reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
//===- InputSection.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputSection.h"
#include "Config.h"
#include "EhFrame.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <mutex>
#include <set>
#include <vector>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace llvm::sys;

namespace lld {
// Returns a string to construct an error message.
std::string toString(const elf::InputSectionBase *sec) {
  return (toString(sec->file) + ":(" + sec->name + ")").str();
}

namespace elf {
std::vector<InputSectionBase *> inputSections;

template <class ELFT>
static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
                                            const typename ELFT::Shdr &hdr) {
  if (hdr.sh_type == SHT_NOBITS)
    return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
  return check(file.getObj().getSectionContents(&hdr));
}

InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
                                   uint32_t type, uint64_t entsize,
                                   uint32_t link, uint32_t info,
                                   uint32_t alignment, ArrayRef<uint8_t> data,
                                   StringRef name, Kind sectionKind)
    : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
                  link),
      file(file), rawData(data) {
  // In order to reduce memory allocation, we assume that mergeable
  // sections are smaller than 4 GiB, which is not an unreasonable
  // assumption as of 2017.
  if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
    error(toString(this) + ": section too large");

  numRelocations = 0;
  areRelocsRela = false;

  // The ELF spec states that a value of 0 means the section has
  // no alignment constraints.
  uint32_t v = std::max<uint32_t>(alignment, 1);
  if (!isPowerOf2_64(v))
    fatal(toString(this) + ": sh_addralign is not a power of 2");
  this->alignment = v;

  // In ELF, each section can be compressed by zlib, and if compressed,
  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
  // If that's the case, demangle section name so that we can handle a
  // section as if it weren't compressed.
  if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
    if (!zlib::isAvailable())
      error(toString(file) + ": contains a compressed section, " +
            "but zlib is not available");
    parseCompressedHeader();
  }
}

// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
// SHF_GROUP is a marker that a section belongs to some comdat group.
// That flag doesn't make sense in an executable.
static uint64_t getFlags(uint64_t flags) {
  flags &= ~(uint64_t)SHF_INFO_LINK;
  if (!config->relocatable)
    flags &= ~(uint64_t)SHF_GROUP;
  return flags;
}

// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
// March 2017) fail to infer section types for sections starting with
// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
// SHF_INIT_ARRAY. As a result, the following assembler directive
// creates ".init_array.100" with SHT_PROGBITS, for example.
//
//   .section .init_array.100, "aw"
//
// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
// incorrect inputs as if they were correct from the beginning.
static uint64_t getType(uint64_t type, StringRef name) {
  if (type == SHT_PROGBITS && name.startswith(".init_array."))
    return SHT_INIT_ARRAY;
  if (type == SHT_PROGBITS && name.startswith(".fini_array."))
    return SHT_FINI_ARRAY;
  return type;
}

template <class ELFT>
InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
                                   const typename ELFT::Shdr &hdr,
                                   StringRef name, Kind sectionKind)
    : InputSectionBase(&file, getFlags(hdr.sh_flags),
                       getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
                       hdr.sh_info, hdr.sh_addralign,
                       getSectionContents(file, hdr), name, sectionKind) {
  // We reject object files having insanely large alignments even though
  // they are allowed by the spec. I think 4GB is a reasonable limitation.
  // We might want to relax this in the future.
  if (hdr.sh_addralign > UINT32_MAX)
    fatal(toString(&file) + ": section sh_addralign is too large");
}

size_t InputSectionBase::getSize() const {
  if (auto *s = dyn_cast<SyntheticSection>(this))
    return s->getSize();
  if (uncompressedSize >= 0)
    return uncompressedSize;
  return rawData.size();
}

void InputSectionBase::uncompress() const {
  size_t size = uncompressedSize;
  char *uncompressedBuf;
  {
    static std::mutex mu;
    std::lock_guard<std::mutex> lock(mu);
    uncompressedBuf = bAlloc.Allocate<char>(size);
  }

  if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
    fatal(toString(this) +
          ": uncompress failed: " + llvm::toString(std::move(e)));
  rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
  uncompressedSize = -1;
}

uint64_t InputSectionBase::getOffsetInFile() const {
  const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
  const uint8_t *secStart = data().begin();
  return secStart - fileStart;
}

uint64_t SectionBase::getOffset(uint64_t offset) const {
  switch (kind()) {
  case Output: {
    auto *os = cast<OutputSection>(this);
    // For output sections we treat offset -1 as the end of the section.
    return offset == uint64_t(-1) ? os->size : offset;
  }
  case Regular:
  case Synthetic:
    return cast<InputSection>(this)->getOffset(offset);
  case EHFrame:
    // The file crtbeginT.o has relocations pointing to the start of an empty
    // .eh_frame that is known to be the first in the link. It does that to
    // identify the start of the output .eh_frame.
    return offset;
  case Merge:
    const MergeInputSection *ms = cast<MergeInputSection>(this);
    if (InputSection *isec = ms->getParent())
      return isec->getOffset(ms->getParentOffset(offset));
    return ms->getParentOffset(offset);
  }
  llvm_unreachable("invalid section kind");
}

uint64_t SectionBase::getVA(uint64_t offset) const {
  const OutputSection *out = getOutputSection();
  return (out ? out->addr : 0) + getOffset(offset);
}

