reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
//===- PPC64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

static uint64_t ppc64TocOffset = 0x8000;
static uint64_t dynamicThreadPointerOffset = 0x8000;

// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
// instructions that can be used as part of the initial exec TLS sequence.
enum XFormOpcd {
  LBZX = 87,
  LHZX = 279,
  LWZX = 23,
  LDX = 21,
  STBX = 215,
  STHX = 407,
  STWX = 151,
  STDX = 149,
  ADD = 266,
};

enum DFormOpcd {
  LBZ = 34,
  LBZU = 35,
  LHZ = 40,
  LHZU = 41,
  LHAU = 43,
  LWZ = 32,
  LWZU = 33,
  LFSU = 49,
  LD = 58,
  LFDU = 51,
  STB = 38,
  STBU = 39,
  STH = 44,
  STHU = 45,
  STW = 36,
  STWU = 37,
  STFSU = 53,
  STFDU = 55,
  STD = 62,
  ADDI = 14
};

uint64_t getPPC64TocBase() {
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
  // TOC starts where the first of these sections starts. We always create a
  // .got when we see a relocation that uses it, so for us the start is always
  // the .got.
  uint64_t tocVA = in.got->getVA();

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
  // code (crt1.o) assumes that you can get from the TOC base to the
  // start of the .toc section with only a single (signed) 16-bit relocation.
  return tocVA + ppc64TocOffset;
}

unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
  // The offset is encoded into the 3 most significant bits of the st_other
  // field, with some special values described in section 3.4.1 of the ABI:
  // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
  //         the TOC pointer (r2). r2 will hold the same value on returning from
  //         the function as it did on entering the function.
  // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
  //         caller-saved register for all callers.
  // 2-6 --> The  binary logarithm of the offset eg:
  //         2 --> 2^2 = 4 bytes -->  1 instruction.
  //         6 --> 2^6 = 64 bytes --> 16 instructions.
  // 7   --> Reserved.
  uint8_t gepToLep = (stOther >> 5) & 7;
  if (gepToLep < 2)
    return 0;

  // The value encoded in the st_other bits is the
  // log-base-2(offset).
  if (gepToLep < 7)
    return 1 << gepToLep;

  error("reserved value of 7 in the 3 most-significant-bits of st_other");
  return 0;
}

bool isPPC64SmallCodeModelTocReloc(RelType type) {
  // The only small code model relocations that access the .toc section.
  return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
}

// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
template <typename ELFT>
static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
  if (tocSec->numRelocations == 0)
    return {};

  // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
  // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
  // relocation index in most cases.
  //
  // In rare cases a TOC entry may store a constant that doesn't need an
  // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
  // points to a relocation with larger r_offset. Do a linear probe then.
  // Constants are extremely uncommon in .toc and the extra number of array
  // accesses can be seen as a small constant.
  ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
  uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
  for (;;) {
    if (relas[index].r_offset == offset) {
      Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
      return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
    }
    if (relas[index].r_offset < offset || index == 0)
      break;
    --index;
  }
  return {};
}

// When accessing a symbol defined in another translation unit, compilers
// reserve a .toc entry, allocate a local label and generate toc-indirect
// instuctions:
//
//   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
//   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
//   ld/lwa 3, 0(3)           # load the value from the address
//
//   .section .toc,"aw",@progbits
//   .LC0: .tc var[TC],var
//
// If var is defined, non-preemptable and addressable with a 32-bit signed
// offset from the toc base, the address of var can be computed by adding an
// offset to the toc base, saving a load.
//
//   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
//   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
//   ld/lwa 3, 0(3)           # load the value from the address
//
// Returns true if the relaxation is performed.
bool tryRelaxPPC64TocIndirection(RelType type, const Relocation &rel,
                                 uint8_t *bufLoc) {
  assert(config->tocOptimize);
  if (rel.addend < 0)
    return false;

  // If the symbol is not the .toc section, this isn't a toc-indirection.
  Defined *defSym = dyn_cast<Defined>(rel.sym);
  if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
    return false;

  Defined *d;
  int64_t addend;
  auto *tocISB = cast<InputSectionBase>(defSym->section);
  std::tie(d, addend) =
      config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
                   : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);

  // Only non-preemptable defined symbols can be relaxed.
  if (!d || d->isPreemptible)
    return false;

  // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
  // ifunc and changed its type to STT_FUNC.
  assert(!d->isGnuIFunc());

  // Two instructions can materialize a 32-bit signed offset from the toc base.
  uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
  if (!isInt<32>(tocRelative))
    return false;

