1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
| //===- PPC64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf {
static uint64_t ppc64TocOffset = 0x8000;
static uint64_t dynamicThreadPointerOffset = 0x8000;
// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
// instructions that can be used as part of the initial exec TLS sequence.
enum XFormOpcd {
LBZX = 87,
LHZX = 279,
LWZX = 23,
LDX = 21,
STBX = 215,
STHX = 407,
STWX = 151,
STDX = 149,
ADD = 266,
};
enum DFormOpcd {
LBZ = 34,
LBZU = 35,
LHZ = 40,
LHZU = 41,
LHAU = 43,
LWZ = 32,
LWZU = 33,
LFSU = 49,
LD = 58,
LFDU = 51,
STB = 38,
STBU = 39,
STH = 44,
STHU = 45,
STW = 36,
STWU = 37,
STFSU = 53,
STFDU = 55,
STD = 62,
ADDI = 14
};
uint64_t getPPC64TocBase() {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
// TOC starts where the first of these sections starts. We always create a
// .got when we see a relocation that uses it, so for us the start is always
// the .got.
uint64_t tocVA = in.got->getVA();
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
// code (crt1.o) assumes that you can get from the TOC base to the
// start of the .toc section with only a single (signed) 16-bit relocation.
return tocVA + ppc64TocOffset;
}
unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
// The offset is encoded into the 3 most significant bits of the st_other
// field, with some special values described in section 3.4.1 of the ABI:
// 0 --> Zero offset between the GEP and LEP, and the function does NOT use
// the TOC pointer (r2). r2 will hold the same value on returning from
// the function as it did on entering the function.
// 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
// caller-saved register for all callers.
// 2-6 --> The binary logarithm of the offset eg:
// 2 --> 2^2 = 4 bytes --> 1 instruction.
// 6 --> 2^6 = 64 bytes --> 16 instructions.
// 7 --> Reserved.
uint8_t gepToLep = (stOther >> 5) & 7;
if (gepToLep < 2)
return 0;
// The value encoded in the st_other bits is the
// log-base-2(offset).
if (gepToLep < 7)
return 1 << gepToLep;
error("reserved value of 7 in the 3 most-significant-bits of st_other");
return 0;
}
bool isPPC64SmallCodeModelTocReloc(RelType type) {
// The only small code model relocations that access the .toc section.
return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
}
// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
template <typename ELFT>
static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
if (tocSec->numRelocations == 0)
return {};
// .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
// r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
// relocation index in most cases.
//
// In rare cases a TOC entry may store a constant that doesn't need an
// R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
// points to a relocation with larger r_offset. Do a linear probe then.
// Constants are extremely uncommon in .toc and the extra number of array
// accesses can be seen as a small constant.
ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
for (;;) {
if (relas[index].r_offset == offset) {
Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
}
if (relas[index].r_offset < offset || index == 0)
break;
--index;
}
return {};
}
// When accessing a symbol defined in another translation unit, compilers
// reserve a .toc entry, allocate a local label and generate toc-indirect
// instuctions:
//
// addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
// ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
// ld/lwa 3, 0(3) # load the value from the address
//
// .section .toc,"aw",@progbits
// .LC0: .tc var[TC],var
//
// If var is defined, non-preemptable and addressable with a 32-bit signed
// offset from the toc base, the address of var can be computed by adding an
// offset to the toc base, saving a load.
//
// addis 3,2,var@toc@ha # this may be relaxed to a nop,
// addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
// ld/lwa 3, 0(3) # load the value from the address
//
// Returns true if the relaxation is performed.
bool tryRelaxPPC64TocIndirection(RelType type, const Relocation &rel,
uint8_t *bufLoc) {
assert(config->tocOptimize);
if (rel.addend < 0)
return false;
// If the symbol is not the .toc section, this isn't a toc-indirection.
