelocs)
    addSectionSymbols();

  // Now that we have a complete set of output sections. This function
  // completes section contents. For example, we need to add strings
  // to the string table, and add entries to .got and .plt.
  // finalizeSections does that.
  finalizeSections();
  checkExecuteOnly();
  if (errorCount())
    return;

  // If -compressed-debug-sections is specified, we need to compress
  // .debug_* sections. Do it right now because it changes the size of
  // output sections.
  for (OutputSection *sec : outputSections)
    sec->maybeCompress<ELFT>();

  if (script->hasSectionsCommand)
    script->allocateHeaders(mainPart->phdrs);

  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
  // 0 sized region. This has to be done late since only after assignAddresses
  // we know the size of the sections.
  for (Partition &part : partitions)
    removeEmptyPTLoad(part.phdrs);

  if (!config->oFormatBinary)
    assignFileOffsets();
  else
    assignFileOffsetsBinary();

  for (Partition &part : partitions)
    setPhdrs(part);

  if (config->relocatable)
    for (OutputSection *sec : outputSections)
      sec->addr = 0;

  if (config->checkSections)
    checkSections();

  // It does not make sense try to open the file if we have error already.
  if (errorCount())
    return;
  // Write the result down to a file.
  openFile();
  if (errorCount())
    return;

  if (!config->oFormatBinary) {
    if (config->zSeparate != SeparateSegmentKind::None)
      writeTrapInstr();
    writeHeader();
    writeSections();
  } else {
    writeSectionsBinary();
  }

  // Backfill .note.gnu.build-id section content. This is done at last
  // because the content is usually a hash value of the entire output file.
  writeBuildId();
  if (errorCount())
    return;

  // Handle -Map and -cref options.
  writeMapFile();
  writeCrossReferenceTable();
  if (errorCount())
    return;

  if (auto e = buffer->commit())
    error("failed to write to the output file: " + toString(std::move(e)));
}

static bool shouldKeepInSymtab(const Defined &sym) {
  if (sym.isSection())
    return false;

  if (config->discard == DiscardPolicy::None)
    return true;

  // If -emit-reloc is given, all symbols including local ones need to be
  // copied because they may be referenced by relocations.
  if (config->emitRelocs)
    return true;

  // In ELF assembly .L symbols are normally discarded by the assembler.
  // If the assembler fails to do so, the linker discards them if
  // * --discard-locals is used.
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
  //   the assembler keeping the .L symbol.
  StringRef name = sym.getName();
  bool isLocal = name.startswith(".L") || name.empty();
  if (!isLocal)
    return true;

  if (config->discard == DiscardPolicy::Locals)
    return false;

  SectionBase *sec = sym.section;
  return !sec || !(sec->flags & SHF_MERGE);
}

static bool includeInSymtab(const Symbol &b) {
  if (!b.isLocal() && !b.isUsedInRegularObj)
    return false;

  if (auto *d = dyn_cast<Defined>(&b)) {
    // Always include absolute symbols.
    SectionBase *sec = d->section;
    if (!sec)
      return true;
    sec = sec->repl;

    // Exclude symbols pointing to garbage-collected sections.
    if (isa<InputSectionBase>(sec) && !sec->isLive())
      return false;

    if (auto *s = dyn_cast<MergeInputSection>(sec))
      if (!s->getSectionPiece(d->value)->live)
        return false;
    return true;
  }
  return b.used;
}

// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
  if (!in.symTab)
    return;
  for (InputFile *file : objectFiles) {
    ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
    for (Symbol *b : f->getLocalSymbols()) {
      if (!b->isLocal())
        fatal(toString(f) +
              ": broken object: getLocalSymbols returns a non-local symbol");
      auto *dr = dyn_cast<Defined>(b);

      // No reason to keep local undefined symbol in symtab.
      if (!dr)
        continue;
      if (!includeInSymtab(*b))
        continue;
      if (!shouldKeepInSymtab(*dr))
        continue;
      in.symTab->addSymbol(b);
    }
  }
}

// Create a section symbol for each output section so that we can represent
// relocations that point to the section. If we know that no relocation is
// referring to a section (that happens if the section is a synthetic one), we
// don't create a section symbol for that section.
template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
  for (BaseCommand *base : script->sectionCommands) {
    auto *sec = dyn_cast<OutputSection>(base);
    if (!sec)
      continue;
    auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
      if (auto *isd = dyn_cast<InputSectionDescription>(base))
        return !isd->sections.empty();
      return false;
    });
    if (i == sec->sectionCommands.end())
      continue;
    InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];

    // Relocations are not using REL[A] section symbols.
    if (isec->type == SHT_REL || isec->type == SHT_RELA)
      continue;

    // Unlike other synthetic sections, mergeable output sections contain data
    // copied from input sections, and there may be a relocation pointing to its
    // contents if -r or -emit-reloc are given.
    if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
      continue;

    auto *sym =
        make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
                      /*value=*/0, /*size=*/0, isec);
    in.symTab->addSymbol(sym);
  }
}

// Today's loaders have a feature to make segments read-only after
// processing dynamic relocations to enhance security. PT_GNU_RELRO
// is defined for that.
//
// This function returns true if a section needs to be put into a
// PT_GNU_RELRO segment.
static bool isRelroSection(const OutputSection *sec) {
  if (!config->zRelro)
    return false;

  uint64_t flags = sec->flags;

  // Non-allocatable or non-writable sections don't need RELRO because
  // they are not writable or not even mapped to memory in the first place.
  // RELRO is for sections that are essentially read-only but need to
  // be writable only at process startup to allow dynamic linker to
  // apply relocations.
  if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
    return false;

  // Once initialized, TLS data segments are used as data templates
  // for a thread-local storage. For each new thread, runtime
  // allocates memory for a TLS and copy templates there. No thread
  // are supposed to use templates directly. Thus, it can be in RELRO.
  if (flags & SHF_TLS)
    return true;

  // .init_array, .preinit_array and .fini_array contain pointers to
  // functions that are executed on process startup or exit. These
  // pointers are set by the static linker, and they are not expected
  // to change at runtime. But if you are an attacker, you could do
  // interesting things by manipulating pointers in .fini_array, for
  // example. So they are put into RELRO.
  uint32_t type = sec->type;
  if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
      type == SHT_PREINIT_ARRAY)
    return true;

  // .got contains pointers to external symbols. They are resolved by
  // the dynamic linker when a module is loaded into memory, and after
  // that they are not expected to change. So, it can be in RELRO.
  if (in.got && sec == in.got->getParent())
    return true;

  // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
  // through r2 register, which is reserved for that purpose. Since r2 is used
  // for accessing .got as well, .got and .toc need to be close enough in the
  // virtual address space. Usually, .toc comes just after .got. Since we place
  // .got into RELRO, .toc needs to be placed into RELRO too.
  if (sec->name.equals(".toc"))
    return true;

  // .got.plt contains pointers to external function symbols. They are
  // by default resolved lazily, so we usually cannot put it into RELRO.
  // However, if "-z now" is given, the lazy symbol resolution is
  // disabled, which enables us to put it into RELRO.
  if (sec == in.gotPlt->getParent())
    return config->zNow;

  // .dynamic section contains data for the dynamic linker, and
  // there's no need to write to it at runtime, so it's better to put
  // it into RELRO.
  if (sec->name == ".dynamic")
    return true;

  // Sections with some special names are put into RELRO. This is a
  // bit unfortunate because section names shouldn't be significant in
  // ELF in spirit. But in reality many linker features depend on
  // magic section names.
  StringRef s = sec->name;
  return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
         s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
         s == ".openbsd.randomdata";
}

// We compute a rank for each section. The rank indicates where the
// section should be placed in the file.  Instead of using simple
// numbers (0,1,2...), we use a series of flags. One for each decision
// point when placing the section.
// Using flags has two key properties:
// * It is easy to check if a give branch was taken.
// * It is easy two see how similar two ranks are (see getRankProximity).
enum RankFlags {
  RF_NOT_ADDR_SET = 1 << 27,
  RF_NOT_ALLOC = 1 << 26,
  RF_PARTITION = 1 << 18, // Partition number (8 bits)
  RF_NOT_PART_EHDR = 1 << 17,
  RF_NOT_PART_PHDR = 1 << 16,
  RF_NOT_INTERP = 1 << 15,
  RF_NOT_NOTE = 1 << 14,
  RF_WRITE = 1 << 13,
  RF_EXEC_WRITE = 1 << 12,
  RF_EXEC = 1 << 11,
  RF_RODATA = 1 << 10,
  RF_NOT_RELRO = 1 << 9,
  RF_NOT_TLS = 1 << 8,
  RF_BSS = 1 << 7,
  RF_PPC_NOT_TOCBSS = 1 << 6,
  RF_PPC_TOCL = 1 << 5,
  RF_PPC_TOC = 1 << 4,
  RF_PPC_GOT = 1 << 3,
  RF_PPC_BRANCH_LT = 1 << 2,
  RF_MIPS_GPREL = 1 << 1,
  RF_MIPS_NOT_GOT = 1 << 0
};

static unsigned getSectionRank(const OutputSection *sec) {
  unsigned rank = sec->partition * RF_PARTITION;