OutputSection *SectionBase::getOutputSection() {
  InputSection *sec;
  if (auto *isec = dyn_cast<InputSection>(this))
    sec = isec;
  else if (auto *ms = dyn_cast<MergeInputSection>(this))
    sec = ms->getParent();
  else if (auto *eh = dyn_cast<EhInputSection>(this))
    sec = eh->getParent();
  else
    return cast<OutputSection>(this);
  return sec ? sec->getParent() : nullptr;
}

// When a section is compressed, `rawData` consists with a header followed
// by zlib-compressed data. This function parses a header to initialize
// `uncompressedSize` member and remove the header from `rawData`.
void InputSectionBase::parseCompressedHeader() {
  using Chdr64 = typename ELF64LE::Chdr;
  using Chdr32 = typename ELF32LE::Chdr;

  // Old-style header
  if (name.startswith(".zdebug")) {
    if (!toStringRef(rawData).startswith("ZLIB")) {
      error(toString(this) + ": corrupted compressed section header");
      return;
    }
    rawData = rawData.slice(4);

    if (rawData.size() < 8) {
      error(toString(this) + ": corrupted compressed section header");
      return;
    }

    uncompressedSize = read64be(rawData.data());
    rawData = rawData.slice(8);

    // Restore the original section name.
    // (e.g. ".zdebug_info" -> ".debug_info")
    name = saver.save("." + name.substr(2));
    return;
  }

  assert(flags & SHF_COMPRESSED);
  flags &= ~(uint64_t)SHF_COMPRESSED;

  // New-style 64-bit header
  if (config->is64) {
    if (rawData.size() < sizeof(Chdr64)) {
      error(toString(this) + ": corrupted compressed section");
      return;
    }

    auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
    if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
      error(toString(this) + ": unsupported compression type");
      return;
    }

    uncompressedSize = hdr->ch_size;
    alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
    rawData = rawData.slice(sizeof(*hdr));
    return;
  }

  // New-style 32-bit header
  if (rawData.size() < sizeof(Chdr32)) {
    error(toString(this) + ": corrupted compressed section");
    return;
  }

  auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
  if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
    error(toString(this) + ": unsupported compression type");
    return;
  }

  uncompressedSize = hdr->ch_size;
  alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
  rawData = rawData.slice(sizeof(*hdr));
}

InputSection *InputSectionBase::getLinkOrderDep() const {
  assert(link);
  assert(flags & SHF_LINK_ORDER);
  return cast<InputSection>(file->getSections()[link]);
}

// Find a function symbol that encloses a given location.
template <class ELFT>
Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
  for (Symbol *b : file->getSymbols())
    if (Defined *d = dyn_cast<Defined>(b))
      if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
          offset < d->value + d->size)
        return d;
  return nullptr;
}

// Returns a source location string. Used to construct an error message.
template <class ELFT>
std::string InputSectionBase::getLocation(uint64_t offset) {
  std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();

  // We don't have file for synthetic sections.
  if (getFile<ELFT>() == nullptr)
    return (config->outputFile + ":(" + secAndOffset + ")")
        .str();

  // First check if we can get desired values from debugging information.
  if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
    return info->FileName + ":" + std::to_string(info->Line) + ":(" +
           secAndOffset + ")";

  // File->sourceFile contains STT_FILE symbol that contains a
  // source file name. If it's missing, we use an object file name.
  std::string srcFile = getFile<ELFT>()->sourceFile;
  if (srcFile.empty())
    srcFile = toString(file);

  if (Defined *d = getEnclosingFunction<ELFT>(offset))
    return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";

  // If there's no symbol, print out the offset in the section.
  return (srcFile + ":(" + secAndOffset + ")");
}

// This function is intended to be used for constructing an error message.
// The returned message looks like this:
//
//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
//
//  Returns an empty string if there's no way to get line info.
std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
  return file->getSrcMsg(sym, *this, offset);
}

// Returns a filename string along with an optional section name. This
// function is intended to be used for constructing an error
// message. The returned message looks like this:
//
//   path/to/foo.o:(function bar)
//
// or
//
//   path/to/foo.o:(function bar) in archive path/to/bar.a
std::string InputSectionBase::getObjMsg(uint64_t off) {
  std::string filename = file->getName();

  std::string archive;
  if (!file->archiveName.empty())
    archive = " in archive " + file->archiveName;

  // Find a symbol that encloses a given location.
  for (Symbol *b : file->getSymbols())
    if (auto *d = dyn_cast<Defined>(b))
      if (d->section == this && d->value <= off && off < d->value + d->size)
        return filename + ":(" + toString(*d) + ")" + archive;

  // If there's no symbol, print out the offset in the section.
  return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
      .str();
}

InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");

InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
                           uint32_t alignment, ArrayRef<uint8_t> data,
                           StringRef name, Kind k)
    : InputSectionBase(f, flags, type,
                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
                       name, k) {}

template <class ELFT>
InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
                           StringRef name)
    : InputSectionBase(f, header, name, InputSectionBase::Regular) {}

bool InputSection::classof(const SectionBase *s) {
  return s->kind() == SectionBase::Regular ||
         s->kind() == SectionBase::Synthetic;
}