Defined *defSym = dyn_cast<Defined>(rel.sym);
if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
return false;
Defined *d;
int64_t addend;
auto *tocISB = cast<InputSectionBase>(defSym->section);
std::tie(d, addend) =
config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
: getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
// Only non-preemptable defined symbols can be relaxed.
if (!d || d->isPreemptible)
return false;
// R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
// ifunc and changed its type to STT_FUNC.
assert(!d->isGnuIFunc());
// Two instructions can materialize a 32-bit signed offset from the toc base.
uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
if (!isInt<32>(tocRelative))
return false;
// Add PPC64TocOffset that will be subtracted by relocateOne().
target->relaxGot(bufLoc, type, tocRelative + ppc64TocOffset);
return true;
}
namespace {
class PPC64 final : public TargetInfo {
public:
PPC64();
int getTlsGdRelaxSkip(RelType type) const override;
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
int32_t index, unsigned relOff) const override;
void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
void writeGotHeader(uint8_t *buf) const override;
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s) const override;
uint32_t getThunkSectionSpacing() const override;
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const override;
void relaxGot(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const override;
};
} // namespace
// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t lo(uint64_t v) { return v; }
static uint16_t hi(uint64_t v) { return v >> 16; }
static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
static uint16_t higher(uint64_t v) { return v >> 32; }
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
static uint16_t highest(uint64_t v) { return v >> 48; }
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
// Extracts the 'PO' field of an instruction encoding.
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
static bool isDQFormInstruction(uint32_t encoding) {
switch (getPrimaryOpCode(encoding)) {
default:
return false;
case 56:
// The only instruction with a primary opcode of 56 is `lq`.
return true;
case 61:
// There are both DS and DQ instruction forms with this primary opcode.
// Namely `lxv` and `stxv` are the DQ-forms that use it.
// The DS 'XO' bits being set to 01 is restricted to DQ form.
return (encoding & 3) == 0x1;
}
}
static bool isInstructionUpdateForm(uint32_t encoding) {
switch (getPrimaryOpCode(encoding)) {
default:
return false;
case LBZU:
case LHAU:
case LHZU:
case LWZU:
case LFSU:
case LFDU:
case STBU:
case STHU:
case STWU:
case STFSU:
case STFDU:
return true;
// LWA has the same opcode as LD, and the DS bits is what differentiates
// between LD/LDU/LWA
case LD:
case STD:
return (encoding & 3) == 1;
}
}
// There are a number of places when we either want to read or write an
// instruction when handling a half16 relocation type. On big-endian the buffer
// pointer is pointing into the middle of the word we want to extract, and on
// little-endian it is pointing to the start of the word. These 2 helpers are to
// simplify reading and writing in that context.
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
write32(config->isLE ? loc : loc - 2, insn);
}
static uint32_t readFromHalf16(const uint8_t *loc) {
return read32(config->isLE ? loc : loc - 2);
}
PPC64::PPC64() {
gotRel = R_PPC64_GLOB_DAT;
noneRel = R_PPC64_NONE;
pltRel = R_PPC64_JMP_SLOT;
relativeRel = R_PPC64_RELATIVE;
iRelativeRel = R_PPC64_IRELATIVE;
symbolicRel = R_PPC64_ADDR64;
pltEntrySize = 4;
gotBaseSymInGotPlt = false;
gotHeaderEntriesNum = 1;
gotPltHeaderEntriesNum = 2;
pltHeaderSize = 60;
needsThunks = true;
tlsModuleIndexRel = R_PPC64_DTPMOD64;
tlsOffsetRel = R_PPC64_DTPREL64;
tlsGotRel = R_PPC64_TPREL64;
needsMoreStackNonSplit = false;
// We need 64K pages (at least under glibc/Linux, the loader won't
// set different permissions on a finer granularity than that).
defaultMaxPageSize = 65536;
// The PPC64 ELF ABI v1 spec, says:
//
// It is normally desirable to put segments with different characteristics
// in separate 256 Mbyte portions of the address space, to give the
// operating system full paging flexibility in the 64-bit address space.