  // We want to put section specified by -T option first, so we
  // can start assigning VA starting from them later.
  if (config->sectionStartMap.count(sec->name))
    return rank;
  rank |= RF_NOT_ADDR_SET;

  // Allocatable sections go first to reduce the total PT_LOAD size and
  // so debug info doesn't change addresses in actual code.
  if (!(sec->flags & SHF_ALLOC))
    return rank | RF_NOT_ALLOC;

  if (sec->type == SHT_LLVM_PART_EHDR)
    return rank;
  rank |= RF_NOT_PART_EHDR;

  if (sec->type == SHT_LLVM_PART_PHDR)
    return rank;
  rank |= RF_NOT_PART_PHDR;

  // Put .interp first because some loaders want to see that section
  // on the first page of the executable file when loaded into memory.
  if (sec->name == ".interp")
    return rank;
  rank |= RF_NOT_INTERP;

  // Put .note sections (which make up one PT_NOTE) at the beginning so that
  // they are likely to be included in a core file even if core file size is
  // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
  // included in a core to match core files with executables.
  if (sec->type == SHT_NOTE)
    return rank;
  rank |= RF_NOT_NOTE;

  // Sort sections based on their access permission in the following
  // order: R, RX, RWX, RW.  This order is based on the following
  // considerations:
  // * Read-only sections come first such that they go in the
  //   PT_LOAD covering the program headers at the start of the file.
  // * Read-only, executable sections come next.
  // * Writable, executable sections follow such that .plt on
  //   architectures where it needs to be writable will be placed
  //   between .text and .data.
  // * Writable sections come last, such that .bss lands at the very
  //   end of the last PT_LOAD.
  bool isExec = sec->flags & SHF_EXECINSTR;
  bool isWrite = sec->flags & SHF_WRITE;

  if (isExec) {
    if (isWrite)
      rank |= RF_EXEC_WRITE;
    else
      rank |= RF_EXEC;
  } else if (isWrite) {
    rank |= RF_WRITE;
  } else if (sec->type == SHT_PROGBITS) {
    // Make non-executable and non-writable PROGBITS sections (e.g .rodata
    // .eh_frame) closer to .text. They likely contain PC or GOT relative
    // relocations and there could be relocation overflow if other huge sections
    // (.dynstr .dynsym) were placed in between.
    rank |= RF_RODATA;
  }

  // Place RelRo sections first. After considering SHT_NOBITS below, the
  // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
  // where | marks where page alignment happens. An alternative ordering is
  // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
  // waste more bytes due to 2 alignment places.
  if (!isRelroSection(sec))
    rank |= RF_NOT_RELRO;

  // If we got here we know that both A and B are in the same PT_LOAD.

  // The TLS initialization block needs to be a single contiguous block in a R/W
  // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
  // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
  // after PROGBITS.
  if (!(sec->flags & SHF_TLS))
    rank |= RF_NOT_TLS;

  // Within TLS sections, or within other RelRo sections, or within non-RelRo
  // sections, place non-NOBITS sections first.
  if (sec->type == SHT_NOBITS)
    rank |= RF_BSS;

  // Some architectures have additional ordering restrictions for sections
  // within the same PT_LOAD.
  if (config->emachine == EM_PPC64) {
    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
    // that we would like to make sure appear is a specific order to maximize
    // their coverage by a single signed 16-bit offset from the TOC base
    // pointer. Conversely, the special .tocbss section should be first among
    // all SHT_NOBITS sections. This will put it next to the loaded special
    // PPC64 sections (and, thus, within reach of the TOC base pointer).
    StringRef name = sec->name;
    if (name != ".tocbss")
      rank |= RF_PPC_NOT_TOCBSS;

    if (name == ".toc1")
      rank |= RF_PPC_TOCL;

    if (name == ".toc")
      rank |= RF_PPC_TOC;

    if (name == ".got")
      rank |= RF_PPC_GOT;

    if (name == ".branch_lt")
      rank |= RF_PPC_BRANCH_LT;
  }

  if (config->emachine == EM_MIPS) {
    // All sections with SHF_MIPS_GPREL flag should be grouped together
    // because data in these sections is addressable with a gp relative address.
    if (sec->flags & SHF_MIPS_GPREL)
      rank |= RF_MIPS_GPREL;

    if (sec->name != ".got")
      rank |= RF_MIPS_NOT_GOT;
  }

  return rank;
}

static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
  const OutputSection *a = cast<OutputSection>(aCmd);
  const OutputSection *b = cast<OutputSection>(bCmd);

  if (a->sortRank != b->sortRank)
    return a->sortRank < b->sortRank;

  if (!(a->sortRank & RF_NOT_ADDR_SET))
    return config->sectionStartMap.lookup(a->name) <
           config->sectionStartMap.lookup(b->name);
  return false;
}

void PhdrEntry::add(OutputSection *sec) {
  lastSec = sec;
  if (!firstSec)
    firstSec = sec;
  p_align = std::max(p_align, sec->alignment);
  if (p_type == PT_LOAD)
    sec->ptLoad = this;
}

// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
  if (config->relocatable || needsInterpSection())
    return;

  // By default, __rela_iplt_{start,end} belong to a dummy section 0
  // because .rela.plt might be empty and thus removed from output.
  // We'll override Out::elfHeader with In.relaIplt later when we are
  // sure that .rela.plt exists in output.
  ElfSym::relaIpltStart = addOptionalRegular(
      config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
      Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);

  ElfSym::relaIpltEnd = addOptionalRegular(
      config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
      Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
}

template <class ELFT>
void Writer<ELFT>::forEachRelSec(
    llvm::function_ref<void(InputSectionBase &)> fn) {
  // Scan all relocations. Each relocation goes through a series
  // of tests to determine if it needs special treatment, such as
  // creating GOT, PLT, copy relocations, etc.
  // Note that relocations for non-alloc sections are directly
  // processed by InputSection::relocateNonAlloc.
  for (InputSectionBase *isec : inputSections)
    if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
      fn(*isec);
  for (Partition &part : partitions) {
    for (EhInputSection *es : part.ehFrame->sections)
      fn(*es);
    if (part.armExidx && part.armExidx->isLive())
      for (InputSection *ex : part.armExidx->exidxSections)
        fn(*ex);
  }
}

// This function generates assignments for predefined symbols (e.g. _end or
// _etext) and inserts them into the commands sequence to be processed at the
// appropriate time. This ensures that the value is going to be correct by the
// time any references to these symbols are processed and is equivalent to
// defining these symbols explicitly in the linker script.
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
  if (ElfSym::globalOffsetTable) {
    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
    // to the start of the .got or .got.plt section.
    InputSection *gotSection = in.gotPlt;
    if (!target->gotBaseSymInGotPlt)
      gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
                              : cast<InputSection>(in.got);
    ElfSym::globalOffsetTable->section = gotSection;
  }

  // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
  if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
    ElfSym::relaIpltStart->section = in.relaIplt;
    ElfSym::relaIpltEnd->section = in.relaIplt;
    ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
  }

  PhdrEntry *last = nullptr;
  PhdrEntry *lastRO = nullptr;

  for (Partition &part : partitions) {
    for (PhdrEntry *p : part.phdrs) {
      if (p->p_type != PT_LOAD)
        continue;
      last = p;
      if (!(p->p_flags & PF_W))
        lastRO = p;
    }
  }

  if (lastRO) {
    // _etext is the first location after the last read-only loadable segment.
    if (ElfSym::etext1)
      ElfSym::etext1->section = lastRO->lastSec;
    if (ElfSym::etext2)
      ElfSym::etext2->section = lastRO->lastSec;
  }

  if (last) {
    // _edata points to the end of the last mapped initialized section.
    OutputSection *edata = nullptr;
    for (OutputSection *os : outputSections) {
      if (os->type != SHT_NOBITS)
        edata = os;
      if (os == last->lastSec)
        break;
    }

    if (ElfSym::edata1)
      ElfSym::edata1->section = edata;
    if (ElfSym::edata2)
      ElfSym::edata2->section = edata;

