reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
//===- LinkerScript.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the parser/evaluator of the linker script.
//
//===----------------------------------------------------------------------===//

#include "LinkerScript.h"
#include "Config.h"
#include "InputSection.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Writer.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "lld/Common/Threads.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;

namespace lld {
namespace elf {
LinkerScript *script;

static uint64_t getOutputSectionVA(SectionBase *sec) {
  OutputSection *os = sec->getOutputSection();
  assert(os && "input section has no output section assigned");
  return os ? os->addr : 0;
}

uint64_t ExprValue::getValue() const {
  if (sec)
    return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
                   alignment);
  return alignTo(val, alignment);
}

uint64_t ExprValue::getSecAddr() const {
  if (sec)
    return sec->getOffset(0) + getOutputSectionVA(sec);
  return 0;
}

uint64_t ExprValue::getSectionOffset() const {
  // If the alignment is trivial, we don't have to compute the full
  // value to know the offset. This allows this function to succeed in
  // cases where the output section is not yet known.
  if (alignment == 1 && !sec)
    return val;
  return getValue() - getSecAddr();
}

OutputSection *LinkerScript::createOutputSection(StringRef name,
                                                 StringRef location) {
  OutputSection *&secRef = nameToOutputSection[name];
  OutputSection *sec;
  if (secRef && secRef->location.empty()) {
    // There was a forward reference.
    sec = secRef;
  } else {
    sec = make<OutputSection>(name, SHT_PROGBITS, 0);
    if (!secRef)
      secRef = sec;
  }
  sec->location = location;
  return sec;
}

OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
  OutputSection *&cmdRef = nameToOutputSection[name];
  if (!cmdRef)
    cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
  return cmdRef;
}

// Expands the memory region by the specified size.
static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
                               StringRef regionName, StringRef secName) {
  memRegion->curPos += size;
  uint64_t newSize = memRegion->curPos - memRegion->origin;
  if (newSize > memRegion->length)
    error("section '" + secName + "' will not fit in region '" + regionName +
          "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
}

void LinkerScript::expandMemoryRegions(uint64_t size) {
  if (ctx->memRegion)
    expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
                       ctx->outSec->name);
  // Only expand the LMARegion if it is different from memRegion.
  if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
    expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
                       ctx->outSec->name);
}

void LinkerScript::expandOutputSection(uint64_t size) {
  ctx->outSec->size += size;
  expandMemoryRegions(size);
}

void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
  uint64_t val = e().getValue();
  if (val < dot && inSec)
    error(loc + ": unable to move location counter backward for: " +
          ctx->outSec->name);

  // Update to location counter means update to section size.
  if (inSec)
    expandOutputSection(val - dot);

  dot = val;
}

// Used for handling linker symbol assignments, for both finalizing
// their values and doing early declarations. Returns true if symbol
// should be defined from linker script.
static bool shouldDefineSym(SymbolAssignment *cmd) {
  if (cmd->name == ".")
    return false;

  if (!cmd->provide)
    return true;

  // If a symbol was in PROVIDE(), we need to define it only
  // when it is a referenced undefined symbol.
  Symbol *b = symtab->find(cmd->name);
  if (b && !b->isDefined())
    return true;
  return false;
}

// Called by processSymbolAssignments() to assign definitions to
// linker-script-defined symbols.
void LinkerScript::addSymbol(SymbolAssignment *cmd) {
  if (!shouldDefineSym(cmd))
    return;

  // Define a symbol.
  ExprValue value = cmd->expression();
  SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;

  // When this function is called, section addresses have not been
  // fixed yet. So, we may or may not know the value of the RHS
  // expression.
  //
  // For example, if an expression is `x = 42`, we know x is always 42.
  // However, if an expression is `x = .`, there's no way to know its
  // value at the moment.
  //
  // We want to set symbol values early if we can. This allows us to
  // use symbols as variables in linker scripts. Doing so allows us to
  // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
  uint64_t symValue = value.sec ? 0 : value.getValue();

  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
                 symValue, 0, sec);

  Symbol *sym = symtab->insert(cmd->name);
  sym->mergeProperties(newSym);
  sym->replace(newSym);
  cmd->sym = cast<Defined>(sym);
}

// This function is called from LinkerScript::declareSymbols.
// It creates a placeholder symbol if needed.
static void declareSymbol(SymbolAssignment *cmd) {
  if (!shouldDefineSym(cmd))
    return;

  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
                 nullptr);