//
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
// use 0x10000000 as the starting address.
defaultImageBase = 0x10000000;
write32(trapInstr.data(), 0x7fe00008);
}
int PPC64::getTlsGdRelaxSkip(RelType type) const {
// A __tls_get_addr call instruction is marked with 2 relocations:
//
// R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
// R_PPC64_REL24: __tls_get_addr
//
// After the relaxation we no longer call __tls_get_addr and should skip both
// relocations to not create a false dependence on __tls_get_addr being
// defined.
if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
return 2;
return 1;
}
static uint32_t getEFlags(InputFile *file) {
if (config->ekind == ELF64BEKind)
return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader()->e_flags;
return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader()->e_flags;
}
// This file implements v2 ABI. This function makes sure that all
// object files have v2 or an unspecified version as an ABI version.
uint32_t PPC64::calcEFlags() const {
for (InputFile *f : objectFiles) {
uint32_t flag = getEFlags(f);
if (flag == 1)
error(toString(f) + ": ABI version 1 is not supported");
else if (flag > 2)
error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
}
return 2;
}
void PPC64::relaxGot(uint8_t *loc, RelType type, uint64_t val) const {
switch (type) {
case R_PPC64_TOC16_HA:
// Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
relocateOne(loc, type, val);
break;
case R_PPC64_TOC16_LO_DS: {
// Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
// "addi reg, 2, var@toc".
uint32_t insn = readFromHalf16(loc);
if (getPrimaryOpCode(insn) != LD)
error("expected a 'ld' for got-indirect to toc-relative relaxing");
writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
relocateOne(loc, R_PPC64_TOC16_LO, val);
break;
}
default:
llvm_unreachable("unexpected relocation type");
}
}
void PPC64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
// Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` will look like:
// Instruction Relocation Symbol
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
// R_PPC64_REL24 __tls_get_addr
// nop None None
// Relaxing to local exec entails converting:
// addis r3, r2, x@got@tlsgd@ha into nop
// addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
// bl __tls_get_addr(x@tlsgd) into nop
// nop into addi r3, r3, x@tprel@l
switch (type) {
case R_PPC64_GOT_TLSGD16_HA:
writeFromHalf16(loc, 0x60000000); // nop
break;
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSGD16_LO:
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
relocateOne(loc, R_PPC64_TPREL16_HA, val);
break;
case R_PPC64_TLSGD:
write32(loc, 0x60000000); // nop
write32(loc + 4, 0x38630000); // addi r3, r3
// Since we are relocating a half16 type relocation and Loc + 4 points to
// the start of an instruction we need to advance the buffer by an extra
// 2 bytes on BE.
relocateOne(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
R_PPC64_TPREL16_LO, val);
break;
default:
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
}
}
void PPC64::relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const {
// Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
// The local dynamic code sequence for a global `x` will look like:
// Instruction Relocation Symbol
// addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
// addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
// R_PPC64_REL24 __tls_get_addr
// nop None None
// Relaxing to local exec entails converting:
// addis r3, r2, x@got@tlsld@ha into nop
// addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
// bl __tls_get_addr(x@tlsgd) into nop
// nop into addi r3, r3, 4096
switch (type) {
case R_PPC64_GOT_TLSLD16_HA:
writeFromHalf16(loc, 0x60000000); // nop
break;
case R_PPC64_GOT_TLSLD16_LO:
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
break;
case R_PPC64_TLSLD:
write32(loc, 0x60000000); // nop
write32(loc + 4, 0x38631000); // addi r3, r3, 4096
break;
case R_PPC64_DTPREL16:
case R_PPC64_DTPREL16_HA:
case R_PPC64_DTPREL16_HI:
case R_PPC64_DTPREL16_DS:
case R_PPC64_DTPREL16_LO:
case R_PPC64_DTPREL16_LO_DS:
relocateOne(loc, type, val);
break;
default:
llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
}
}
unsigned getPPCDFormOp(unsigned secondaryOp) {
switch (secondaryOp) {
case LBZX:
return LBZ;
case LHZX:
return LHZ;
case LWZX:
return LWZ;
case LDX:
return LD;
case STBX:
return STB;
case STHX:
return STH;
case STWX:
return STW;
case STDX:
return STD;
case ADD:
return ADDI;
default:
return 0;
}
}
void PPC64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
// The initial exec code sequence for a global `x` will look like:
// Instruction Relocation Symbol
// addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
// ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
// add r9, r9, x@tls R_PPC64_TLS x
// Relaxing to local exec entails converting:
// addis r9, r2, x@got@tprel@ha into nop
// ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
// add r9, r9, x@tls into addi r9, r9, x@tprel@l
// x@tls R_PPC64_TLS is a relocation which does not compute anything,
// it is replaced with r13 (thread pointer).