    // _end is the first location after the uninitialized data region.
    if (ElfSym::end1)
      ElfSym::end1->section = last->lastSec;
    if (ElfSym::end2)
      ElfSym::end2->section = last->lastSec;
  }

  if (ElfSym::bss)
    ElfSym::bss->section = findSection(".bss");

  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
  // be equal to the _gp symbol's value.
  if (ElfSym::mipsGp) {
    // Find GP-relative section with the lowest address
    // and use this address to calculate default _gp value.
    for (OutputSection *os : outputSections) {
      if (os->flags & SHF_MIPS_GPREL) {
        ElfSym::mipsGp->section = os;
        ElfSym::mipsGp->value = 0x7ff0;
        break;
      }
    }
  }
}

// We want to find how similar two ranks are.
// The more branches in getSectionRank that match, the more similar they are.
// Since each branch corresponds to a bit flag, we can just use
// countLeadingZeros.
static int getRankProximityAux(OutputSection *a, OutputSection *b) {
  return countLeadingZeros(a->sortRank ^ b->sortRank);
}

static int getRankProximity(OutputSection *a, BaseCommand *b) {
  auto *sec = dyn_cast<OutputSection>(b);
  return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
}

// When placing orphan sections, we want to place them after symbol assignments
// so that an orphan after
//   begin_foo = .;
//   foo : { *(foo) }
//   end_foo = .;
// doesn't break the intended meaning of the begin/end symbols.
// We don't want to go over sections since findOrphanPos is the
// one in charge of deciding the order of the sections.
// We don't want to go over changes to '.', since doing so in
//  rx_sec : { *(rx_sec) }
//  . = ALIGN(0x1000);
//  /* The RW PT_LOAD starts here*/
//  rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
static bool shouldSkip(BaseCommand *cmd) {
  if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
    return assign->name != ".";
  return false;
}

// We want to place orphan sections so that they share as much
// characteristics with their neighbors as possible. For example, if
// both are rw, or both are tls.
static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand *>::iterator b,
              std::vector<BaseCommand *>::iterator e) {
  OutputSection *sec = cast<OutputSection>(*e);

  // Find the first element that has as close a rank as possible.
  auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
    return getRankProximity(sec, a) < getRankProximity(sec, b);
  });
  if (i == e)
    return e;

  // Consider all existing sections with the same proximity.
  int proximity = getRankProximity(sec, *i);
  for (; i != e; ++i) {
    auto *curSec = dyn_cast<OutputSection>(*i);
    if (!curSec || !curSec->hasInputSections)
      continue;
    if (getRankProximity(sec, curSec) != proximity ||
        sec->sortRank < curSec->sortRank)
      break;
  }

  auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
    auto *os = dyn_cast<OutputSection>(cmd);
    return os && os->hasInputSections;
  };
  auto j = std::find_if(llvm::make_reverse_iterator(i),
                        llvm::make_reverse_iterator(b),
                        isOutputSecWithInputSections);
  i = j.base();

  // As a special case, if the orphan section is the last section, put
  // it at the very end, past any other commands.
  // This matches bfd's behavior and is convenient when the linker script fully
  // specifies the start of the file, but doesn't care about the end (the non
  // alloc sections for example).
  auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
  if (nextSec == e)
    return e;

  while (i != e && shouldSkip(*i))
    ++i;
  return i;
}

// Builds section order for handling --symbol-ordering-file.
static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
  DenseMap<const InputSectionBase *, int> sectionOrder;
  // Use the rarely used option -call-graph-ordering-file to sort sections.
  if (!config->callGraphProfile.empty())
    return computeCallGraphProfileOrder();

  if (config->symbolOrderingFile.empty())
    return sectionOrder;

  struct SymbolOrderEntry {
    int priority;
    bool present;
  };

  // Build a map from symbols to their priorities. Symbols that didn't
  // appear in the symbol ordering file have the lowest priority 0.
  // All explicitly mentioned symbols have negative (higher) priorities.
  DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
  int priority = -config->symbolOrderingFile.size();
  for (StringRef s : config->symbolOrderingFile)
    symbolOrder.insert({s, {priority++, false}});

  // Build a map from sections to their priorities.
  auto addSym = [&](Symbol &sym) {
    auto it = symbolOrder.find(sym.getName());
    if (it == symbolOrder.end())
      return;
    SymbolOrderEntry &ent = it->second;
    ent.present = true;

    maybeWarnUnorderableSymbol(&sym);

    if (auto *d = dyn_cast<Defined>(&sym)) {
      if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
        int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
        priority = std::min(priority, ent.priority);
      }
    }
  };

  // We want both global and local symbols. We get the global ones from the
  // symbol table and iterate the object files for the local ones.
  symtab->forEachSymbol([&](Symbol *sym) {
    if (!sym->isLazy())
      addSym(*sym);
  });

  for (InputFile *file : objectFiles)
    for (Symbol *sym : file->getSymbols())
      if (sym->isLocal())
        addSym(*sym);

  if (config->warnSymbolOrdering)
    for (auto orderEntry : symbolOrder)
      if (!orderEntry.second.present)
        warn("symbol ordering file: no such symbol: " + orderEntry.first);

  return sectionOrder;
}

// Sorts the sections in ISD according to the provided section order.
static void
sortISDBySectionOrder(InputSectionDescription *isd,
                      const DenseMap<const InputSectionBase *, int> &order) {
  std::vector<InputSection *> unorderedSections;
  std::vector<std::pair<InputSection *, int>> orderedSections;
  uint64_t unorderedSize = 0;

  for (InputSection *isec : isd->sections) {
    auto i = order.find(isec);
    if (i == order.end()) {
      unorderedSections.push_back(isec);
      unorderedSize += isec->getSize();
      continue;
    }
    orderedSections.push_back({isec, i->second});
  }
  llvm::sort(orderedSections, llvm::less_second());

  // Find an insertion point for the ordered section list in the unordered
  // section list. On targets with limited-range branches, this is the mid-point
  // of the unordered section list. This decreases the likelihood that a range
  // extension thunk will be needed to enter or exit the ordered region. If the
  // ordered section list is a list of hot functions, we can generally expect
  // the ordered functions to be called more often than the unordered functions,
  // making it more likely that any particular call will be within range, and
  // therefore reducing the number of thunks required.
  //
  // For example, imagine that you have 8MB of hot code and 32MB of cold code.
  // If the layout is:
  //
  // 8MB hot
  // 32MB cold
  //
  // only the first 8-16MB of the cold code (depending on which hot function it
  // is actually calling) can call the hot code without a range extension thunk.
  // However, if we use this layout:
  //
  // 16MB cold
  // 8MB hot
  // 16MB cold
  //
  // both the last 8-16MB of the first block of cold code and the first 8-16MB
  // of the second block of cold code can call the hot code without a thunk. So
  // we effectively double the amount of code that could potentially call into
  // the hot code without a thunk.
  size_t insPt = 0;
  if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
    uint64_t unorderedPos = 0;
    for (; insPt != unorderedSections.size(); ++insPt) {
      unorderedPos += unorderedSections[insPt]->getSize();
      if (unorderedPos > unorderedSize / 2)
        break;
    }
  }

  isd->sections.clear();
  for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
    isd->sections.push_back(isec);
  for (std::pair<InputSection *, int> p : orderedSections)
    isd->sections.push_back(p.first);
  for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
    isd->sections.push_back(isec);
}

static void sortSection(OutputSection *sec,
                        const DenseMap<const InputSectionBase *, int> &order) {
  StringRef name = sec->name;

  // Sort input sections by section name suffixes for
  // __attribute__((init_priority(N))).
  if (name == ".init_array" || name == ".fini_array") {
    if (!script->hasSectionsCommand)
      sec->sortInitFini();
    return;
  }

  // Sort input sections by the special rule for .ctors and .dtors.
  if (name == ".ctors" || name == ".dtors") {
    if (!script->hasSectionsCommand)
      sec->sortCtorsDtors();
    return;
  }

  // Never sort these.
  if (name == ".init" || name == ".fini")
    return;

  // .toc is allocated just after .got and is accessed using GOT-relative
  // relocations. Object files compiled with small code model have an
  // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
  // To reduce the risk of relocation overflow, .toc contents are sorted so that
  // sections having smaller relocation offsets are at beginning of .toc
  if (config->emachine == EM_PPC64 && name == ".toc") {
    if (script->hasSectionsCommand)
      return;
    assert(sec->sectionCommands.size() == 1);
    auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
    llvm::stable_sort(isd->sections,
                      [](const InputSection *a, const InputSection *b) -> bool {
                        return a->file->ppc64SmallCodeModelTocRelocs &&
                               !b->file->ppc64SmallCodeModelTocRelocs;
                      });
    return;
  }