OutputSection *InputSection::getParent() const {
  return cast_or_null<OutputSection>(parent);
}

// Copy SHT_GROUP section contents. Used only for the -r option.
template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
  // ELFT::Word is the 32-bit integral type in the target endianness.
  using u32 = typename ELFT::Word;
  ArrayRef<u32> from = getDataAs<u32>();
  auto *to = reinterpret_cast<u32 *>(buf);

  // The first entry is not a section number but a flag.
  *to++ = from[0];

  // Adjust section numbers because section numbers in an input object
  // files are different in the output.
  ArrayRef<InputSectionBase *> sections = file->getSections();
  for (uint32_t idx : from.slice(1))
    *to++ = sections[idx]->getOutputSection()->sectionIndex;
}

InputSectionBase *InputSection::getRelocatedSection() const {
  if (!file || (type != SHT_RELA && type != SHT_REL))
    return nullptr;
  ArrayRef<InputSectionBase *> sections = file->getSections();
  return sections[info];
}

// This is used for -r and --emit-relocs. We can't use memcpy to copy
// relocations because we need to update symbol table offset and section index
// for each relocation. So we copy relocations one by one.
template <class ELFT, class RelTy>
void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
  InputSectionBase *sec = getRelocatedSection();

  for (const RelTy &rel : rels) {
    RelType type = rel.getType(config->isMips64EL);
    const ObjFile<ELFT> *file = getFile<ELFT>();
    Symbol &sym = file->getRelocTargetSym(rel);

    auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
    buf += sizeof(RelTy);

    if (RelTy::IsRela)
      p->r_addend = getAddend<ELFT>(rel);

    // Output section VA is zero for -r, so r_offset is an offset within the
    // section, but for --emit-relocs it is an virtual address.
    p->r_offset = sec->getVA(rel.r_offset);
    p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
                        config->isMips64EL);

    if (sym.type == STT_SECTION) {
      // We combine multiple section symbols into only one per
      // section. This means we have to update the addend. That is
      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
      // section data. We do that by adding to the Relocation vector.

      // .eh_frame is horribly special and can reference discarded sections. To
      // avoid having to parse and recreate .eh_frame, we just replace any
      // relocation in it pointing to discarded sections with R_*_NONE, which
      // hopefully creates a frame that is ignored at runtime. Also, don't warn
      // on .gcc_except_table and debug sections.
      //
      // See the comment in maybeReportUndefined for PPC64 .toc .
      auto *d = dyn_cast<Defined>(&sym);
      if (!d) {
        if (!sec->name.startswith(".debug") &&
            !sec->name.startswith(".zdebug") && sec->name != ".eh_frame" &&
            sec->name != ".gcc_except_table" && sec->name != ".toc") {
          uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
          Elf_Shdr_Impl<ELFT> sec =
              CHECK(file->getObj().sections(), file)[secIdx];
          warn("relocation refers to a discarded section: " +
               CHECK(file->getObj().getSectionName(&sec), file) +
               "\n>>> referenced by " + getObjMsg(p->r_offset));
        }
        p->setSymbolAndType(0, 0, false);
        continue;
      }
      SectionBase *section = d->section->repl;
      if (!section->isLive()) {
        p->setSymbolAndType(0, 0, false);
        continue;
      }

      int64_t addend = getAddend<ELFT>(rel);
      const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
      if (!RelTy::IsRela)
        addend = target->getImplicitAddend(bufLoc, type);

      if (config->emachine == EM_MIPS && config->relocatable &&
          target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
        // Some MIPS relocations depend on "gp" value. By default,
        // this value has 0x7ff0 offset from a .got section. But
        // relocatable files produced by a compiler or a linker
        // might redefine this default value and we must use it
        // for a calculation of the relocation result. When we
        // generate EXE or DSO it's trivial. Generating a relocatable
        // output is more difficult case because the linker does
        // not calculate relocations in this mode and loses
        // individual "gp" values used by each input object file.
        // As a workaround we add the "gp" value to the relocation
        // addend and save it back to the file.
        addend += sec->getFile<ELFT>()->mipsGp0;
      }

      if (RelTy::IsRela)
        p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
      else if (config->relocatable && type != target->noneRel)
        sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
    }
  }
}

// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
// references specially. The general rule is that the value of the symbol in
// this context is the address of the place P. A further special case is that
// branch relocations to an undefined weak reference resolve to the next
// instruction.
static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
                                              uint32_t p) {
  switch (type) {
  // Unresolved branch relocations to weak references resolve to next
  // instruction, this will be either 2 or 4 bytes on from P.
  case R_ARM_THM_JUMP11:
    return p + 2 + a;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    return p + 4 + a;
  case R_ARM_THM_CALL:
    // We don't want an interworking BLX to ARM
    return p + 5 + a;
  // Unresolved non branch pc-relative relocations
  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
  // targets a weak-reference.
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_REL32:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
    return p + a;
  }
  llvm_unreachable("ARM pc-relative relocation expected\n");
}