  // We can't calculate final value right now.
  Symbol *sym = symtab->insert(cmd->name);
  sym->mergeProperties(newSym);
  sym->replace(newSym);

  cmd->sym = cast<Defined>(sym);
  cmd->provide = false;
  sym->scriptDefined = true;
}

using SymbolAssignmentMap =
    DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;

// Collect section/value pairs of linker-script-defined symbols. This is used to
// check whether symbol values converge.
static SymbolAssignmentMap
getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
  SymbolAssignmentMap ret;
  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      if (cmd->sym) // sym is nullptr for dot.
        ret.try_emplace(cmd->sym,
                        std::make_pair(cmd->sym->section, cmd->sym->value));
      continue;
    }
    for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
      if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
        if (cmd->sym)
          ret.try_emplace(cmd->sym,
                          std::make_pair(cmd->sym->section, cmd->sym->value));
  }
  return ret;
}

// Returns the lexicographical smallest (for determinism) Defined whose
// section/value has changed.
static const Defined *
getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
  const Defined *changed = nullptr;
  for (auto &it : oldValues) {
    const Defined *sym = it.first;
    if (std::make_pair(sym->section, sym->value) != it.second &&
        (!changed || sym->getName() < changed->getName()))
      changed = sym;
  }
  return changed;
}

// This method is used to handle INSERT AFTER statement. Here we rebuild
// the list of script commands to mix sections inserted into.
void LinkerScript::processInsertCommands() {
  std::vector<BaseCommand *> v;
  auto insert = [&](std::vector<BaseCommand *> &from) {
    v.insert(v.end(), from.begin(), from.end());
    from.clear();
  };

  for (BaseCommand *base : sectionCommands) {
    if (auto *os = dyn_cast<OutputSection>(base)) {
      insert(insertBeforeCommands[os->name]);
      v.push_back(base);
      insert(insertAfterCommands[os->name]);
      continue;
    }
    v.push_back(base);
  }

  for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
    for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
      if (!p.second.empty())
        error("unable to INSERT AFTER/BEFORE " + p.first +
              ": section not defined");

  sectionCommands = std::move(v);
}

// Symbols defined in script should not be inlined by LTO. At the same time
// we don't know their final values until late stages of link. Here we scan
// over symbol assignment commands and create placeholder symbols if needed.
void LinkerScript::declareSymbols() {
  assert(!ctx);
  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      declareSymbol(cmd);
      continue;
    }

    // If the output section directive has constraints,
    // we can't say for sure if it is going to be included or not.
    // Skip such sections for now. Improve the checks if we ever
    // need symbols from that sections to be declared early.
    auto *sec = cast<OutputSection>(base);
    if (sec->constraint != ConstraintKind::NoConstraint)
      continue;
    for (BaseCommand *base2 : sec->sectionCommands)
      if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
        declareSymbol(cmd);
  }
}

// This function is called from assignAddresses, while we are
// fixing the output section addresses. This function is supposed
// to set the final value for a given symbol assignment.
void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
  if (cmd->name == ".") {
    setDot(cmd->expression, cmd->location, inSec);
    return;
  }

  if (!cmd->sym)
    return;

  ExprValue v = cmd->expression();
  if (v.isAbsolute()) {
    cmd->sym->section = nullptr;
    cmd->sym->value = v.getValue();
  } else {
    cmd->sym->section = v.sec;
    cmd->sym->value = v.getSectionOffset();
  }
}

static std::string getFilename(InputFile *file) {
  if (!file)
    return "";
  if (file->archiveName.empty())
    return file->getName();
  return (file->archiveName + "(" + file->getName() + ")").str();
}

bool LinkerScript::shouldKeep(InputSectionBase *s) {
  if (keptSections.empty())
    return false;
  std::string filename = getFilename(s->file);
  for (InputSectionDescription *id : keptSections)
    if (id->filePat.match(filename))
      for (SectionPattern &p : id->sectionPatterns)
        if (p.sectionPat.match(s->name))
          return true;
  return false;
}