  // Add PPC64TocOffset that will be subtracted by relocateOne().
  target->relaxGot(bufLoc, type, tocRelative + ppc64TocOffset);
  return true;
}

namespace {
class PPC64 final : public TargetInfo {
public:
  PPC64();
  int getTlsGdRelaxSkip(RelType type) const override;
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
                int32_t index, unsigned relOff) const override;
  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
  void writeGotHeader(uint8_t *buf) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
                          RelExpr expr) const override;
  void relaxGot(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;

  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                        uint8_t stOther) const override;
};
} // namespace

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t lo(uint64_t v) { return v; }
static uint16_t hi(uint64_t v) { return v >> 16; }
static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
static uint16_t higher(uint64_t v) { return v >> 32; }
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
static uint16_t highest(uint64_t v) { return v >> 48; }
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }

// Extracts the 'PO' field of an instruction encoding.
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }

static bool isDQFormInstruction(uint32_t encoding) {
  switch (getPrimaryOpCode(encoding)) {
  default:
    return false;
  case 56:
    // The only instruction with a primary opcode of 56 is `lq`.
    return true;
  case 61:
    // There are both DS and DQ instruction forms with this primary opcode.
    // Namely `lxv` and `stxv` are the DQ-forms that use it.
    // The DS 'XO' bits being set to 01 is restricted to DQ form.
    return (encoding & 3) == 0x1;
  }
}

static bool isInstructionUpdateForm(uint32_t encoding) {
  switch (getPrimaryOpCode(encoding)) {
  default:
    return false;
  case LBZU:
  case LHAU:
  case LHZU:
  case LWZU:
  case LFSU:
  case LFDU:
  case STBU:
  case STHU:
  case STWU:
  case STFSU:
  case STFDU:
    return true;
    // LWA has the same opcode as LD, and the DS bits is what differentiates
    // between LD/LDU/LWA
  case LD:
  case STD:
    return (encoding & 3) == 1;
  }
}

// There are a number of places when we either want to read or write an
// instruction when handling a half16 relocation type. On big-endian the buffer
// pointer is pointing into the middle of the word we want to extract, and on
// little-endian it is pointing to the start of the word. These 2 helpers are to
// simplify reading and writing in that context.
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
  write32(config->isLE ? loc : loc - 2, insn);
}

static uint32_t readFromHalf16(const uint8_t *loc) {
  return read32(config->isLE ? loc : loc - 2);
}

PPC64::PPC64() {
  gotRel = R_PPC64_GLOB_DAT;
  noneRel = R_PPC64_NONE;
  pltRel = R_PPC64_JMP_SLOT;
  relativeRel = R_PPC64_RELATIVE;
  iRelativeRel = R_PPC64_IRELATIVE;
  symbolicRel = R_PPC64_ADDR64;
  pltEntrySize = 4;
  gotBaseSymInGotPlt = false;
  gotHeaderEntriesNum = 1;
  gotPltHeaderEntriesNum = 2;
  pltHeaderSize = 60;
  needsThunks = true;

  tlsModuleIndexRel = R_PPC64_DTPMOD64;
  tlsOffsetRel = R_PPC64_DTPREL64;

  tlsGotRel = R_PPC64_TPREL64;

  needsMoreStackNonSplit = false;

  // We need 64K pages (at least under glibc/Linux, the loader won't
  // set different permissions on a finer granularity than that).
  defaultMaxPageSize = 65536;

  // The PPC64 ELF ABI v1 spec, says:
  //
  //   It is normally desirable to put segments with different characteristics
  //   in separate 256 Mbyte portions of the address space, to give the
  //   operating system full paging flexibility in the 64-bit address space.
  //
  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
  // use 0x10000000 as the starting address.
  defaultImageBase = 0x10000000;

  write32(trapInstr.data(), 0x7fe00008);
}

int PPC64::getTlsGdRelaxSkip(RelType type) const {
  // A __tls_get_addr call instruction is marked with 2 relocations:
  //
  //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
  //   R_PPC64_REL24: __tls_get_addr
  //
  // After the relaxation we no longer call __tls_get_addr and should skip both
  // relocations to not create a false dependence on __tls_get_addr being
  // defined.
  if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
    return 2;
  return 1;
}

static uint32_t getEFlags(InputFile *file) {
  if (config->ekind == ELF64BEKind)
    return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader()->e_flags;
  return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader()->e_flags;
}