// The comment above getARMUndefinedRelativeWeakVA applies to this function.
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
                                                  uint64_t p) {
  switch (type) {
  // Unresolved branch relocations to weak references resolve to next
  // instruction, this is 4 bytes on from P.
  case R_AARCH64_CALL26:
  case R_AARCH64_CONDBR19:
  case R_AARCH64_JUMP26:
  case R_AARCH64_TSTBR14:
    return p + 4 + a;
  // Unresolved non branch pc-relative relocations
  case R_AARCH64_PREL16:
  case R_AARCH64_PREL32:
  case R_AARCH64_PREL64:
  case R_AARCH64_ADR_PREL_LO21:
  case R_AARCH64_LD_PREL_LO19:
    return p + a;
  }
  llvm_unreachable("AArch64 pc-relative relocation expected\n");
}

// ARM SBREL relocations are of the form S + A - B where B is the static base
// The ARM ABI defines base to be "addressing origin of the output segment
// defining the symbol S". We defined the "addressing origin"/static base to be
// the base of the PT_LOAD segment containing the Sym.
// The procedure call standard only defines a Read Write Position Independent
// RWPI variant so in practice we should expect the static base to be the base
// of the RW segment.
static uint64_t getARMStaticBase(const Symbol &sym) {
  OutputSection *os = sym.getOutputSection();
  if (!os || !os->ptLoad || !os->ptLoad->firstSec)
    fatal("SBREL relocation to " + sym.getName() + " without static base");
  return os->ptLoad->firstSec->addr;
}

// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
// is calculated using PCREL_HI20's symbol.
//
// This function returns the R_RISCV_PCREL_HI20 relocation from
// R_RISCV_PCREL_LO12's symbol and addend.
static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
  const Defined *d = cast<Defined>(sym);
  if (!d->section) {
    error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
          sym->getName());
    return nullptr;
  }
  InputSection *isec = cast<InputSection>(d->section);

  if (addend != 0)
    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
         isec->getObjMsg(d->value) + " is ignored");

  // Relocations are sorted by offset, so we can use std::equal_range to do
  // binary search.
  Relocation r;
  r.offset = d->value;
  auto range =
      std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
                       [](const Relocation &lhs, const Relocation &rhs) {
                         return lhs.offset < rhs.offset;
                       });

  for (auto it = range.first; it != range.second; ++it)
    if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
        it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
      return &*it;

  error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
        " without an associated R_RISCV_PCREL_HI20 relocation");
  return nullptr;
}

// A TLS symbol's virtual address is relative to the TLS segment. Add a
// target-specific adjustment to produce a thread-pointer-relative offset.
static int64_t getTlsTpOffset(const Symbol &s) {
  // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
  if (&s == ElfSym::tlsModuleBase)
    return 0;

  // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
  // while most others use Variant 1. At run time TP will be aligned to p_align.

  // Variant 1. TP will be followed by an optional gap (which is the size of 2
  // pointers on ARM/AArch64, 0 on other targets), followed by alignment
  // padding, then the static TLS blocks. The alignment padding is added so that
  // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
  //
  // Variant 2. Static TLS blocks, followed by alignment padding are placed
  // before TP. The alignment padding is added so that (TP - padding -
  // p_memsz) is congruent to p_vaddr modulo p_align.
  PhdrEntry *tls = Out::tlsPhdr;
  switch (config->emachine) {
    // Variant 1.
  case EM_ARM:
  case EM_AARCH64:
    return s.getVA(0) + config->wordsize * 2 +
           ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
  case EM_MIPS:
  case EM_PPC:
  case EM_PPC64:
    // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
    // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
    // data and 0xf000 of the program's TLS segment.
    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
  case EM_RISCV:
    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));

    // Variant 2.
  case EM_386:
  case EM_X86_64:
    return s.getVA(0) - tls->p_memsz -
           ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
  default:
    llvm_unreachable("unhandled Config->EMachine");
  }
}