// A helper function for the SORT() command.
static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
                             ConstraintKind kind) {
  if (kind == ConstraintKind::NoConstraint)
    return true;

  bool isRW = llvm::any_of(
      sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });

  return (isRW && kind == ConstraintKind::ReadWrite) ||
         (!isRW && kind == ConstraintKind::ReadOnly);
}

static void sortSections(MutableArrayRef<InputSectionBase *> vec,
                         SortSectionPolicy k) {
  auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
    // ">" is not a mistake. Sections with larger alignments are placed
    // before sections with smaller alignments in order to reduce the
    // amount of padding necessary. This is compatible with GNU.
    return a->alignment > b->alignment;
  };
  auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
    return a->name < b->name;
  };
  auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
    return getPriority(a->name) < getPriority(b->name);
  };

  switch (k) {
  case SortSectionPolicy::Default:
  case SortSectionPolicy::None:
    return;
  case SortSectionPolicy::Alignment:
    return llvm::stable_sort(vec, alignmentComparator);
  case SortSectionPolicy::Name:
    return llvm::stable_sort(vec, nameComparator);
  case SortSectionPolicy::Priority:
    return llvm::stable_sort(vec, priorityComparator);
  }
}

// Sort sections as instructed by SORT-family commands and --sort-section
// option. Because SORT-family commands can be nested at most two depth
// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
// line option is respected even if a SORT command is given, the exact
// behavior we have here is a bit complicated. Here are the rules.
//
// 1. If two SORT commands are given, --sort-section is ignored.
// 2. If one SORT command is given, and if it is not SORT_NONE,
//    --sort-section is handled as an inner SORT command.
// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
// 4. If no SORT command is given, sort according to --sort-section.
static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
                              const SectionPattern &pat) {
  if (pat.sortOuter == SortSectionPolicy::None)
    return;

  if (pat.sortInner == SortSectionPolicy::Default)
    sortSections(vec, config->sortSection);
  else
    sortSections(vec, pat.sortInner);
  sortSections(vec, pat.sortOuter);
}

// Compute and remember which sections the InputSectionDescription matches.
std::vector<InputSectionBase *>
LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
  std::vector<InputSectionBase *> ret;

  // Collects all sections that satisfy constraints of Cmd.
  for (const SectionPattern &pat : cmd->sectionPatterns) {
    size_t sizeBefore = ret.size();

    for (InputSectionBase *sec : inputSections) {
      if (!sec->isLive() || sec->parent)
        continue;

      // For -emit-relocs we have to ignore entries like
      //   .rela.dyn : { *(.rela.data) }
      // which are common because they are in the default bfd script.
      // We do not ignore SHT_REL[A] linker-synthesized sections here because
      // want to support scripts that do custom layout for them.
      if (isa<InputSection>(sec) &&
          cast<InputSection>(sec)->getRelocatedSection())
        continue;

      std::string filename = getFilename(sec->file);
      if (!cmd->filePat.match(filename) ||
          pat.excludedFilePat.match(filename) ||
          !pat.sectionPat.match(sec->name))
        continue;

      ret.push_back(sec);
    }

    sortInputSections(
        MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
  }
  return ret;
}

void LinkerScript::discard(InputSectionBase *s) {
  if (s == in.shStrTab || s == mainPart->relaDyn || s == mainPart->relrDyn)
    error("discarding " + s->name + " section is not allowed");

  // You can discard .hash and .gnu.hash sections by linker scripts. Since
  // they are synthesized sections, we need to handle them differently than
  // other regular sections.
  if (s == mainPart->gnuHashTab)
    mainPart->gnuHashTab = nullptr;
  if (s == mainPart->hashTab)
    mainPart->hashTab = nullptr;

  s->markDead();
  s->parent = nullptr;
  for (InputSection *ds : s->dependentSections)
    discard(ds);
}

std::vector<InputSectionBase *>
LinkerScript::createInputSectionList(OutputSection &outCmd) {
  std::vector<InputSectionBase *> ret;

  for (BaseCommand *base : outCmd.sectionCommands) {
    if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
      cmd->sectionBases = computeInputSections(cmd);
      for (InputSectionBase *s : cmd->sectionBases)
        s->parent = &outCmd;
      ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
    }
  }
  return ret;
}

// Create output sections described by SECTIONS commands.
void LinkerScript::processSectionCommands() {
  size_t i = 0;
  for (BaseCommand *base : sectionCommands) {
    if (auto *sec = dyn_cast<OutputSection>(base)) {
      std::vector<InputSectionBase *> v = createInputSectionList(*sec);

      // The output section name `/DISCARD/' is special.
      // Any input section assigned to it is discarded.
      if (sec->name == "/DISCARD/") {
        for (InputSectionBase *s : v)
          discard(s);
        sec->sectionCommands.clear();
        continue;
      }

      // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
      // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
      // sections satisfy a given constraint. If not, a directive is handled
      // as if it wasn't present from the beginning.
      //
      // Because we'll iterate over SectionCommands many more times, the easy
      // way to "make it as if it wasn't present" is to make it empty.
      if (!matchConstraints(v, sec->constraint)) {
        for (InputSectionBase *s : v)
          s->parent = nullptr;
        sec->sectionCommands.clear();
        continue;
      }

      // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
      // is given, input sections are aligned to that value, whether the
      // given value is larger or smaller than the original section alignment.
      if (sec->subalignExpr) {
        uint32_t subalign = sec->subalignExpr().getValue();
        for (InputSectionBase *s : v)
          s->alignment = subalign;
      }

      // Set the partition field the same way OutputSection::recordSection()
      // does. Partitions cannot be used with the SECTIONS command, so this is
      // always 1.
      sec->partition = 1;

      sec->sectionIndex = i++;
    }
  }
}

void LinkerScript::processSymbolAssignments() {
  // Dot outside an output section still represents a relative address, whose
  // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
  // that fills the void outside a section. It has an index of one, which is
  // indistinguishable from any other regular section index.
  aether = make<OutputSection>("", 0, SHF_ALLOC);
  aether->sectionIndex = 1;

  // ctx captures the local AddressState and makes it accessible deliberately.
  // This is needed as there are some cases where we cannot just thread the
  // current state through to a lambda function created by the script parser.
  AddressState state;
  ctx = &state;
  ctx->outSec = aether;

  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
      addSymbol(cmd);
    else
      for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
        if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
          addSymbol(cmd);
  }

  ctx = nullptr;
}

static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
                                 StringRef name) {
  for (BaseCommand *base : vec)
    if (auto *sec = dyn_cast<OutputSection>(base))
      if (sec->name == name)
        return sec;
  return nullptr;
}

static OutputSection *createSection(InputSectionBase *isec,
                                    StringRef outsecName) {
  OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
  sec->recordSection(isec);
  return sec;
}

static OutputSection *
addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
            InputSectionBase *isec, StringRef outsecName) {
  // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
  // option is given. A section with SHT_GROUP defines a "section group", and
  // its members have SHF_GROUP attribute. Usually these flags have already been
  // stripped by InputFiles.cpp as section groups are processed and uniquified.
  // However, for the -r option, we want to pass through all section groups
  // as-is because adding/removing members or merging them with other groups
  // change their semantics.
  if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
    return createSection(isec, outsecName);

  // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
  // relocation sections .rela.foo and .rela.bar for example. Most tools do
  // not allow multiple REL[A] sections for output section. Hence we
  // should combine these relocation sections into single output.
  // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
  // other REL[A] sections created by linker itself.
  if (!isa<SyntheticSection>(isec) &&
      (isec->type == SHT_REL || isec->type == SHT_RELA)) {
    auto *sec = cast<InputSection>(isec);
    OutputSection *out = sec->getRelocatedSection()->getOutputSection();

    if (out->relocationSection) {
      out->relocationSection->recordSection(sec);
      return nullptr;
    }

    out->relocationSection = createSection(isec, outsecName);
    return out->relocationSection;
  }

  //  The ELF spec just says
  // ----------------------------------------------------------------
  // In the first phase, input sections that match in name, type and
  // attribute flags should be concatenated into single sections.
  // ----------------------------------------------------------------
  //
  // However, it is clear that at least some flags have to be ignored for
  // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
  // ignored. We should not have two output .text sections just because one was
  // in a group and another was not for example.
  //
  // It also seems that wording was a late addition and didn't get the
  // necessary scrutiny.
  //
  // Merging sections with different flags is expected by some users. One
  // reason is that if one file has
  //
  // int *const bar __attribute__((section(".foo"))) = (int *)0;
  //
  // gcc with -fPIC will produce a read only .foo section. But if another
  // file has
  //
  // int zed;
  // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
  //
  // gcc with -fPIC will produce a read write section.
  //
  // Last but not least, when using linker script the merge rules are forced by
  // the script. Unfortunately, linker scripts are name based. This means that
  // expressions like *(.foo*) can refer to multiple input sections with
  // different flags. We cannot put them in different output sections or we
  // would produce wrong results for
  //
  // start = .; *(.foo.*) end = .; *(.bar)
  //
  // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
  // another. The problem is that there is no way to layout those output
  // sections such that the .foo sections are the only thing between the start
  // and end symbols.
  //
  // Given the above issues, we instead merge sections by name and error on
  // incompatible types and flags.
  TinyPtrVector<OutputSection *> &v = map[outsecName];
  for (OutputSection *sec : v) {
    if (sec->partition != isec->partition)
      continue;