// The add instruction in the initial exec sequence has multiple variations
// that need to be handled. If we are building an address it will use an add
// instruction, if we are accessing memory it will use any of the X-form
// indexed load or store instructions.
unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
switch (type) {
case R_PPC64_GOT_TPREL16_HA:
write32(loc - offset, 0x60000000); // nop
break;
case R_PPC64_GOT_TPREL16_LO_DS:
case R_PPC64_GOT_TPREL16_DS: {
uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
relocateOne(loc, R_PPC64_TPREL16_HA, val);
break;
}
case R_PPC64_TLS: {
uint32_t primaryOp = getPrimaryOpCode(read32(loc));
if (primaryOp != 31)
error("unrecognized instruction for IE to LE R_PPC64_TLS");
uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
uint32_t dFormOp = getPPCDFormOp(secondaryOp);
if (dFormOp == 0)
error("unrecognized instruction for IE to LE R_PPC64_TLS");
write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
relocateOne(loc + offset, R_PPC64_TPREL16_LO, val);
break;
}
default:
llvm_unreachable("unknown relocation for IE to LE");
break;
}
}
RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_PPC64_NONE:
return R_NONE;
case R_PPC64_ADDR16:
case R_PPC64_ADDR16_DS:
case R_PPC64_ADDR16_HA:
case R_PPC64_ADDR16_HI:
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_ADDR16_LO:
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_ADDR32:
case R_PPC64_ADDR64:
return R_ABS;
case R_PPC64_GOT16:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_LO_DS:
return R_GOT_OFF;
case R_PPC64_TOC16:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_HI:
case R_PPC64_TOC16_LO:
return R_GOTREL;
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_LO_DS:
return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
case R_PPC64_TOC:
return R_PPC64_TOCBASE;
case R_PPC64_REL14:
case R_PPC64_REL24:
return R_PPC64_CALL_PLT;
case R_PPC64_REL16_LO:
case R_PPC64_REL16_HA:
case R_PPC64_REL16_HI:
case R_PPC64_REL32:
case R_PPC64_REL64:
return R_PC;
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSGD16_HA:
case R_PPC64_GOT_TLSGD16_HI:
case R_PPC64_GOT_TLSGD16_LO:
return R_TLSGD_GOT;
case R_PPC64_GOT_TLSLD16:
case R_PPC64_GOT_TLSLD16_HA:
case R_PPC64_GOT_TLSLD16_HI:
case R_PPC64_GOT_TLSLD16_LO:
return R_TLSLD_GOT;
case R_PPC64_GOT_TPREL16_HA:
case R_PPC64_GOT_TPREL16_LO_DS:
case R_PPC64_GOT_TPREL16_DS:
case R_PPC64_GOT_TPREL16_HI:
return R_GOT_OFF;
case R_PPC64_GOT_DTPREL16_HA:
case R_PPC64_GOT_DTPREL16_LO_DS:
case R_PPC64_GOT_DTPREL16_DS:
case R_PPC64_GOT_DTPREL16_HI:
return R_TLSLD_GOT_OFF;
case R_PPC64_TPREL16:
case R_PPC64_TPREL16_HA:
case R_PPC64_TPREL16_LO:
case R_PPC64_TPREL16_HI:
case R_PPC64_TPREL16_DS:
case R_PPC64_TPREL16_LO_DS:
case R_PPC64_TPREL16_HIGHER:
case R_PPC64_TPREL16_HIGHERA:
case R_PPC64_TPREL16_HIGHEST:
case R_PPC64_TPREL16_HIGHESTA:
return R_TLS;
case R_PPC64_DTPREL16:
case R_PPC64_DTPREL16_DS:
case R_PPC64_DTPREL16_HA:
case R_PPC64_DTPREL16_HI:
case R_PPC64_DTPREL16_HIGHER:
case R_PPC64_DTPREL16_HIGHERA:
case R_PPC64_DTPREL16_HIGHEST:
case R_PPC64_DTPREL16_HIGHESTA:
case R_PPC64_DTPREL16_LO:
case R_PPC64_DTPREL16_LO_DS:
case R_PPC64_DTPREL64:
return R_DTPREL;
case R_PPC64_TLSGD:
return R_TLSDESC_CALL;
case R_PPC64_TLSLD:
return R_TLSLD_HINT;
case R_PPC64_TLS:
return R_TLSIE_HINT;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelType PPC64::getDynRel(RelType type) const {
if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
return R_PPC64_ADDR64;
return R_PPC64_NONE;
}
void PPC64::writeGotHeader(uint8_t *buf) const {
write64(buf, getPPC64TocBase());
}
void PPC64::writePltHeader(uint8_t *buf) const {
// The generic resolver stub goes first.
write32(buf + 0, 0x7c0802a6); // mflr r0
write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
write32(buf + 8, 0x7d6802a6); // mflr r11
write32(buf + 12, 0x7c0803a6); // mtlr r0
write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
write32(buf + 20, 0x380cffcc); // subi r0,r12,52
write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
write32(buf + 44, 0x7d8903a6); // mtctr r12
write32(buf + 48, 0x4e800420); // bctr
// The 'bcl' instruction will set the link register to the address of the
// following instruction ('mflr r11'). Here we store the offset from that
// instruction to the first entry in the GotPlt section.
int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
write64(buf + 52, gotPltOffset);
}
void PPC64::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
uint64_t pltEntryAddr, int32_t index,
unsigned relOff) const {
int32_t offset = pltHeaderSize + index * pltEntrySize;
// bl __glink_PLTresolve
write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
}
static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
// Relocations relative to the toc-base need to be adjusted by the Toc offset.
uint64_t tocBiasedVal = val - ppc64TocOffset;
// Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
switch (type) {
// TOC biased relocation.
case R_PPC64_GOT16:
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSLD16:
case R_PPC64_TOC16:
return {R_PPC64_ADDR16, tocBiasedVal};
case R_PPC64_GOT16_DS:
case R_PPC64_TOC16_DS:
case R_PPC64_GOT_TPREL16_DS:
case R_PPC64_GOT_DTPREL16_DS:
return {R_PPC64_ADDR16_DS, tocBiasedVal};
case R_PPC64_GOT16_HA:
case R_PPC64_GOT_TLSGD16_HA:
case R_PPC64_GOT_TLSLD16_HA:
case R_PPC64_GOT_TPREL16_HA:
case R_PPC64_GOT_DTPREL16_HA:
case R_PPC64_TOC16_HA:
return {R_PPC64_ADDR16_HA, tocBiasedVal};
case R_PPC64_GOT16_HI:
case R_PPC64_GOT_TLSGD16_HI:
case R_PPC64_GOT_TLSLD16_HI:
case R_PPC64_GOT_TPREL16_HI:
case R_PPC64_GOT_DTPREL16_HI:
case R_PPC64_TOC16_HI:
return {R_PPC64_ADDR16_HI, tocBiasedVal};
case R_PPC64_GOT16_LO:
case R_PPC64_GOT_TLSGD16_LO:
case R_PPC64_GOT_TLSLD16_LO:
case R_PPC64_TOC16_LO:
return {R_PPC64_ADDR16_LO, tocBiasedVal};
case R_PPC64_GOT16_LO_DS:
case R_PPC64_TOC16_LO_DS:
case R_PPC64_GOT_TPREL16_LO_DS:
case R_PPC64_GOT_DTPREL16_LO_DS:
return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
// Dynamic Thread pointer biased relocation types.