static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a,
                                 uint64_t p, const Symbol &sym, RelExpr expr) {
  switch (expr) {
  case R_ABS:
  case R_DTPREL:
  case R_RELAX_TLS_LD_TO_LE_ABS:
  case R_RELAX_GOT_PC_NOPIC:
  case R_RISCV_ADD:
    return sym.getVA(a);
  case R_ADDEND:
    return a;
  case R_ARM_SBREL:
    return sym.getVA(a) - getARMStaticBase(sym);
  case R_GOT:
  case R_RELAX_TLS_GD_TO_IE_ABS:
    return sym.getGotVA() + a;
  case R_GOTONLY_PC:
    return in.got->getVA() + a - p;
  case R_GOTPLTONLY_PC:
    return in.gotPlt->getVA() + a - p;
  case R_GOTREL:
  case R_PPC64_RELAX_TOC:
    return sym.getVA(a) - in.got->getVA();
  case R_GOTPLTREL:
    return sym.getVA(a) - in.gotPlt->getVA();
  case R_GOTPLT:
  case R_RELAX_TLS_GD_TO_IE_GOTPLT:
    return sym.getGotVA() + a - in.gotPlt->getVA();
  case R_TLSLD_GOT_OFF:
  case R_GOT_OFF:
  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
    return sym.getGotOffset() + a;
  case R_AARCH64_GOT_PAGE_PC:
  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
    return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
  case R_GOT_PC:
  case R_RELAX_TLS_GD_TO_IE:
    return sym.getGotVA() + a - p;
  case R_MIPS_GOTREL:
    return sym.getVA(a) - in.mipsGot->getGp(file);
  case R_MIPS_GOT_GP:
    return in.mipsGot->getGp(file) + a;
  case R_MIPS_GOT_GP_PC: {
    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
    // is _gp_disp symbol. In that case we should use the following
    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    // microMIPS variants of these relocations use slightly different
    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
    // to correctly handle less-sugnificant bit of the microMIPS symbol.
    uint64_t v = in.mipsGot->getGp(file) + a - p;
    if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
      v += 4;
    if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
      v -= 1;
    return v;
  }
  case R_MIPS_GOT_LOCAL_PAGE:
    // If relocation against MIPS local symbol requires GOT entry, this entry
    // should be initialized by 'page address'. This address is high 16-bits
    // of sum the symbol's value and the addend.
    return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
           in.mipsGot->getGp(file);
  case R_MIPS_GOT_OFF:
  case R_MIPS_GOT_OFF32:
    // In case of MIPS if a GOT relocation has non-zero addend this addend
    // should be applied to the GOT entry content not to the GOT entry offset.
    // That is why we use separate expression type.
    return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
           in.mipsGot->getGp(file);
  case R_MIPS_TLSGD:
    return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
           in.mipsGot->getGp(file);
  case R_MIPS_TLSLD:
    return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
           in.mipsGot->getGp(file);
  case R_AARCH64_PAGE_PC: {
    uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
    return getAArch64Page(val) - getAArch64Page(p);
  }
  case R_RISCV_PC_INDIRECT: {
    if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
      return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
                              *hiRel->sym, hiRel->expr);
    return 0;
  }
  case R_PC: {
    uint64_t dest;
    if (sym.isUndefWeak()) {
      // On ARM and AArch64 a branch to an undefined weak resolves to the
      // next instruction, otherwise the place.
      if (config->emachine == EM_ARM)
        dest = getARMUndefinedRelativeWeakVA(type, a, p);
      else if (config->emachine == EM_AARCH64)
        dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
      else if (config->emachine == EM_PPC)
        dest = p;
      else
        dest = sym.getVA(a);
    } else {
      dest = sym.getVA(a);
    }
    return dest - p;
  }
  case R_PLT:
    return sym.getPltVA() + a;
  case R_PLT_PC:
  case R_PPC64_CALL_PLT:
    return sym.getPltVA() + a - p;
  case R_PPC32_PLTREL:
    // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
    // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
    // target VA computation.
    return sym.getPltVA() - p;
  case R_PPC64_CALL: {
    uint64_t symVA = sym.getVA(a);
    // If we have an undefined weak symbol, we might get here with a symbol
    // address of zero. That could overflow, but the code must be unreachable,
    // so don't bother doing anything at all.
    if (!symVA)
      return 0;

    // PPC64 V2 ABI describes two entry points to a function. The global entry
    // point is used for calls where the caller and callee (may) have different
    // TOC base pointers and r2 needs to be modified to hold the TOC base for
    // the callee. For local calls the caller and callee share the same
    // TOC base and so the TOC pointer initialization code should be skipped by
    // branching to the local entry point.
    return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
  }
  case R_PPC64_TOCBASE:
    return getPPC64TocBase() + a;
  case R_RELAX_GOT_PC:
    return sym.getVA(a) - p;
  case R_RELAX_TLS_GD_TO_LE:
  case R_RELAX_TLS_IE_TO_LE:
  case R_RELAX_TLS_LD_TO_LE:
  case R_TLS:
    // It is not very clear what to return if the symbol is undefined. With
    // --noinhibit-exec, even a non-weak undefined reference may reach here.
    // Just return A, which matches R_ABS, and the behavior of some dynamic
    // loaders.
    if (sym.isUndefined())
      return a;
    return getTlsTpOffset(sym) + a;
  case R_RELAX_TLS_GD_TO_LE_NEG:
  case R_NEG_TLS:
    if (sym.isUndefined())
      return a;
    return -getTlsTpOffset(sym) + a;
  case R_SIZE:
    return sym.getSize() + a;
  case R_TLSDESC:
    return in.got->getGlobalDynAddr(sym) + a;
  case R_TLSDESC_PC:
    return in.got->getGlobalDynAddr(sym) + a - p;
  case R_AARCH64_TLSDESC_PAGE:
    return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
           getAArch64Page(p);
  case R_TLSGD_GOT:
    return in.got->getGlobalDynOffset(sym) + a;
  case R_TLSGD_GOTPLT:
    return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
  case R_TLSGD_PC:
    return in.got->getGlobalDynAddr(sym) + a - p;
  case R_TLSLD_GOTPLT:
    return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
  case R_TLSLD_GOT:
    return in.got->getTlsIndexOff() + a;
  case R_TLSLD_PC:
    return in.got->getTlsIndexVA() + a - p;
  default:
    llvm_unreachable("invalid expression");
  }
}