    if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
      // Merging two SHF_LINK_ORDER sections with different sh_link fields will
      // change their semantics, so we only merge them in -r links if they will
      // end up being linked to the same output section. The casts are fine
      // because everything in the map was created by the orphan placement code.
      auto *firstIsec = cast<InputSectionBase>(
          cast<InputSectionDescription>(sec->sectionCommands[0])
              ->sectionBases[0]);
      if (firstIsec->getLinkOrderDep()->getOutputSection() !=
          isec->getLinkOrderDep()->getOutputSection())
        continue;
    }

    sec->recordSection(isec);
    return nullptr;
  }

  OutputSection *sec = createSection(isec, outsecName);
  v.push_back(sec);
  return sec;
}

// Add sections that didn't match any sections command.
void LinkerScript::addOrphanSections() {
  StringMap<TinyPtrVector<OutputSection *>> map;
  std::vector<OutputSection *> v;

  std::function<void(InputSectionBase *)> add;
  add = [&](InputSectionBase *s) {
    if (s->isLive() && !s->parent) {
      StringRef name = getOutputSectionName(s);

      if (config->orphanHandling == OrphanHandlingPolicy::Error)
        error(toString(s) + " is being placed in '" + name + "'");
      else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
        warn(toString(s) + " is being placed in '" + name + "'");

      if (OutputSection *sec = findByName(sectionCommands, name)) {
        sec->recordSection(s);
      } else {
        if (OutputSection *os = addInputSec(map, s, name))
          v.push_back(os);
        assert(isa<MergeInputSection>(s) ||
               s->getOutputSection()->sectionIndex == UINT32_MAX);
      }
    }

    if (config->relocatable)
      for (InputSectionBase *depSec : s->dependentSections)
        if (depSec->flags & SHF_LINK_ORDER)
          add(depSec);
  };

  // For futher --emit-reloc handling code we need target output section
  // to be created before we create relocation output section, so we want
  // to create target sections first. We do not want priority handling
  // for synthetic sections because them are special.
  for (InputSectionBase *isec : inputSections) {
    // In -r links, SHF_LINK_ORDER sections are added while adding their parent
    // sections because we need to know the parent's output section before we
    // can select an output section for the SHF_LINK_ORDER section.
    if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
      continue;

    if (auto *sec = dyn_cast<InputSection>(isec))
      if (InputSectionBase *rel = sec->getRelocatedSection())
        if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
          add(relIS);
    add(isec);
  }

  // If no SECTIONS command was given, we should insert sections commands
  // before others, so that we can handle scripts which refers them,
  // for example: "foo = ABSOLUTE(ADDR(.text)));".
  // When SECTIONS command is present we just add all orphans to the end.
  if (hasSectionsCommand)
    sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
  else
    sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
}

uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
  bool isTbss =
      (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
  uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
  start = alignTo(start, alignment);
  uint64_t end = start + size;

  if (isTbss)
    ctx->threadBssOffset = end - dot;
  else
    dot = end;
  return end;
}

void LinkerScript::output(InputSection *s) {
  assert(ctx->outSec == s->getParent());
  uint64_t before = advance(0, 1);
  uint64_t pos = advance(s->getSize(), s->alignment);
  s->outSecOff = pos - s->getSize() - ctx->outSec->addr;

  // Update output section size after adding each section. This is so that
  // SIZEOF works correctly in the case below:
  // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
  expandOutputSection(pos - before);
}

void LinkerScript::switchTo(OutputSection *sec) {
  ctx->outSec = sec;

  uint64_t before = advance(0, 1);
  ctx->outSec->addr = advance(0, ctx->outSec->alignment);
  expandMemoryRegions(ctx->outSec->addr - before);
}

// This function searches for a memory region to place the given output
// section in. If found, a pointer to the appropriate memory region is
// returned. Otherwise, a nullptr is returned.
MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
  // If a memory region name was specified in the output section command,
  // then try to find that region first.
  if (!sec->memoryRegionName.empty()) {
    if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
      return m;
    error("memory region '" + sec->memoryRegionName + "' not declared");
    return nullptr;
  }

  // If at least one memory region is defined, all sections must
  // belong to some memory region. Otherwise, we don't need to do
  // anything for memory regions.
  if (memoryRegions.empty())
    return nullptr;

  // See if a region can be found by matching section flags.
  for (auto &pair : memoryRegions) {
    MemoryRegion *m = pair.second;
    if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
      return m;
  }