case R_PPC64_DTPREL16:
return {R_PPC64_ADDR16, dtpBiasedVal};
case R_PPC64_DTPREL16_DS:
return {R_PPC64_ADDR16_DS, dtpBiasedVal};
case R_PPC64_DTPREL16_HA:
return {R_PPC64_ADDR16_HA, dtpBiasedVal};
case R_PPC64_DTPREL16_HI:
return {R_PPC64_ADDR16_HI, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHER:
return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHERA:
return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHEST:
return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHESTA:
return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
case R_PPC64_DTPREL16_LO:
return {R_PPC64_ADDR16_LO, dtpBiasedVal};
case R_PPC64_DTPREL16_LO_DS:
return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
case R_PPC64_DTPREL64:
return {R_PPC64_ADDR64, dtpBiasedVal};
default:
return {type, val};
}
}
static bool isTocOptType(RelType type) {
switch (type) {
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_LO_DS:
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_LO_DS:
case R_PPC64_TOC16_LO:
return true;
default:
return false;
}
}
void PPC64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
// We need to save the original relocation type to use in diagnostics, and
// use the original type to determine if we should toc-optimize the
// instructions being relocated.
RelType originalType = type;
bool shouldTocOptimize = isTocOptType(type);
// For dynamic thread pointer relative, toc-relative, and got-indirect
// relocations, proceed in terms of the corresponding ADDR16 relocation type.
std::tie(type, val) = toAddr16Rel(type, val);
switch (type) {
case R_PPC64_ADDR14: {
checkAlignment(loc, val, 4, type);
// Preserve the AA/LK bits in the branch instruction
uint8_t aalk = loc[3];
write16(loc + 2, (aalk & 3) | (val & 0xfffc));
break;
}
case R_PPC64_ADDR16:
checkIntUInt(loc, val, 16, originalType);
write16(loc, val);
break;
case R_PPC64_ADDR32:
checkIntUInt(loc, val, 32, originalType);
write32(loc, val);
break;
case R_PPC64_ADDR16_DS:
case R_PPC64_TPREL16_DS: {
checkInt(loc, val, 16, originalType);
// DQ-form instructions use bits 28-31 as part of the instruction encoding
// DS-form instructions only use bits 30-31.
uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
checkAlignment(loc, lo(val), mask + 1, originalType);
write16(loc, (read16(loc) & mask) | lo(val));
} break;
case R_PPC64_ADDR16_HA:
case R_PPC64_REL16_HA:
case R_PPC64_TPREL16_HA:
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
writeFromHalf16(loc, 0x60000000);
else
write16(loc, ha(val));
break;
case R_PPC64_ADDR16_HI:
case R_PPC64_REL16_HI:
case R_PPC64_TPREL16_HI:
write16(loc, hi(val));
break;
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_TPREL16_HIGHER:
write16(loc, higher(val));
break;
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_TPREL16_HIGHERA:
write16(loc, highera(val));
break;
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_TPREL16_HIGHEST:
write16(loc, highest(val));
break;
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_TPREL16_HIGHESTA:
write16(loc, highesta(val));
break;
case R_PPC64_ADDR16_LO:
case R_PPC64_REL16_LO:
case R_PPC64_TPREL16_LO:
// When the high-adjusted part of a toc relocation evaluates to 0, it is
// changed into a nop. The lo part then needs to be updated to use the
// toc-pointer register r2, as the base register.