// This function applies relocations to sections without SHF_ALLOC bit.
// Such sections are never mapped to memory at runtime. Debug sections are
// an example. Relocations in non-alloc sections are much easier to
// handle than in allocated sections because it will never need complex
// treatement such as GOT or PLT (because at runtime no one refers them).
// So, we handle relocations for non-alloc sections directly in this
// function as a performance optimization.
template <class ELFT, class RelTy>
void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
  const unsigned bits = sizeof(typename ELFT::uint) * 8;

  for (const RelTy &rel : rels) {
    RelType type = rel.getType(config->isMips64EL);

    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
    // need to keep this bug-compatible code for a while.
    if (config->emachine == EM_386 && type == R_386_GOTPC)
      continue;

    uint64_t offset = getOffset(rel.r_offset);
    uint8_t *bufLoc = buf + offset;
    int64_t addend = getAddend<ELFT>(rel);
    if (!RelTy::IsRela)
      addend += target->getImplicitAddend(bufLoc, type);

    Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
    RelExpr expr = target->getRelExpr(type, sym, bufLoc);
    if (expr == R_NONE)
      continue;

    if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) {
      std::string msg = getLocation<ELFT>(offset) +
                        ": has non-ABS relocation " + toString(type) +
                        " against symbol '" + toString(sym) + "'";
      if (expr != R_PC) {
        error(msg);
        return;
      }

      // If the control reaches here, we found a PC-relative relocation in a
      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
      // at runtime, the notion of PC-relative doesn't make sense here. So,
      // this is a usage error. However, GNU linkers historically accept such
      // relocations without any errors and relocate them as if they were at
      // address 0. For bug-compatibilty, we accept them with warnings. We
      // know Steel Bank Common Lisp as of 2018 have this bug.
      warn(msg);
      target->relocateOne(bufLoc, type,
                          SignExtend64<bits>(sym.getVA(addend - offset)));
      continue;
    }

    if (sym.isTls() && !Out::tlsPhdr)
      target->relocateOne(bufLoc, type, 0);
    else
      target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
  }
}

// This is used when '-r' is given.
// For REL targets, InputSection::copyRelocations() may store artificial
// relocations aimed to update addends. They are handled in relocateAlloc()
// for allocatable sections, and this function does the same for
// non-allocatable sections, such as sections with debug information.
static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
  const unsigned bits = config->is64 ? 64 : 32;

  for (const Relocation &rel : sec->relocations) {
    // InputSection::copyRelocations() adds only R_ABS relocations.
    assert(rel.expr == R_ABS);
    uint8_t *bufLoc = buf + rel.offset + sec->outSecOff;
    uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
    target->relocateOne(bufLoc, rel.type, targetVA);
  }
}

template <class ELFT>
void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
  if (flags & SHF_EXECINSTR)
    adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);

  if (flags & SHF_ALLOC) {
    relocateAlloc(buf, bufEnd);
    return;
  }

  auto *sec = cast<InputSection>(this);
  if (config->relocatable)
    relocateNonAllocForRelocatable(sec, buf);
  else if (sec->areRelocsRela)
    sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
  else
    sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
}

void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
  assert(flags & SHF_ALLOC);
  const unsigned bits = config->wordsize * 8;

  for (const Relocation &rel : relocations) {
    uint64_t offset = rel.offset;
    if (auto *sec = dyn_cast<InputSection>(this))
      offset += sec->outSecOff;
    uint8_t *bufLoc = buf + offset;
    RelType type = rel.type;

    uint64_t addrLoc = getOutputSection()->addr + offset;
    RelExpr expr = rel.expr;
    uint64_t targetVA = SignExtend64(
        getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
        bits);

    switch (expr) {
    case R_RELAX_GOT_PC:
    case R_RELAX_GOT_PC_NOPIC:
      target->relaxGot(bufLoc, type, targetVA);
      break;
    case R_PPC64_RELAX_TOC:
      if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc))
        target->relocateOne(bufLoc, type, targetVA);
      break;
    case R_RELAX_TLS_IE_TO_LE:
      target->relaxTlsIeToLe(bufLoc, type, targetVA);
      break;
    case R_RELAX_TLS_LD_TO_LE:
    case R_RELAX_TLS_LD_TO_LE_ABS:
      target->relaxTlsLdToLe(bufLoc, type, targetVA);
      break;
    case R_RELAX_TLS_GD_TO_LE:
    case R_RELAX_TLS_GD_TO_LE_NEG:
      target->relaxTlsGdToLe(bufLoc, type, targetVA);
      break;
    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
    case R_RELAX_TLS_GD_TO_IE:
    case R_RELAX_TLS_GD_TO_IE_ABS:
    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
    case R_RELAX_TLS_GD_TO_IE_GOTPLT:
      target->relaxTlsGdToIe(bufLoc, type, targetVA);
      break;
    case R_PPC64_CALL:
      // If this is a call to __tls_get_addr, it may be part of a TLS
      // sequence that has been relaxed and turned into a nop. In this
      // case, we don't want to handle it as a call.
      if (read32(bufLoc) == 0x60000000) // nop
        break;

      // Patch a nop (0x60000000) to a ld.
      if (rel.sym->needsTocRestore) {
        if (bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) {
          error(getErrorLocation(bufLoc) + "call lacks nop, can't restore toc");
          break;
        }
        write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
      }
      target->relocateOne(bufLoc, type, targetVA);
      break;
    default:
      target->relocateOne(bufLoc, type, targetVA);
      break;
    }
  }
}