  // Sort input sections by priority using the list provided
  // by --symbol-ordering-file.
  if (!order.empty())
    for (BaseCommand *b : sec->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(b))
        sortISDBySectionOrder(isd, order);
}

// If no layout was provided by linker script, we want to apply default
// sorting for special input sections. This also handles --symbol-ordering-file.
template <class ELFT> void Writer<ELFT>::sortInputSections() {
  // Build the order once since it is expensive.
  DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      sortSection(sec, order);
}

template <class ELFT> void Writer<ELFT>::sortSections() {
  script->adjustSectionsBeforeSorting();

  // Don't sort if using -r. It is not necessary and we want to preserve the
  // relative order for SHF_LINK_ORDER sections.
  if (config->relocatable)
    return;

  sortInputSections();

  for (BaseCommand *base : script->sectionCommands) {
    auto *os = dyn_cast<OutputSection>(base);
    if (!os)
      continue;
    os->sortRank = getSectionRank(os);

    // We want to assign rude approximation values to outSecOff fields
    // to know the relative order of the input sections. We use it for
    // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
    uint64_t i = 0;
    for (InputSection *sec : getInputSections(os))
      sec->outSecOff = i++;
  }

  if (!script->hasSectionsCommand) {
    // We know that all the OutputSections are contiguous in this case.
    auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
    std::stable_sort(
        llvm::find_if(script->sectionCommands, isSection),
        llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
        compareSections);
    return;
  }

  // Orphan sections are sections present in the input files which are
  // not explicitly placed into the output file by the linker script.
  //
  // The sections in the linker script are already in the correct
  // order. We have to figuere out where to insert the orphan
  // sections.
  //
  // The order of the sections in the script is arbitrary and may not agree with
  // compareSections. This means that we cannot easily define a strict weak
  // ordering. To see why, consider a comparison of a section in the script and
  // one not in the script. We have a two simple options:
  // * Make them equivalent (a is not less than b, and b is not less than a).
  //   The problem is then that equivalence has to be transitive and we can
  //   have sections a, b and c with only b in a script and a less than c
  //   which breaks this property.
  // * Use compareSectionsNonScript. Given that the script order doesn't have
  //   to match, we can end up with sections a, b, c, d where b and c are in the
  //   script and c is compareSectionsNonScript less than b. In which case d
  //   can be equivalent to c, a to b and d < a. As a concrete example:
  //   .a (rx) # not in script
  //   .b (rx) # in script
  //   .c (ro) # in script
  //   .d (ro) # not in script
  //
  // The way we define an order then is:
  // *  Sort only the orphan sections. They are in the end right now.
  // *  Move each orphan section to its preferred position. We try
  //    to put each section in the last position where it can share
  //    a PT_LOAD.
  //
  // There is some ambiguity as to where exactly a new entry should be
  // inserted, because Commands contains not only output section
  // commands but also other types of commands such as symbol assignment
  // expressions. There's no correct answer here due to the lack of the
  // formal specification of the linker script. We use heuristics to
  // determine whether a new output command should be added before or
  // after another commands. For the details, look at shouldSkip
  // function.

  auto i = script->sectionCommands.begin();
  auto e = script->sectionCommands.end();
  auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
    if (auto *sec = dyn_cast<OutputSection>(base))
      return sec->sectionIndex == UINT32_MAX;
    return false;
  });

  // Sort the orphan sections.
  std::stable_sort(nonScriptI, e, compareSections);

  // As a horrible special case, skip the first . assignment if it is before any
  // section. We do this because it is common to set a load address by starting
  // the script with ". = 0xabcd" and the expectation is that every section is
  // after that.
  auto firstSectionOrDotAssignment =
      std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
  if (firstSectionOrDotAssignment != e &&
      isa<SymbolAssignment>(**firstSectionOrDotAssignment))
    ++firstSectionOrDotAssignment;
  i = firstSectionOrDotAssignment;

  while (nonScriptI != e) {
    auto pos = findOrphanPos(i, nonScriptI);
    OutputSection *orphan = cast<OutputSection>(*nonScriptI);

    // As an optimization, find all sections with the same sort rank
    // and insert them with one rotate.
    unsigned rank = orphan->sortRank;
    auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
      return cast<OutputSection>(cmd)->sortRank != rank;
    });
    std::rotate(pos, nonScriptI, end);
    nonScriptI = end;
  }

  script->adjustSectionsAfterSorting();
}

static bool compareByFilePosition(InputSection *a, InputSection *b) {
  InputSection *la = a->getLinkOrderDep();
  InputSection *lb = b->getLinkOrderDep();
  OutputSection *aOut = la->getParent();
  OutputSection *bOut = lb->getParent();

  if (aOut != bOut)
    return aOut->sectionIndex < bOut->sectionIndex;
  return la->outSecOff < lb->outSecOff;
}

template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
  for (OutputSection *sec : outputSections) {
    if (!(sec->flags & SHF_LINK_ORDER))
      continue;

    // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
    // this processing inside the ARMExidxsyntheticsection::finalizeContents().
    if (!config->relocatable && config->emachine == EM_ARM &&
        sec->type == SHT_ARM_EXIDX)
      continue;

    // Link order may be distributed across several InputSectionDescriptions
    // but sort must consider them all at once.
    std::vector<InputSection **> scriptSections;
    std::vector<InputSection *> sections;
    for (BaseCommand *base : sec->sectionCommands) {
      if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
        for (InputSection *&isec : isd->sections) {
          scriptSections.push_back(&isec);
          sections.push_back(isec);

          InputSection *link = isec->getLinkOrderDep();
          if (!link->getParent())
            error(toString(isec) + ": sh_link points to discarded section " +
                  toString(link));
        }
      }
    }

    if (errorCount())
      continue;

    llvm::stable_sort(sections, compareByFilePosition);

    for (int i = 0, n = sections.size(); i < n; ++i)
      *scriptSections[i] = sections[i];
  }
}

// We need to generate and finalize the content that depends on the address of
// InputSections. As the generation of the content may also alter InputSection
// addresses we must converge to a fixed point. We do that here. See the comment
// in Writer<ELFT>::finalizeSections().
template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
  ThunkCreator tc;
  AArch64Err843419Patcher a64p;
  ARMErr657417Patcher a32p;
  script->assignAddresses();

  int assignPasses = 0;
  for (;;) {
    bool changed = target->needsThunks && tc.createThunks(outputSections);

    // With Thunk Size much smaller than branch range we expect to
    // converge quickly; if we get to 10 something has gone wrong.
    if (changed && tc.pass >= 10) {
      error("thunk creation not converged");
      break;
    }

    if (config->fixCortexA53Errata843419) {
      if (changed)
        script->assignAddresses();
      changed |= a64p.createFixes();
    }
    if (config->fixCortexA8) {
      if (changed)
        script->assignAddresses();
      changed |= a32p.createFixes();
    }

    if (in.mipsGot)
      in.mipsGot->updateAllocSize();

    for (Partition &part : partitions) {
      changed |= part.relaDyn->updateAllocSize();
      if (part.relrDyn)
        changed |= part.relrDyn->updateAllocSize();
    }

    const Defined *changedSym = script->assignAddresses();
    if (!changed) {
      // Some symbols may be dependent on section addresses. When we break the
      // loop, the symbol values are finalized because a previous
      // assignAddresses() finalized section addresses.
      if (!changedSym)
        break;
      if (++assignPasses == 5) {
        errorOrWarn("assignment to symbol " + toString(*changedSym) +
                    " does not converge");
        break;
      }
    }
  }
}

static void finalizeSynthetic(SyntheticSection *sec) {
  if (sec && sec->isNeeded() && sec->getParent())
    sec->finalizeContents();
}

// In order to allow users to manipulate linker-synthesized sections,
// we had to add synthetic sections to the input section list early,
// even before we make decisions whether they are needed. This allows
// users to write scripts like this: ".mygot : { .got }".
//
// Doing it has an unintended side effects. If it turns out that we
// don't need a .got (for example) at all because there's no
// relocation that needs a .got, we don't want to emit .got.
//
// To deal with the above problem, this function is called after
// scanRelocations is called to remove synthetic sections that turn
// out to be empty.
static void removeUnusedSyntheticSections() {
  // All input synthetic sections that can be empty are placed after
  // all regular ones. We iterate over them all and exit at first
  // non-synthetic.
  for (InputSectionBase *s : llvm::reverse(inputSections)) {
    SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
    if (!ss)
      return;
    OutputSection *os = ss->getParent();
    if (!os || ss->isNeeded())
      continue;