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
uint32_t insn = readFromHalf16(loc);
if (isInstructionUpdateForm(insn))
error(getErrorLocation(loc) +
"can't toc-optimize an update instruction: 0x" +
utohexstr(insn));
writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
} else {
write16(loc, lo(val));
}
break;
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_TPREL16_LO_DS: {
// DQ-form instructions use bits 28-31 as part of the instruction encoding
// DS-form instructions only use bits 30-31.
uint32_t insn = readFromHalf16(loc);
uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
checkAlignment(loc, lo(val), mask + 1, originalType);
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
// When the high-adjusted part of a toc relocation evaluates to 0, it is
// changed into a nop. The lo part then needs to be updated to use the toc
// pointer register r2, as the base register.
if (isInstructionUpdateForm(insn))
error(getErrorLocation(loc) +
"Can't toc-optimize an update instruction: 0x" +
Twine::utohexstr(insn));
insn &= 0xffe00000 | mask;
writeFromHalf16(loc, insn | 0x00020000 | lo(val));
} else {
write16(loc, (read16(loc) & mask) | lo(val));
}
} break;
case R_PPC64_TPREL16:
checkInt(loc, val, 16, originalType);
write16(loc, val);
break;
case R_PPC64_REL32:
checkInt(loc, val, 32, type);
write32(loc, val);
break;
case R_PPC64_ADDR64:
case R_PPC64_REL64:
case R_PPC64_TOC:
write64(loc, val);
break;
case R_PPC64_REL14: {
uint32_t mask = 0x0000FFFC;
checkInt(loc, val, 16, type);
checkAlignment(loc, val, 4, type);
write32(loc, (read32(loc) & ~mask) | (val & mask));
break;
}
case R_PPC64_REL24: {
uint32_t mask = 0x03FFFFFC;
checkInt(loc, val, 26, type);
checkAlignment(loc, val, 4, type);
write32(loc, (read32(loc) & ~mask) | (val & mask));
break;
}
case R_PPC64_DTPREL64:
write64(loc, val - dynamicThreadPointerOffset);
break;
default:
llvm_unreachable("unknown relocation");
}
}
bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s) const {
if (type != R_PPC64_REL14 && type != R_PPC64_REL24)
return false;
// If a function is in the Plt it needs to be called with a call-stub.
if (s.isInPlt())
return true;
// If a symbol is a weak undefined and we are compiling an executable
// it doesn't need a range-extending thunk since it can't be called.
if (s.isUndefWeak() && !config->shared)
return false;
// If the offset exceeds the range of the branch type then it will need
// a range-extending thunk.
// See the comment in getRelocTargetVA() about R_PPC64_CALL.
return !inBranchRange(type, branchAddr,
s.getVA() +
getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
}
uint32_t PPC64::getThunkSectionSpacing() const {
// See comment in Arch/ARM.cpp for a more detailed explanation of
// getThunkSectionSpacing(). For PPC64 we pick the constant here based on
// R_PPC64_REL24, which is used by unconditional branch instructions.
// 0x2000000 = (1 << 24-1) * 4
return 0x2000000;
}
bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
int64_t offset = dst - src;
if (type == R_PPC64_REL14)
return isInt<16>(offset);
if (type == R_PPC64_REL24)
return isInt<26>(offset);
llvm_unreachable("unsupported relocation type used in branch");
}
RelExpr PPC64::adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const {
if (expr == R_RELAX_TLS_GD_TO_IE)
return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
if (expr == R_RELAX_TLS_LD_TO_LE)
return R_RELAX_TLS_LD_TO_LE_ABS;
return expr;
}
// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` uses 4 instructions.
// Instruction Relocation Symbol
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
// R_PPC64_REL24 __tls_get_addr
// nop None None
//
// Relaxing to initial-exec entails:
// 1) Convert the addis/addi pair that builds the address of the tls_index
// struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
// 2) Convert the call to __tls_get_addr to a nop.
// 3) Convert the nop following the call to an add of the loaded offset to the
// thread pointer.