// This file implements v2 ABI. This function makes sure that all
// object files have v2 or an unspecified version as an ABI version.
uint32_t PPC64::calcEFlags() const {
  for (InputFile *f : objectFiles) {
    uint32_t flag = getEFlags(f);
    if (flag == 1)
      error(toString(f) + ": ABI version 1 is not supported");
    else if (flag > 2)
      error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
  }
  return 2;
}

void PPC64::relaxGot(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_PPC64_TOC16_HA:
    // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
    relocateOne(loc, type, val);
    break;
  case R_PPC64_TOC16_LO_DS: {
    // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
    // "addi reg, 2, var@toc".
    uint32_t insn = readFromHalf16(loc);
    if (getPrimaryOpCode(insn) != LD)
      error("expected a 'ld' for got-indirect to toc-relative relaxing");
    writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
    relocateOne(loc, R_PPC64_TOC16_LO, val);
    break;
  }
  default:
    llvm_unreachable("unexpected relocation type");
  }
}

void PPC64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
  // The general dynamic code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
  // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
  //                                R_PPC64_REL24               __tls_get_addr
  // nop                            None                       None

  // Relaxing to local exec entails converting:
  // addis r3, r2, x@got@tlsgd@ha    into      nop
  // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
  // bl __tls_get_addr(x@tlsgd)      into      nop
  // nop                             into      addi r3, r3, x@tprel@l

  switch (type) {
  case R_PPC64_GOT_TLSGD16_HA:
    writeFromHalf16(loc, 0x60000000); // nop
    break;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_LO:
    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
    relocateOne(loc, R_PPC64_TPREL16_HA, val);
    break;
  case R_PPC64_TLSGD:
    write32(loc, 0x60000000);     // nop
    write32(loc + 4, 0x38630000); // addi r3, r3
    // Since we are relocating a half16 type relocation and Loc + 4 points to
    // the start of an instruction we need to advance the buffer by an extra
    // 2 bytes on BE.
    relocateOne(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
                R_PPC64_TPREL16_LO, val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void PPC64::relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
  // The local dynamic code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
  // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
  //                                R_PPC64_REL24               __tls_get_addr
  // nop                            None                       None

  // Relaxing to local exec entails converting:
  // addis r3, r2, x@got@tlsld@ha   into      nop
  // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
  // bl __tls_get_addr(x@tlsgd)     into      nop
  // nop                            into      addi r3, r3, 4096

  switch (type) {
  case R_PPC64_GOT_TLSLD16_HA:
    writeFromHalf16(loc, 0x60000000); // nop
    break;
  case R_PPC64_GOT_TLSLD16_LO:
    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
    break;
  case R_PPC64_TLSLD:
    write32(loc, 0x60000000);     // nop
    write32(loc + 4, 0x38631000); // addi r3, r3, 4096
    break;
  case R_PPC64_DTPREL16:
  case R_PPC64_DTPREL16_HA:
  case R_PPC64_DTPREL16_HI:
  case R_PPC64_DTPREL16_DS:
  case R_PPC64_DTPREL16_LO:
  case R_PPC64_DTPREL16_LO_DS:
    relocateOne(loc, type, val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
  }
}

unsigned getPPCDFormOp(unsigned secondaryOp) {
  switch (secondaryOp) {
  case LBZX:
    return LBZ;
  case LHZX:
    return LHZ;
  case LWZX:
    return LWZ;
  case LDX:
    return LD;
  case STBX:
    return STB;
  case STHX:
    return STH;
  case STWX:
    return STW;
  case STDX:
    return STD;
  case ADD:
    return ADDI;
  default:
    return 0;
  }
}

void PPC64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
  // The initial exec code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
  // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
  // add r9, r9, x@tls              R_PPC64_TLS                 x

  // Relaxing to local exec entails converting:
  // addis r9, r2, x@got@tprel@ha       into        nop
  // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
  // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l

  // x@tls R_PPC64_TLS is a relocation which does not compute anything,
  // it is replaced with r13 (thread pointer).