    // If we reach here, then SS is an unused synthetic section and we want to
    // remove it from corresponding input section description of output section.
    for (BaseCommand *b : os->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(b))
        llvm::erase_if(isd->sections,
                       [=](InputSection *isec) { return isec == ss; });
  }
}

// Returns true if a symbol can be replaced at load-time by a symbol
// with the same name defined in other ELF executable or DSO.
static bool computeIsPreemptible(const Symbol &b) {
  assert(!b.isLocal());

  // Only symbols that appear in dynsym can be preempted.
  if (!b.includeInDynsym())
    return false;

  // Only default visibility symbols can be preempted.
  if (b.visibility != STV_DEFAULT)
    return false;

  // At this point copy relocations have not been created yet, so any
  // symbol that is not defined locally is preemptible.
  if (!b.isDefined())
    return true;

  if (!config->shared)
    return false;

  // If the dynamic list is present, it specifies preemptable symbols in a DSO.
  if (config->hasDynamicList)
    return b.inDynamicList;

  // -Bsymbolic means that definitions are not preempted.
  if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc()))
    return false;
  return true;
}

// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::finalizeSections() {
  Out::preinitArray = findSection(".preinit_array");
  Out::initArray = findSection(".init_array");
  Out::finiArray = findSection(".fini_array");

  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
  // symbols for sections, so that the runtime can get the start and end
  // addresses of each section by section name. Add such symbols.
  if (!config->relocatable) {
    addStartEndSymbols();
    for (BaseCommand *base : script->sectionCommands)
      if (auto *sec = dyn_cast<OutputSection>(base))
        addStartStopSymbols(sec);
  }

  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
  // It should be okay as no one seems to care about the type.
  // Even the author of gold doesn't remember why gold behaves that way.
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
  if (mainPart->dynamic->parent)
    symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
                              STV_HIDDEN, STT_NOTYPE,
                              /*value=*/0, /*size=*/0, mainPart->dynamic});

  // Define __rel[a]_iplt_{start,end} symbols if needed.
  addRelIpltSymbols();

  // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
  // should only be defined in an executable. If .sdata does not exist, its
  // value/section does not matter but it has to be relative, so set its
  // st_shndx arbitrarily to 1 (Out::elfHeader).
  if (config->emachine == EM_RISCV && !config->shared) {
    OutputSection *sec = findSection(".sdata");
    ElfSym::riscvGlobalPointer =
        addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
                           0x800, STV_DEFAULT, STB_GLOBAL);
  }

  if (config->emachine == EM_X86_64) {
    // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
    // way that:
    //
    // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
    // computes 0.
    // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
    // the TLS block).
    //
    // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
    // an absolute symbol of zero. This is different from GNU linkers which
    // define _TLS_MODULE_BASE_ relative to the first TLS section.
    Symbol *s = symtab->find("_TLS_MODULE_BASE_");
    if (s && s->isUndefined()) {
      s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
                         STT_TLS, /*value=*/0, 0,
                         /*section=*/nullptr});
      ElfSym::tlsModuleBase = cast<Defined>(s);
    }
  }

  // This responsible for splitting up .eh_frame section into
  // pieces. The relocation scan uses those pieces, so this has to be
  // earlier.
  for (Partition &part : partitions)
    finalizeSynthetic(part.ehFrame);

  symtab->forEachSymbol(
      [](Symbol *s) { s->isPreemptible = computeIsPreemptible(*s); });

  // Change values of linker-script-defined symbols from placeholders (assigned
  // by declareSymbols) to actual definitions.
  script->processSymbolAssignments();

  // Scan relocations. This must be done after every symbol is declared so that
  // we can correctly decide if a dynamic relocation is needed. This is called
  // after processSymbolAssignments() because it needs to know whether a
  // linker-script-defined symbol is absolute.
  if (!config->relocatable) {
    forEachRelSec(scanRelocations<ELFT>);
    reportUndefinedSymbols<ELFT>();
  }

  if (in.plt && in.plt->isNeeded())
    in.plt->addSymbols();
  if (in.iplt && in.iplt->isNeeded())
    in.iplt->addSymbols();

  if (!config->allowShlibUndefined) {
    // Error on undefined symbols in a shared object, if all of its DT_NEEDED
    // entries are seen. These cases would otherwise lead to runtime errors
    // reported by the dynamic linker.
    //
    // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
    // catch more cases. That is too much for us. Our approach resembles the one
    // used in ld.gold, achieves a good balance to be useful but not too smart.
    for (SharedFile *file : sharedFiles)
      file->allNeededIsKnown =
          llvm::all_of(file->dtNeeded, [&](StringRef needed) {
            return symtab->soNames.count(needed);
          });

    symtab->forEachSymbol([](Symbol *sym) {
      if (sym->isUndefined() && !sym->isWeak())
        if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
          if (f->allNeededIsKnown)
            error(toString(f) + ": undefined reference to " + toString(*sym));
    });
  }

  // Now that we have defined all possible global symbols including linker-
  // synthesized ones. Visit all symbols to give the finishing touches.
  symtab->forEachSymbol([](Symbol *sym) {
    if (!includeInSymtab(*sym))
      return;
    if (in.symTab)
      in.symTab->addSymbol(sym);

    if (sym->includeInDynsym()) {
      partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
      if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
        if (file->isNeeded && !sym->isUndefined())
          addVerneed(sym);
    }
  });

  // We also need to scan the dynamic relocation tables of the other partitions
  // and add any referenced symbols to the partition's dynsym.
  for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
    DenseSet<Symbol *> syms;
    for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
      syms.insert(e.sym);
    for (DynamicReloc &reloc : part.relaDyn->relocs)
      if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
        part.dynSymTab->addSymbol(reloc.sym);
  }

  // Do not proceed if there was an undefined symbol.
  if (errorCount())
    return;

  if (in.mipsGot)
    in.mipsGot->build();

  removeUnusedSyntheticSections();

  sortSections();

  // Now that we have the final list, create a list of all the
  // OutputSections for convenience.
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      outputSections.push_back(sec);

  // Prefer command line supplied address over other constraints.
  for (OutputSection *sec : outputSections) {
    auto i = config->sectionStartMap.find(sec->name);
    if (i != config->sectionStartMap.end())
      sec->addrExpr = [=] { return i->second; };
  }

  // This is a bit of a hack. A value of 0 means undef, so we set it
  // to 1 to make __ehdr_start defined. The section number is not
  // particularly relevant.
  Out::elfHeader->sectionIndex = 1;

  for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
    OutputSection *sec = outputSections[i];
    sec->sectionIndex = i + 1;
    sec->shName = in.shStrTab->addString(sec->name);
  }

  // Binary and relocatable output does not have PHDRS.
  // The headers have to be created before finalize as that can influence the
  // image base and the dynamic section on mips includes the image base.
  if (!config->relocatable && !config->oFormatBinary) {
    for (Partition &part : partitions) {
      part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
                                              : createPhdrs(part);
      if (config->emachine == EM_ARM) {
        // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
        addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
      }
      if (config->emachine == EM_MIPS) {
        // Add separate segments for MIPS-specific sections.
        addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
        addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
        addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
      }
    }
    Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();

    // Find the TLS segment. This happens before the section layout loop so that
    // Android relocation packing can look up TLS symbol addresses. We only need
    // to care about the main partition here because all TLS symbols were moved
    // to the main partition (see MarkLive.cpp).
    for (PhdrEntry *p : mainPart->phdrs)
      if (p->p_type == PT_TLS)
        Out::tlsPhdr = p;
  }

  // Some symbols are defined in term of program headers. Now that we
  // have the headers, we can find out which sections they point to.
  setReservedSymbolSections();

  finalizeSynthetic(in.bss);
  finalizeSynthetic(in.bssRelRo);
  finalizeSynthetic(in.symTabShndx);
  finalizeSynthetic(in.shStrTab);
  finalizeSynthetic(in.strTab);
  finalizeSynthetic(in.got);
  finalizeSynthetic(in.mipsGot);
  finalizeSynthetic(in.igotPlt);
  finalizeSynthetic(in.gotPlt);
  finalizeSynthetic(in.relaIplt);
  finalizeSynthetic(in.relaPlt);
  finalizeSynthetic(in.plt);
  finalizeSynthetic(in.iplt);
  finalizeSynthetic(in.ppc32Got2);
  finalizeSynthetic(in.partIndex);