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
// used as the relaxation hint for both steps 2 and 3.
void PPC64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
switch (type) {
case R_PPC64_GOT_TLSGD16_HA:
// This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
// addis rT, r2, sym@got@tprel@ha.
relocateOne(loc, R_PPC64_GOT_TPREL16_HA, val);
return;
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSGD16_LO: {
// Relax from addi r3, rA, sym@got@tlsgd@l to
// ld r3, sym@got@tprel@l(rA)
uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
writeFromHalf16(loc, 0xe8600000 | ra);
relocateOne(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
return;
}
case R_PPC64_TLSGD:
write32(loc, 0x60000000); // bl __tls_get_addr(sym@tlsgd) --> nop
write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
return;
default:
llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
}
}
// The prologue for a split-stack function is expected to look roughly
// like this:
// .Lglobal_entry_point:
// # TOC pointer initialization.
// ...
// .Llocal_entry_point:
// # load the __private_ss member of the threads tcbhead.
// ld r0,-0x7000-64(r13)
// # subtract the functions stack size from the stack pointer.
// addis r12, r1, ha(-stack-frame size)
// addi r12, r12, l(-stack-frame size)
// # compare needed to actual and branch to allocate_more_stack if more
// # space is needed, otherwise fallthrough to 'normal' function body.
// cmpld cr7,r12,r0
// blt- cr7, .Lallocate_more_stack
//
// -) The allocate_more_stack block might be placed after the split-stack
// prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
// instead.
// -) If either the addis or addi is not needed due to the stack size being
// smaller then 32K or a multiple of 64K they will be replaced with a nop,
// but there will always be 2 instructions the linker can overwrite for the
// adjusted stack size.
//
// The linkers job here is to increase the stack size used in the addis/addi
// pair by split-stack-size-adjust.
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
// addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const {
// If the caller has a global entry point adjust the buffer past it. The start
// of the split-stack prologue will be at the local entry point.
loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
// At the very least we expect to see a load of some split-stack data from the
// tcb, and 2 instructions that calculate the ending stack address this
// function will require. If there is not enough room for at least 3
// instructions it can't be a split-stack prologue.
if (loc + 12 >= end)
return false;
// First instruction must be `ld r0, -0x7000-64(r13)`
if (read32(loc) != 0xe80d8fc0)
return false;
int16_t hiImm = 0;
int16_t loImm = 0;
// First instruction can be either an addis if the frame size is larger then
// 32K, or an addi if the size is less then 32K.
int32_t firstInstr = read32(loc + 4);
if (getPrimaryOpCode(firstInstr) == 15) {
hiImm = firstInstr & 0xFFFF;
} else if (getPrimaryOpCode(firstInstr) == 14) {
loImm = firstInstr & 0xFFFF;
} else {
return false;
}
// Second instruction is either an addi or a nop. If the first instruction was
// an addi then LoImm is set and the second instruction must be a nop.
uint32_t secondInstr = read32(loc + 8);
if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
loImm = secondInstr & 0xFFFF;
} else if (secondInstr != 0x60000000) {
return false;
}
// The register operands of the first instruction should be the stack-pointer
// (r1) as the input (RA) and r12 as the output (RT). If the second
// instruction is not a nop, then it should use r12 as both input and output.
auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
uint8_t expectedRA) {
return ((instr & 0x3E00000) >> 21 == expectedRT) &&
((instr & 0x1F0000) >> 16 == expectedRA);
};
if (!checkRegOperands(firstInstr, 12, 1))
return false;
if (secondInstr != 0x60000000 && !checkRegOperands(secondInstr, 12, 12))
return false;
int32_t stackFrameSize = (hiImm * 65536) + loImm;
// Check that the adjusted size doesn't overflow what we can represent with 2
// instructions.
if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
return false;
}
int32_t adjustedStackFrameSize =
stackFrameSize - config->splitStackAdjustSize;
loImm = adjustedStackFrameSize & 0xFFFF;
hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
if (hiImm) {
write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
// If the low immediate is zero the second instruction will be a nop.
secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : 0x60000000;
write32(loc + 8, secondInstr);
} else {
// addi r12, r1, imm
write32(loc + 4, (0x39810000) | (uint16_t)loImm);
write32(loc + 8, 0x60000000);
}
return true;
}
TargetInfo *getPPC64TargetInfo() {
static PPC64 target;
return ⌖
}
} // namespace elf
} // namespace lld
|