  // Otherwise, no suitable region was found.
  if (sec->flags & SHF_ALLOC)
    error("no memory region specified for section '" + sec->name + "'");
  return nullptr;
}

static OutputSection *findFirstSection(PhdrEntry *load) {
  for (OutputSection *sec : outputSections)
    if (sec->ptLoad == load)
      return sec;
  return nullptr;
}

// This function assigns offsets to input sections and an output section
// for a single sections command (e.g. ".text { *(.text); }").
void LinkerScript::assignOffsets(OutputSection *sec) {
  if (!(sec->flags & SHF_ALLOC))
    dot = 0;

  ctx->memRegion = sec->memRegion;
  ctx->lmaRegion = sec->lmaRegion;
  if (ctx->memRegion)
    dot = ctx->memRegion->curPos;

  if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
    setDot(sec->addrExpr, sec->location, false);

  // If the address of the section has been moved forward by an explicit
  // expression so that it now starts past the current curPos of the enclosing
  // region, we need to expand the current region to account for the space
  // between the previous section, if any, and the start of this section.
  if (ctx->memRegion && ctx->memRegion->curPos < dot)
    expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
                       ctx->memRegion->name, sec->name);

  switchTo(sec);

  if (sec->lmaExpr)
    ctx->lmaOffset = sec->lmaExpr().getValue() - dot;

  if (MemoryRegion *mr = sec->lmaRegion)
    ctx->lmaOffset = mr->curPos - dot;

  // If neither AT nor AT> is specified for an allocatable section, the linker
  // will set the LMA such that the difference between VMA and LMA for the
  // section is the same as the preceding output section in the same region
  // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
  // This, however, should only be done by the first "non-header" section
  // in the segment.
  if (PhdrEntry *l = ctx->outSec->ptLoad)
    if (sec == findFirstSection(l))
      l->lmaOffset = ctx->lmaOffset;

  // We can call this method multiple times during the creation of
  // thunks and want to start over calculation each time.
  sec->size = 0;

  // We visited SectionsCommands from processSectionCommands to
  // layout sections. Now, we visit SectionsCommands again to fix
  // section offsets.
  for (BaseCommand *base : sec->sectionCommands) {
    // This handles the assignments to symbol or to the dot.
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      cmd->addr = dot;
      assignSymbol(cmd, true);
      cmd->size = dot - cmd->addr;
      continue;
    }

    // Handle BYTE(), SHORT(), LONG(), or QUAD().
    if (auto *cmd = dyn_cast<ByteCommand>(base)) {
      cmd->offset = dot - ctx->outSec->addr;
      dot += cmd->size;
      expandOutputSection(cmd->size);
      continue;
    }

    // Handle a single input section description command.
    // It calculates and assigns the offsets for each section and also
    // updates the output section size.
    for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
      output(sec);
  }
}

static bool isDiscardable(OutputSection &sec) {
  if (sec.name == "/DISCARD/")
    return true;

  // We do not remove empty sections that are explicitly
  // assigned to any segment.
  if (!sec.phdrs.empty())
    return false;

  // We do not want to remove OutputSections with expressions that reference
  // symbols even if the OutputSection is empty. We want to ensure that the
  // expressions can be evaluated and report an error if they cannot.
  if (sec.expressionsUseSymbols)
    return false;

  // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
  // as an empty Section can has a valid VMA and LMA we keep the OutputSection
  // to maintain the integrity of the other Expression.
  if (sec.usedInExpression)
    return false;

  for (BaseCommand *base : sec.sectionCommands) {
    if (auto cmd = dyn_cast<SymbolAssignment>(base))
      // Don't create empty output sections just for unreferenced PROVIDE
      // symbols.
      if (cmd->name != "." && !cmd->sym)
        continue;

    if (!isa<InputSectionDescription>(*base))
      return false;
  }
  return true;
}

void LinkerScript::adjustSectionsBeforeSorting() {
  // If the output section contains only symbol assignments, create a
  // corresponding output section. The issue is what to do with linker script
  // like ".foo : { symbol = 42; }". One option would be to convert it to
  // "symbol = 42;". That is, move the symbol out of the empty section
  // description. That seems to be what bfd does for this simple case. The
  // problem is that this is not completely general. bfd will give up and
  // create a dummy section too if there is a ". = . + 1" inside the section
  // for example.
  // Given that we want to create the section, we have to worry what impact
  // it will have on the link. For example, if we just create a section with
  // 0 for flags, it would change which PT_LOADs are created.
  // We could remember that particular section is dummy and ignore it in
  // other parts of the linker, but unfortunately there are quite a few places
  // that would need to change:
  //   * The program header creation.
  //   * The orphan section placement.
  //   * The address assignment.
  // The other option is to pick flags that minimize the impact the section
  // will have on the rest of the linker. That is why we copy the flags from
  // the previous sections. Only a few flags are needed to keep the impact low.
  uint64_t flags = SHF_ALLOC;

  for (BaseCommand *&cmd : sectionCommands) {
    auto *sec = dyn_cast<OutputSection>(cmd);
    if (!sec)
      continue;