  // Dynamic section must be the last one in this list and dynamic
  // symbol table section (dynSymTab) must be the first one.
  for (Partition &part : partitions) {
    finalizeSynthetic(part.armExidx);
    finalizeSynthetic(part.dynSymTab);
    finalizeSynthetic(part.gnuHashTab);
    finalizeSynthetic(part.hashTab);
    finalizeSynthetic(part.verDef);
    finalizeSynthetic(part.relaDyn);
    finalizeSynthetic(part.relrDyn);
    finalizeSynthetic(part.ehFrameHdr);
    finalizeSynthetic(part.verSym);
    finalizeSynthetic(part.verNeed);
    finalizeSynthetic(part.dynamic);
  }

  if (!script->hasSectionsCommand && !config->relocatable)
    fixSectionAlignments();

  // SHFLinkOrder processing must be processed after relative section placements are
  // known but before addresses are allocated.
  resolveShfLinkOrder();
  if (errorCount())
    return;

  // This is used to:
  // 1) Create "thunks":
  //    Jump instructions in many ISAs have small displacements, and therefore
  //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
  //    JAL instruction can target only +-1 MiB from PC. It is a linker's
  //    responsibility to create and insert small pieces of code between
  //    sections to extend the ranges if jump targets are out of range. Such
  //    code pieces are called "thunks".
  //
  //    We add thunks at this stage. We couldn't do this before this point
  //    because this is the earliest point where we know sizes of sections and
  //    their layouts (that are needed to determine if jump targets are in
  //    range).
  //
  // 2) Update the sections. We need to generate content that depends on the
  //    address of InputSections. For example, MIPS GOT section content or
  //    android packed relocations sections content.
  //
  // 3) Assign the final values for the linker script symbols. Linker scripts
  //    sometimes using forward symbol declarations. We want to set the correct
  //    values. They also might change after adding the thunks.
  finalizeAddressDependentContent();

  // finalizeAddressDependentContent may have added local symbols to the static symbol table.
  finalizeSynthetic(in.symTab);
  finalizeSynthetic(in.ppc64LongBranchTarget);

  // Fill other section headers. The dynamic table is finalized
  // at the end because some tags like RELSZ depend on result
  // of finalizing other sections.
  for (OutputSection *sec : outputSections)
    sec->finalize();
}

// Ensure data sections are not mixed with executable sections when
// -execute-only is used. -execute-only is a feature to make pages executable
// but not readable, and the feature is currently supported only on AArch64.
template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
  if (!config->executeOnly)
    return;

  for (OutputSection *os : outputSections)
    if (os->flags & SHF_EXECINSTR)
      for (InputSection *isec : getInputSections(os))
        if (!(isec->flags & SHF_EXECINSTR))
          error("cannot place " + toString(isec) + " into " + toString(os->name) +
                ": -execute-only does not support intermingling data and code");
}

// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
  // If a section does not exist, there's ambiguity as to how we
  // define _start and _end symbols for an init/fini section. Since
  // the loader assume that the symbols are always defined, we need to
  // always define them. But what value? The loader iterates over all
  // pointers between _start and _end to run global ctors/dtors, so if
  // the section is empty, their symbol values don't actually matter
  // as long as _start and _end point to the same location.
  //
  // That said, we don't want to set the symbols to 0 (which is
  // probably the simplest value) because that could cause some
  // program to fail to link due to relocation overflow, if their
  // program text is above 2 GiB. We use the address of the .text
  // section instead to prevent that failure.
  //
  // In rare situations, the .text section may not exist. If that's the
  // case, use the image base address as a last resort.
  OutputSection *Default = findSection(".text");
  if (!Default)
    Default = Out::elfHeader;

  auto define = [=](StringRef start, StringRef end, OutputSection *os) {
    if (os) {
      addOptionalRegular(start, os, 0);
      addOptionalRegular(end, os, -1);
    } else {
      addOptionalRegular(start, Default, 0);
      addOptionalRegular(end, Default, 0);
    }
  };

  define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
  define("__init_array_start", "__init_array_end", Out::initArray);
  define("__fini_array_start", "__fini_array_end", Out::finiArray);

  if (OutputSection *sec = findSection(".ARM.exidx"))
    define("__exidx_start", "__exidx_end", sec);
}

// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
  StringRef s = sec->name;
  if (!isValidCIdentifier(s))
    return;
  addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
  addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
}

static bool needsPtLoad(OutputSection *sec) {
  if (!(sec->flags & SHF_ALLOC) || sec->noload)
    return false;

  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
  // responsible for allocating space for them, not the PT_LOAD that
  // contains the TLS initialization image.
  if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
    return false;
  return true;
}

// Linker scripts are responsible for aligning addresses. Unfortunately, most
// linker scripts are designed for creating two PT_LOADs only, one RX and one
// RW. This means that there is no alignment in the RO to RX transition and we
// cannot create a PT_LOAD there.
static uint64_t computeFlags(uint64_t flags) {
  if (config->omagic)
    return PF_R | PF_W | PF_X;
  if (config->executeOnly && (flags & PF_X))
    return flags & ~PF_R;
  if (config->singleRoRx && !(flags & PF_W))
    return flags | PF_X;
  return flags;
}

// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT>
std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
  std::vector<PhdrEntry *> ret;
  auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
    ret.push_back(make<PhdrEntry>(type, flags));
    return ret.back();
  };

  unsigned partNo = part.getNumber();
  bool isMain = partNo == 1;

  // Add the first PT_LOAD segment for regular output sections.
  uint64_t flags = computeFlags(PF_R);
  PhdrEntry *load = nullptr;

  // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
  // PT_LOAD.
  if (!config->nmagic && !config->omagic) {
    // The first phdr entry is PT_PHDR which describes the program header
    // itself.
    if (isMain)
      addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
    else
      addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());

    // PT_INTERP must be the second entry if exists.
    if (OutputSection *cmd = findSection(".interp", partNo))
      addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);

    // Add the headers. We will remove them if they don't fit.
    // In the other partitions the headers are ordinary sections, so they don't
    // need to be added here.
    if (isMain) {
      load = addHdr(PT_LOAD, flags);
      load->add(Out::elfHeader);
      load->add(Out::programHeaders);
    }
  }

  // PT_GNU_RELRO includes all sections that should be marked as
  // read-only by dynamic linker after processing relocations.
  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
  // an error message if more than one PT_GNU_RELRO PHDR is required.
  PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
  bool inRelroPhdr = false;
  OutputSection *relroEnd = nullptr;
  for (OutputSection *sec : outputSections) {
    if (sec->partition != partNo || !needsPtLoad(sec))
      continue;
    if (isRelroSection(sec)) {
      inRelroPhdr = true;
      if (!relroEnd)
        relRo->add(sec);
      else
        error("section: " + sec->name + " is not contiguous with other relro" +
              " sections");
    } else if (inRelroPhdr) {
      inRelroPhdr = false;
      relroEnd = sec;
    }
  }

  for (OutputSection *sec : outputSections) {
    if (!(sec->flags & SHF_ALLOC))
      break;
    if (!needsPtLoad(sec))
      continue;

    // Normally, sections in partitions other than the current partition are
    // ignored. But partition number 255 is a special case: it contains the
    // partition end marker (.part.end). It needs to be added to the main
    // partition so that a segment is created for it in the main partition,
    // which will cause the dynamic loader to reserve space for the other
    // partitions.
    if (sec->partition != partNo) {
      if (isMain && sec->partition == 255)
        addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
      continue;
    }

    // Segments are contiguous memory regions that has the same attributes
    // (e.g. executable or writable). There is one phdr for each segment.
    // Therefore, we need to create a new phdr when the next section has
    // different flags or is loaded at a discontiguous address or memory
    // region using AT or AT> linker script command, respectively. At the same
    // time, we don't want to create a separate load segment for the headers,
    // even if the first output section has an AT or AT> attribute.
    uint64_t newFlags = computeFlags(sec->getPhdrFlags());
    if (!load ||
        ((sec->lmaExpr ||
          (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
         load->lastSec != Out::programHeaders) ||
        sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
        sec == relroEnd) {
      load = addHdr(PT_LOAD, newFlags);
      flags = newFlags;
    }

    load->add(sec);
  }

  // Add a TLS segment if any.
  PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
  for (OutputSection *sec : outputSections)
    if (sec->partition == partNo && sec->flags & SHF_TLS)
      tlsHdr->add(sec);
  if (tlsHdr->firstSec)
    ret.push_back(tlsHdr);

  // Add an entry for .dynamic.
  if (OutputSection *sec = part.dynamic->getParent())
    addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);

  if (relRo->firstSec)
    ret.push_back(relRo);

  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
  if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
      part.ehFrame->getParent() && part.ehFrameHdr->getParent())
    addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
        ->add(part.ehFrameHdr->getParent());

  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
  // the dynamic linker fill the segment with random data.
  if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
    addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);