// For each function-defining prologue, find any calls to __morestack,
// and replace them with calls to __morestack_non_split.
static void switchMorestackCallsToMorestackNonSplit(
    DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {

  // If the target adjusted a function's prologue, all calls to
  // __morestack inside that function should be switched to
  // __morestack_non_split.
  Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
  if (!moreStackNonSplit) {
    error("Mixing split-stack objects requires a definition of "
          "__morestack_non_split");
    return;
  }

  // Sort both collections to compare addresses efficiently.
  llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
    return l->offset < r->offset;
  });
  std::vector<Defined *> functions(prologues.begin(), prologues.end());
  llvm::sort(functions, [](const Defined *l, const Defined *r) {
    return l->value < r->value;
  });

  auto it = morestackCalls.begin();
  for (Defined *f : functions) {
    // Find the first call to __morestack within the function.
    while (it != morestackCalls.end() && (*it)->offset < f->value)
      ++it;
    // Adjust all calls inside the function.
    while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
      (*it)->sym = moreStackNonSplit;
      ++it;
    }
  }
}

static bool enclosingPrologueAttempted(uint64_t offset,
                                       const DenseSet<Defined *> &prologues) {
  for (Defined *f : prologues)
    if (f->value <= offset && offset < f->value + f->size)
      return true;
  return false;
}

// If a function compiled for split stack calls a function not
// compiled for split stack, then the caller needs its prologue
// adjusted to ensure that the called function will have enough stack
// available. Find those functions, and adjust their prologues.
template <class ELFT>
void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
                                                         uint8_t *end) {
  if (!getFile<ELFT>()->splitStack)
    return;
  DenseSet<Defined *> prologues;
  std::vector<Relocation *> morestackCalls;

  for (Relocation &rel : relocations) {
    // Local symbols can't possibly be cross-calls, and should have been
    // resolved long before this line.
    if (rel.sym->isLocal())
      continue;

    // Ignore calls into the split-stack api.
    if (rel.sym->getName().startswith("__morestack")) {
      if (rel.sym->getName().equals("__morestack"))
        morestackCalls.push_back(&rel);
      continue;
    }

    // A relocation to non-function isn't relevant. Sometimes
    // __morestack is not marked as a function, so this check comes
    // after the name check.
    if (rel.sym->type != STT_FUNC)
      continue;

    // If the callee's-file was compiled with split stack, nothing to do.  In
    // this context, a "Defined" symbol is one "defined by the binary currently
    // being produced". So an "undefined" symbol might be provided by a shared
    // library. It is not possible to tell how such symbols were compiled, so be
    // conservative.
    if (Defined *d = dyn_cast<Defined>(rel.sym))
      if (InputSection *isec = cast_or_null<InputSection>(d->section))
        if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
          continue;

    if (enclosingPrologueAttempted(rel.offset, prologues))
      continue;

    if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
      prologues.insert(f);
      if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value),
                                                   end, f->stOther))
        continue;
      if (!getFile<ELFT>()->someNoSplitStack)
        error(toString(this) + ": " + f->getName() +
              " (with -fsplit-stack) calls " + rel.sym->getName() +
              " (without -fsplit-stack), but couldn't adjust its prologue");
    }
  }

  if (target->needsMoreStackNonSplit)
    switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
}

template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
  if (type == SHT_NOBITS)
    return;

  if (auto *s = dyn_cast<SyntheticSection>(this)) {
    s->writeTo(buf + outSecOff);
    return;
  }

  // If -r or --emit-relocs is given, then an InputSection
  // may be a relocation section.
  if (type == SHT_RELA) {
    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
    return;
  }
  if (type == SHT_REL) {
    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
    return;
  }

  // If -r is given, we may have a SHT_GROUP section.
  if (type == SHT_GROUP) {
    copyShtGroup<ELFT>(buf + outSecOff);
    return;
  }

  // If this is a compressed section, uncompress section contents directly
  // to the buffer.
  if (uncompressedSize >= 0) {
    size_t size = uncompressedSize;
    if (Error e = zlib::uncompress(toStringRef(rawData),
                                   (char *)(buf + outSecOff), size))
      fatal(toString(this) +
            ": uncompress failed: " + llvm::toString(std::move(e)));
    uint8_t *bufEnd = buf + outSecOff + size;
    relocate<ELFT>(buf, bufEnd);
    return;
  }

  // Copy section contents from source object file to output file
  // and then apply relocations.
  memcpy(buf + outSecOff, data().data(), data().size());
  uint8_t *bufEnd = buf + outSecOff + data().size();
  relocate<ELFT>(buf, bufEnd);
}

void InputSection::replace(InputSection *other) {
  alignment = std::max(alignment, other->alignment);

  // When a section is replaced with another section that was allocated to
  // another partition, the replacement section (and its associated sections)
  // need to be placed in the main partition so that both partitions will be
  // able to access it.
  if (partition != other->partition) {
    partition = 1;
    for (InputSection *isec : dependentSections)
      isec->partition = 1;
  }

  other->repl = repl;
  other->markDead();
}

template <class ELFT>
EhInputSection::EhInputSection(ObjFile<ELFT> &f,
                               const typename ELFT::Shdr &header,
                               StringRef name)
    : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}