    // Handle align (e.g. ".foo : ALIGN(16) { ... }").
    if (sec->alignExpr)
      sec->alignment =
          std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());

    // The input section might have been removed (if it was an empty synthetic
    // section), but we at least know the flags.
    if (sec->hasInputSections)
      flags = sec->flags;

    // We do not want to keep any special flags for output section
    // in case it is empty.
    bool isEmpty = getInputSections(sec).empty();
    if (isEmpty)
      sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
                            SHF_WRITE | SHF_EXECINSTR);

    if (isEmpty && isDiscardable(*sec)) {
      sec->markDead();
      cmd = nullptr;
    } else if (!sec->isLive()) {
      sec->markLive();
    }
  }

  // It is common practice to use very generic linker scripts. So for any
  // given run some of the output sections in the script will be empty.
  // We could create corresponding empty output sections, but that would
  // clutter the output.
  // We instead remove trivially empty sections. The bfd linker seems even
  // more aggressive at removing them.
  llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
}

void LinkerScript::adjustSectionsAfterSorting() {
  // Try and find an appropriate memory region to assign offsets in.
  for (BaseCommand *base : sectionCommands) {
    if (auto *sec = dyn_cast<OutputSection>(base)) {
      if (!sec->lmaRegionName.empty()) {
        if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
          sec->lmaRegion = m;
        else
          error("memory region '" + sec->lmaRegionName + "' not declared");
      }
      sec->memRegion = findMemoryRegion(sec);
    }
  }

  // If output section command doesn't specify any segments,
  // and we haven't previously assigned any section to segment,
  // then we simply assign section to the very first load segment.
  // Below is an example of such linker script:
  // PHDRS { seg PT_LOAD; }
  // SECTIONS { .aaa : { *(.aaa) } }
  std::vector<StringRef> defPhdrs;
  auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
    return cmd.type == PT_LOAD;
  });
  if (firstPtLoad != phdrsCommands.end())
    defPhdrs.push_back(firstPtLoad->name);

  // Walk the commands and propagate the program headers to commands that don't
  // explicitly specify them.
  for (BaseCommand *base : sectionCommands) {
    auto *sec = dyn_cast<OutputSection>(base);
    if (!sec)
      continue;

    if (sec->phdrs.empty()) {
      // To match the bfd linker script behaviour, only propagate program
      // headers to sections that are allocated.
      if (sec->flags & SHF_ALLOC)
        sec->phdrs = defPhdrs;
    } else {
      defPhdrs = sec->phdrs;
    }
  }
}

static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
  // If there is no SECTIONS or if the linkerscript is explicit about program
  // headers, do our best to allocate them.
  if (!script->hasSectionsCommand || allocateHeaders)
    return 0;
  // Otherwise only allocate program headers if that would not add a page.
  return alignDown(min, config->maxPageSize);
}

// When the SECTIONS command is used, try to find an address for the file and
// program headers output sections, which can be added to the first PT_LOAD
// segment when program headers are created.
//
// We check if the headers fit below the first allocated section. If there isn't
// enough space for these sections, we'll remove them from the PT_LOAD segment,
// and we'll also remove the PT_PHDR segment.
void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
  uint64_t min = std::numeric_limits<uint64_t>::max();
  for (OutputSection *sec : outputSections)
    if (sec->flags & SHF_ALLOC)
      min = std::min<uint64_t>(min, sec->addr);

  auto it = llvm::find_if(
      phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
  if (it == phdrs.end())
    return;
  PhdrEntry *firstPTLoad = *it;

  bool hasExplicitHeaders =
      llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
        return cmd.hasPhdrs || cmd.hasFilehdr;
      });
  bool paged = !config->omagic && !config->nmagic;
  uint64_t headerSize = getHeaderSize();
  if ((paged || hasExplicitHeaders) &&
      headerSize <= min - computeBase(min, hasExplicitHeaders)) {
    min = alignDown(min - headerSize, config->maxPageSize);
    Out::elfHeader->addr = min;
    Out::programHeaders->addr = min + Out::elfHeader->size;
    return;
  }