  // PT_GNU_STACK is a special section to tell the loader to make the
  // pages for the stack non-executable. If you really want an executable
  // stack, you can pass -z execstack, but that's not recommended for
  // security reasons.
  unsigned perm = PF_R | PF_W;
  if (config->zExecstack)
    perm |= PF_X;
  addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;

  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
  // is expected to perform W^X violations, such as calling mprotect(2) or
  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
  // OpenBSD.
  if (config->zWxneeded)
    addHdr(PT_OPENBSD_WXNEEDED, PF_X);

  // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
  // same alignment.
  PhdrEntry *note = nullptr;
  for (OutputSection *sec : outputSections) {
    if (sec->partition != partNo)
      continue;
    if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
      if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
        note = addHdr(PT_NOTE, PF_R);
      note->add(sec);
    } else {
      note = nullptr;
    }
  }
  return ret;
}

template <class ELFT>
void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
                                     unsigned pType, unsigned pFlags) {
  unsigned partNo = part.getNumber();
  auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
    return cmd->partition == partNo && cmd->type == shType;
  });
  if (i == outputSections.end())
    return;

  PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
  entry->add(*i);
  part.phdrs.push_back(entry);
}

// Place the first section of each PT_LOAD to a different page (of maxPageSize).
// This is achieved by assigning an alignment expression to addrExpr of each
// such section.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
  const PhdrEntry *prev;
  auto pageAlign = [&](const PhdrEntry *p) {
    OutputSection *cmd = p->firstSec;
    if (cmd && !cmd->addrExpr) {
      // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
      // padding in the file contents.
      //
      // When -z separate-code is used we must not have any overlap in pages
      // between an executable segment and a non-executable segment. We align to
      // the next maximum page size boundary on transitions between executable
      // and non-executable segments.
      //
      // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
      // sections will be extracted to a separate file. Align to the next
      // maximum page size boundary so that we can find the ELF header at the
      // start. We cannot benefit from overlapping p_offset ranges with the
      // previous segment anyway.
      if (config->zSeparate == SeparateSegmentKind::Loadable ||
          (config->zSeparate == SeparateSegmentKind::Code && prev &&
           (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
          cmd->type == SHT_LLVM_PART_EHDR)
        cmd->addrExpr = [] {
          return alignTo(script->getDot(), config->maxPageSize);
        };
      // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
      // it must be the RW. Align to p_align(PT_TLS) to make sure
      // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
      // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
      // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
      // be congruent to 0 modulo p_align(PT_TLS).
      //
      // Technically this is not required, but as of 2019, some dynamic loaders
      // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
      // x86-64) doesn't make runtime address congruent to p_vaddr modulo
      // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
      // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
      // blocks correctly. We need to keep the workaround for a while.
      else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
        cmd->addrExpr = [] {
          return alignTo(script->getDot(), config->maxPageSize) +
                 alignTo(script->getDot() % config->maxPageSize,
                         Out::tlsPhdr->p_align);
        };
      else
        cmd->addrExpr = [] {
          return alignTo(script->getDot(), config->maxPageSize) +
                 script->getDot() % config->maxPageSize;
        };
    }
  };

  for (Partition &part : partitions) {
    prev = nullptr;
    for (const PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD && p->firstSec) {
        pageAlign(p);
        prev = p;
      }
  }
}

// Compute an in-file position for a given section. The file offset must be the
// same with its virtual address modulo the page size, so that the loader can
// load executables without any address adjustment.
static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
  // The first section in a PT_LOAD has to have congruent offset and address
  // modulo the maximum page size.
  if (os->ptLoad && os->ptLoad->firstSec == os)
    return alignTo(off, os->ptLoad->p_align, os->addr);

  // File offsets are not significant for .bss sections other than the first one
  // in a PT_LOAD. By convention, we keep section offsets monotonically
  // increasing rather than setting to zero.
   if (os->type == SHT_NOBITS)
     return off;

  // If the section is not in a PT_LOAD, we just have to align it.
  if (!os->ptLoad)
    return alignTo(off, os->alignment);

  // If two sections share the same PT_LOAD the file offset is calculated
  // using this formula: Off2 = Off1 + (VA2 - VA1).
  OutputSection *first = os->ptLoad->firstSec;
  return first->offset + os->addr - first->addr;
}

// Set an in-file position to a given section and returns the end position of
// the section.
static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
  off = computeFileOffset(os, off);
  os->offset = off;

  if (os->type == SHT_NOBITS)
    return off;
  return off + os->size;
}

template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
  uint64_t off = 0;
  for (OutputSection *sec : outputSections)
    if (sec->flags & SHF_ALLOC)
      off = setFileOffset(sec, off);
  fileSize = alignTo(off, config->wordsize);
}

static std::string rangeToString(uint64_t addr, uint64_t len) {
  return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
}

// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
  uint64_t off = 0;
  off = setFileOffset(Out::elfHeader, off);
  off = setFileOffset(Out::programHeaders, off);

  PhdrEntry *lastRX = nullptr;
  for (Partition &part : partitions)
    for (PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
        lastRX = p;

  for (OutputSection *sec : outputSections) {
    off = setFileOffset(sec, off);

    // If this is a last section of the last executable segment and that
    // segment is the last loadable segment, align the offset of the
    // following section to avoid loading non-segments parts of the file.
    if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
        lastRX->lastSec == sec)
      off = alignTo(off, config->commonPageSize);
  }

  sectionHeaderOff = alignTo(off, config->wordsize);
  fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);

  // Our logic assumes that sections have rising VA within the same segment.
  // With use of linker scripts it is possible to violate this rule and get file
  // offset overlaps or overflows. That should never happen with a valid script
  // which does not move the location counter backwards and usually scripts do
  // not do that. Unfortunately, there are apps in the wild, for example, Linux
  // kernel, which control segment distribution explicitly and move the counter
  // backwards, so we have to allow doing that to support linking them. We
  // perform non-critical checks for overlaps in checkSectionOverlap(), but here
  // we want to prevent file size overflows because it would crash the linker.
  for (OutputSection *sec : outputSections) {
    if (sec->type == SHT_NOBITS)
      continue;
    if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
      error("unable to place section " + sec->name + " at file offset " +
            rangeToString(sec->offset, sec->size) +
            "; check your linker script for overflows");
  }
}

// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
  for (PhdrEntry *p : part.phdrs) {
    OutputSection *first = p->firstSec;
    OutputSection *last = p->lastSec;

    if (first) {
      p->p_filesz = last->offset - first->offset;
      if (last->type != SHT_NOBITS)
        p->p_filesz += last->size;

      p->p_memsz = last->addr + last->size - first->addr;
      p->p_offset = first->offset;
      p->p_vaddr = first->addr;

      // File offsets in partitions other than the main partition are relative
      // to the offset of the ELF headers. Perform that adjustment now.
      if (part.elfHeader)
        p->p_offset -= part.elfHeader->getParent()->offset;

      if (!p->hasLMA)
        p->p_paddr = first->getLMA();
    }

    if (p->p_type == PT_GNU_RELRO) {
      p->p_align = 1;
      // musl/glibc ld.so rounds the size down, so we need to round up
      // to protect the last page. This is a no-op on FreeBSD which always
      // rounds up.
      p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
                   p->p_offset;
    }
  }
}

// A helper struct for checkSectionOverlap.
namespace {
struct SectionOffset {
  OutputSection *sec;
  uint64_t offset;
};
} // namespace

// Check whether sections overlap for a specific address range (file offsets,
// load and virtual addresses).
static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
                         bool isVirtualAddr) {
  llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
    return a.offset < b.offset;
  });

  // Finding overlap is easy given a vector is sorted by start position.
  // If an element starts before the end of the previous element, they overlap.
  for (size_t i = 1, end = sections.size(); i < end; ++i) {
    SectionOffset a = sections[i - 1];
    SectionOffset b = sections[i];
    if (b.offset >= a.offset + a.sec->size)
      continue;

    // If both sections are in OVERLAY we allow the overlapping of virtual
    // addresses, because it is what OVERLAY was designed for.
    if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
      continue;

    errorOrWarn("section " + a.sec->name + " " + name +
                " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
                " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
                b.sec->name + " range is " +
                rangeToString(b.offset, b.sec->size));
  }
}

// Check for overlapping sections and address overflows.
//
// In this function we check that none of the output sections have overlapping
// file offsets. For SHF_ALLOC sections we also check that the load address
// ranges and the virtual address ranges don't overlap
template <class ELFT> void Writer<ELFT>::checkSections() {
  // First, check that section's VAs fit in available address space for target.
  for (OutputSection *os : outputSections)
    if ((os->addr + os->size < os->addr) ||
        (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
      errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
                  " of size 0x" + utohexstr(os->size) +
                  " exceeds available address space");