SyntheticSection *EhInputSection::getParent() const {
  return cast_or_null<SyntheticSection>(parent);
}

// Returns the index of the first relocation that points to a region between
// Begin and Begin+Size.
template <class IntTy, class RelTy>
static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
                         unsigned &relocI) {
  // Start search from RelocI for fast access. That works because the
  // relocations are sorted in .eh_frame.
  for (unsigned n = rels.size(); relocI < n; ++relocI) {
    const RelTy &rel = rels[relocI];
    if (rel.r_offset < begin)
      continue;

    if (rel.r_offset < begin + size)
      return relocI;
    return -1;
  }
  return -1;
}

// .eh_frame is a sequence of CIE or FDE records.
// This function splits an input section into records and returns them.
template <class ELFT> void EhInputSection::split() {
  if (areRelocsRela)
    split<ELFT>(relas<ELFT>());
  else
    split<ELFT>(rels<ELFT>());
}

template <class ELFT, class RelTy>
void EhInputSection::split(ArrayRef<RelTy> rels) {
  unsigned relI = 0;
  for (size_t off = 0, end = data().size(); off != end;) {
    size_t size = readEhRecordSize(this, off);
    pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
    // The empty record is the end marker.
    if (size == 4)
      break;
    off += size;
  }
}

static size_t findNull(StringRef s, size_t entSize) {
  // Optimize the common case.
  if (entSize == 1)
    return s.find(0);

  for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
    const char *b = s.begin() + i;
    if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
      return i;
  }
  return StringRef::npos;
}

SyntheticSection *MergeInputSection::getParent() const {
  return cast_or_null<SyntheticSection>(parent);
}

// Split SHF_STRINGS section. Such section is a sequence of
// null-terminated strings.
void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
  size_t off = 0;
  bool isAlloc = flags & SHF_ALLOC;
  StringRef s = toStringRef(data);

  while (!s.empty()) {
    size_t end = findNull(s, entSize);
    if (end == StringRef::npos)
      fatal(toString(this) + ": string is not null terminated");
    size_t size = end + entSize;

    pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
    s = s.substr(size);
    off += size;
  }
}

// Split non-SHF_STRINGS section. Such section is a sequence of
// fixed size records.
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
                                        size_t entSize) {
  size_t size = data.size();
  assert((size % entSize) == 0);
  bool isAlloc = flags & SHF_ALLOC;

  for (size_t i = 0; i != size; i += entSize)
    pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
}

template <class ELFT>
MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
                                     const typename ELFT::Shdr &header,
                                     StringRef name)
    : InputSectionBase(f, header, name, InputSectionBase::Merge) {}

MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
                                     uint64_t entsize, ArrayRef<uint8_t> data,
                                     StringRef name)
    : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
                       /*Alignment*/ entsize, data, name, SectionBase::Merge) {}

// This function is called after we obtain a complete list of input sections
// that need to be linked. This is responsible to split section contents
// into small chunks for further processing.
//
// Note that this function is called from parallelForEach. This must be
// thread-safe (i.e. no memory allocation from the pools).
void MergeInputSection::splitIntoPieces() {
  assert(pieces.empty());

  if (flags & SHF_STRINGS)
    splitStrings(data(), entsize);
  else
    splitNonStrings(data(), entsize);
}

SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
  if (this->data().size() <= offset)
    fatal(toString(this) + ": offset is outside the section");

  // If Offset is not at beginning of a section piece, it is not in the map.
  // In that case we need to  do a binary search of the original section piece vector.
  auto it = partition_point(
      pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
  return &it[-1];
}

// Returns the offset in an output section for a given input offset.
// Because contents of a mergeable section is not contiguous in output,
// it is not just an addition to a base output offset.
uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
  // If Offset is not at beginning of a section piece, it is not in the map.
  // In that case we need to search from the original section piece vector.
  const SectionPiece &piece =
      *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
  uint64_t addend = offset - piece.inputOff;
  return piece.outputOff + addend;
}

template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
                                    StringRef);
template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
                                    StringRef);
template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
                                    StringRef);
template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
                                    StringRef);

template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);

template void InputSection::writeTo<ELF32LE>(uint8_t *);
template void InputSection::writeTo<ELF32BE>(uint8_t *);
template void InputSection::writeTo<ELF64LE>(uint8_t *);
template void InputSection::writeTo<ELF64BE>(uint8_t *);

template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
                                              const ELF32LE::Shdr &, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
                                              const ELF32BE::Shdr &, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
                                              const ELF64LE::Shdr &, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
                                              const ELF64BE::Shdr &, StringRef);

template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
                                        const ELF32LE::Shdr &, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
                                        const ELF32BE::Shdr &, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
                                        const ELF64LE::Shdr &, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
                                        const ELF64BE::Shdr &, StringRef);

template void EhInputSection::split<ELF32LE>();
template void EhInputSection::split<ELF32BE>();
template void EhInputSection::split<ELF64LE>();
template void EhInputSection::split<ELF64BE>();

} // namespace elf
} // namespace lld