  // Error if we were explicitly asked to allocate headers.
  if (hasExplicitHeaders)
    error("could not allocate headers");

  Out::elfHeader->ptLoad = nullptr;
  Out::programHeaders->ptLoad = nullptr;
  firstPTLoad->firstSec = findFirstSection(firstPTLoad);

  llvm::erase_if(phdrs,
                 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
}

LinkerScript::AddressState::AddressState() {
  for (auto &mri : script->memoryRegions) {
    MemoryRegion *mr = mri.second;
    mr->curPos = mr->origin;
  }
}

// Here we assign addresses as instructed by linker script SECTIONS
// sub-commands. Doing that allows us to use final VA values, so here
// we also handle rest commands like symbol assignments and ASSERTs.
// Returns a symbol that has changed its section or value, or nullptr if no
// symbol has changed.
const Defined *LinkerScript::assignAddresses() {
  if (script->hasSectionsCommand) {
    // With a linker script, assignment of addresses to headers is covered by
    // allocateHeaders().
    dot = config->imageBase.getValueOr(0);
  } else {
    // Assign addresses to headers right now.
    dot = target->getImageBase();
    Out::elfHeader->addr = dot;
    Out::programHeaders->addr = dot + Out::elfHeader->size;
    dot += getHeaderSize();
  }

  auto deleter = std::make_unique<AddressState>();
  ctx = deleter.get();
  errorOnMissingSection = true;
  switchTo(aether);

  SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      cmd->addr = dot;
      assignSymbol(cmd, false);
      cmd->size = dot - cmd->addr;
      continue;
    }
    assignOffsets(cast<OutputSection>(base));
  }

  ctx = nullptr;
  return getChangedSymbolAssignment(oldValues);
}

// Creates program headers as instructed by PHDRS linker script command.
std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
  std::vector<PhdrEntry *> ret;

  // Process PHDRS and FILEHDR keywords because they are not
  // real output sections and cannot be added in the following loop.
  for (const PhdrsCommand &cmd : phdrsCommands) {
    PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);

    if (cmd.hasFilehdr)
      phdr->add(Out::elfHeader);
    if (cmd.hasPhdrs)
      phdr->add(Out::programHeaders);

    if (cmd.lmaExpr) {
      phdr->p_paddr = cmd.lmaExpr().getValue();
      phdr->hasLMA = true;
    }
    ret.push_back(phdr);
  }

  // Add output sections to program headers.
  for (OutputSection *sec : outputSections) {
    // Assign headers specified by linker script
    for (size_t id : getPhdrIndices(sec)) {
      ret[id]->add(sec);
      if (!phdrsCommands[id].flags.hasValue())
        ret[id]->p_flags |= sec->getPhdrFlags();
    }
  }
  return ret;
}

// Returns true if we should emit an .interp section.
//
// We usually do. But if PHDRS commands are given, and
// no PT_INTERP is there, there's no place to emit an
// .interp, so we don't do that in that case.
bool LinkerScript::needsInterpSection() {
  if (phdrsCommands.empty())
    return true;
  for (PhdrsCommand &cmd : phdrsCommands)
    if (cmd.type == PT_INTERP)
      return true;
  return false;
}

ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
  if (name == ".") {
    if (ctx)
      return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
    error(loc + ": unable to get location counter value");
    return 0;
  }

  if (Symbol *sym = symtab->find(name)) {
    if (auto *ds = dyn_cast<Defined>(sym))
      return {ds->section, false, ds->value, loc};
    if (isa<SharedSymbol>(sym))
      if (!errorOnMissingSection)
        return {nullptr, false, 0, loc};
  }

  error(loc + ": symbol not found: " + name);
  return 0;
}

// Returns the index of the segment named Name.
static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
                                     StringRef name) {
  for (size_t i = 0; i < vec.size(); ++i)
    if (vec[i].name == name)
      return i;
  return None;
}

// Returns indices of ELF headers containing specific section. Each index is a
// zero based number of ELF header listed within PHDRS {} script block.
std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
  std::vector<size_t> ret;

  for (StringRef s : cmd->phdrs) {
    if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
      ret.push_back(*idx);
    else if (s != "NONE")
      error(cmd->location + ": section header '" + s +
            "' is not listed in PHDRS");
  }
  return ret;
}

} // namespace elf
} // namespace lld