  // Check for overlapping file offsets. In this case we need to skip any
  // section marked as SHT_NOBITS. These sections don't actually occupy space in
  // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
  // binary is specified only add SHF_ALLOC sections are added to the output
  // file so we skip any non-allocated sections in that case.
  std::vector<SectionOffset> fileOffs;
  for (OutputSection *sec : outputSections)
    if (sec->size > 0 && sec->type != SHT_NOBITS &&
        (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
      fileOffs.push_back({sec, sec->offset});
  checkOverlap("file", fileOffs, false);

  // When linking with -r there is no need to check for overlapping virtual/load
  // addresses since those addresses will only be assigned when the final
  // executable/shared object is created.
  if (config->relocatable)
    return;

  // Checking for overlapping virtual and load addresses only needs to take
  // into account SHF_ALLOC sections since others will not be loaded.
  // Furthermore, we also need to skip SHF_TLS sections since these will be
  // mapped to other addresses at runtime and can therefore have overlapping
  // ranges in the file.
  std::vector<SectionOffset> vmas;
  for (OutputSection *sec : outputSections)
    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
      vmas.push_back({sec, sec->addr});
  checkOverlap("virtual address", vmas, true);

  // Finally, check that the load addresses don't overlap. This will usually be
  // the same as the virtual addresses but can be different when using a linker
  // script with AT().
  std::vector<SectionOffset> lmas;
  for (OutputSection *sec : outputSections)
    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
      lmas.push_back({sec, sec->getLMA()});
  checkOverlap("load address", lmas, false);
}

// The entry point address is chosen in the following ways.
//
// 1. the '-e' entry command-line option;
// 2. the ENTRY(symbol) command in a linker control script;
// 3. the value of the symbol _start, if present;
// 4. the number represented by the entry symbol, if it is a number;
// 5. the address of the first byte of the .text section, if present;
// 6. the address 0.
static uint64_t getEntryAddr() {
  // Case 1, 2 or 3
  if (Symbol *b = symtab->find(config->entry))
    return b->getVA();

  // Case 4
  uint64_t addr;
  if (to_integer(config->entry, addr))
    return addr;

  // Case 5
  if (OutputSection *sec = findSection(".text")) {
    if (config->warnMissingEntry)
      warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
           utohexstr(sec->addr));
    return sec->addr;
  }

  // Case 6
  if (config->warnMissingEntry)
    warn("cannot find entry symbol " + config->entry +
         "; not setting start address");
  return 0;
}

static uint16_t getELFType() {
  if (config->isPic)
    return ET_DYN;
  if (config->relocatable)
    return ET_REL;
  return ET_EXEC;
}

template <class ELFT> void Writer<ELFT>::writeHeader() {
  writeEhdr<ELFT>(Out::bufferStart, *mainPart);
  writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);

  auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
  eHdr->e_type = getELFType();
  eHdr->e_entry = getEntryAddr();
  eHdr->e_shoff = sectionHeaderOff;

  // Write the section header table.
  //
  // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
  // and e_shstrndx fields. When the value of one of these fields exceeds
  // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
  // use fields in the section header at index 0 to store
  // the value. The sentinel values and fields are:
  // e_shnum = 0, SHdrs[0].sh_size = number of sections.
  // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
  auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
  size_t num = outputSections.size() + 1;
  if (num >= SHN_LORESERVE)
    sHdrs->sh_size = num;
  else
    eHdr->e_shnum = num;

  uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
  if (strTabIndex >= SHN_LORESERVE) {
    sHdrs->sh_link = strTabIndex;
    eHdr->e_shstrndx = SHN_XINDEX;
  } else {
    eHdr->e_shstrndx = strTabIndex;
  }

  for (OutputSection *sec : outputSections)
    sec->writeHeaderTo<ELFT>(++sHdrs);
}

// Open a result file.
template <class ELFT> void Writer<ELFT>::openFile() {
  uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
  if (fileSize != size_t(fileSize) || maxSize < fileSize) {
    error("output file too large: " + Twine(fileSize) + " bytes");
    return;
  }

  unlinkAsync(config->outputFile);
  unsigned flags = 0;
  if (!config->relocatable)
    flags = FileOutputBuffer::F_executable;
  Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
      FileOutputBuffer::create(config->outputFile, fileSize, flags);

  if (!bufferOrErr) {
    error("failed to open " + config->outputFile + ": " +
          llvm::toString(bufferOrErr.takeError()));
    return;
  }
  buffer = std::move(*bufferOrErr);
  Out::bufferStart = buffer->getBufferStart();
}

template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
  for (OutputSection *sec : outputSections)
    if (sec->flags & SHF_ALLOC)
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
}

static void fillTrap(uint8_t *i, uint8_t *end) {
  for (; i + 4 <= end; i += 4)
    memcpy(i, &target->trapInstr, 4);
}

// Fill the last page of executable segments with trap instructions
// instead of leaving them as zero. Even though it is not required by any
// standard, it is in general a good thing to do for security reasons.
//
// We'll leave other pages in segments as-is because the rest will be
// overwritten by output sections.
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
  for (Partition &part : partitions) {
    // Fill the last page.
    for (PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
        fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
                                              config->commonPageSize),
                 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
                                            config->commonPageSize));

    // Round up the file size of the last segment to the page boundary iff it is
    // an executable segment to ensure that other tools don't accidentally
    // trim the instruction padding (e.g. when stripping the file).
    PhdrEntry *last = nullptr;
    for (PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD)
        last = p;

    if (last && (last->p_flags & PF_X))
      last->p_memsz = last->p_filesz =
          alignTo(last->p_filesz, config->commonPageSize);
  }
}

// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
  // In -r or -emit-relocs mode, write the relocation sections first as in
  // ELf_Rel targets we might find out that we need to modify the relocated
  // section while doing it.
  for (OutputSection *sec : outputSections)
    if (sec->type == SHT_REL || sec->type == SHT_RELA)
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);

  for (OutputSection *sec : outputSections)
    if (sec->type != SHT_REL && sec->type != SHT_RELA)
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
}

// Split one uint8 array into small pieces of uint8 arrays.
static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
                                            size_t chunkSize) {
  std::vector<ArrayRef<uint8_t>> ret;
  while (arr.size() > chunkSize) {
    ret.push_back(arr.take_front(chunkSize));
    arr = arr.drop_front(chunkSize);
  }
  if (!arr.empty())
    ret.push_back(arr);
  return ret;
}

// Computes a hash value of Data using a given hash function.
// In order to utilize multiple cores, we first split data into 1MB
// chunks, compute a hash for each chunk, and then compute a hash value
// of the hash values.
static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
            llvm::ArrayRef<uint8_t> data,
            std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
  std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
  std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());

  // Compute hash values.
  parallelForEachN(0, chunks.size(), [&](size_t i) {
    hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
  });

  // Write to the final output buffer.
  hashFn(hashBuf.data(), hashes);
}

template <class ELFT> void Writer<ELFT>::writeBuildId() {
  if (!mainPart->buildId || !mainPart->buildId->getParent())
    return;

  if (config->buildId == BuildIdKind::Hexstring) {
    for (Partition &part : partitions)
      part.buildId->writeBuildId(config->buildIdVector);
    return;
  }

  // Compute a hash of all sections of the output file.
  size_t hashSize = mainPart->buildId->hashSize;
  std::vector<uint8_t> buildId(hashSize);
  llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};

  switch (config->buildId) {
  case BuildIdKind::Fast:
    computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
      write64le(dest, xxHash64(arr));
    });
    break;
  case BuildIdKind::Md5:
    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
      memcpy(dest, MD5::hash(arr).data(), hashSize);
    });
    break;
  case BuildIdKind::Sha1:
    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
      memcpy(dest, SHA1::hash(arr).data(), hashSize);
    });
    break;
  case BuildIdKind::Uuid:
    if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
      error("entropy source failure: " + ec.message());
    break;
  default:
    llvm_unreachable("unknown BuildIdKind");
  }
  for (Partition &part : partitions)
    part.buildId->writeBuildId(buildId);
}

template void createSyntheticSections<ELF32LE>();
template void createSyntheticSections<ELF32BE>();
template void createSyntheticSections<ELF64LE>();
template void createSyntheticSections<ELF64BE>();

template void writeResult<ELF32LE>();
template void writeResult<ELF32BE>();
template void writeResult<ELF64LE>();
template void writeResult<ELF64BE>();

} // namespace elf
} // namespace lld