  // The add instruction in the initial exec sequence has multiple variations
  // that need to be handled. If we are building an address it will use an add
  // instruction, if we are accessing memory it will use any of the X-form
  // indexed load or store instructions.

  unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
  switch (type) {
  case R_PPC64_GOT_TPREL16_HA:
    write32(loc - offset, 0x60000000); // nop
    break;
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_TPREL16_DS: {
    uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
    write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
    relocateOne(loc, R_PPC64_TPREL16_HA, val);
    break;
  }
  case R_PPC64_TLS: {
    uint32_t primaryOp = getPrimaryOpCode(read32(loc));
    if (primaryOp != 31)
      error("unrecognized instruction for IE to LE R_PPC64_TLS");
    uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
    uint32_t dFormOp = getPPCDFormOp(secondaryOp);
    if (dFormOp == 0)
      error("unrecognized instruction for IE to LE R_PPC64_TLS");
    write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
    relocateOne(loc + offset, R_PPC64_TPREL16_LO, val);
    break;
  }
  default:
    llvm_unreachable("unknown relocation for IE to LE");
    break;
  }
}

RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
                          const uint8_t *loc) const {
  switch (type) {
  case R_PPC64_NONE:
    return R_NONE;
  case R_PPC64_ADDR16:
  case R_PPC64_ADDR16_DS:
  case R_PPC64_ADDR16_HA:
  case R_PPC64_ADDR16_HI:
  case R_PPC64_ADDR16_HIGHER:
  case R_PPC64_ADDR16_HIGHERA:
  case R_PPC64_ADDR16_HIGHEST:
  case R_PPC64_ADDR16_HIGHESTA:
  case R_PPC64_ADDR16_LO:
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_ADDR32:
  case R_PPC64_ADDR64:
    return R_ABS;
  case R_PPC64_GOT16:
  case R_PPC64_GOT16_DS:
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT16_LO_DS:
    return R_GOT_OFF;
  case R_PPC64_TOC16:
  case R_PPC64_TOC16_DS:
  case R_PPC64_TOC16_HI:
  case R_PPC64_TOC16_LO:
    return R_GOTREL;
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_LO_DS:
    return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
  case R_PPC64_TOC:
    return R_PPC64_TOCBASE;
  case R_PPC64_REL14:
  case R_PPC64_REL24:
    return R_PPC64_CALL_PLT;
  case R_PPC64_REL16_LO:
  case R_PPC64_REL16_HA:
  case R_PPC64_REL16_HI:
  case R_PPC64_REL32:
  case R_PPC64_REL64:
    return R_PC;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_HA:
  case R_PPC64_GOT_TLSGD16_HI:
  case R_PPC64_GOT_TLSGD16_LO:
    return R_TLSGD_GOT;
  case R_PPC64_GOT_TLSLD16:
  case R_PPC64_GOT_TLSLD16_HA:
  case R_PPC64_GOT_TLSLD16_HI:
  case R_PPC64_GOT_TLSLD16_LO:
    return R_TLSLD_GOT;
  case R_PPC64_GOT_TPREL16_HA:
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_TPREL16_DS:
  case R_PPC64_GOT_TPREL16_HI:
    return R_GOT_OFF;
  case R_PPC64_GOT_DTPREL16_HA:
  case R_PPC64_GOT_DTPREL16_LO_DS:
  case R_PPC64_GOT_DTPREL16_DS:
  case R_PPC64_GOT_DTPREL16_HI:
    return R_TLSLD_GOT_OFF;
  case R_PPC64_TPREL16:
  case R_PPC64_TPREL16_HA:
  case R_PPC64_TPREL16_LO:
  case R_PPC64_TPREL16_HI:
  case R_PPC64_TPREL16_DS:
  case R_PPC64_TPREL16_LO_DS:
  case R_PPC64_TPREL16_HIGHER:
  case R_PPC64_TPREL16_HIGHERA:
  case R_PPC64_TPREL16_HIGHEST:
  case R_PPC64_TPREL16_HIGHESTA:
    return R_TLS;
  case R_PPC64_DTPREL16:
  case R_PPC64_DTPREL16_DS:
  case R_PPC64_DTPREL16_HA:
  case R_PPC64_DTPREL16_HI:
  case R_PPC64_DTPREL16_HIGHER:
  case R_PPC64_DTPREL16_HIGHERA:
  case R_PPC64_DTPREL16_HIGHEST:
  case R_PPC64_DTPREL16_HIGHESTA:
  case R_PPC64_DTPREL16_LO:
  case R_PPC64_DTPREL16_LO_DS:
  case R_PPC64_DTPREL64:
    return R_DTPREL;
  case R_PPC64_TLSGD:
    return R_TLSDESC_CALL;
  case R_PPC64_TLSLD:
    return R_TLSLD_HINT;
  case R_PPC64_TLS:
    return R_TLSIE_HINT;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

RelType PPC64::getDynRel(RelType type) const {
  if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
    return R_PPC64_ADDR64;
  return R_PPC64_NONE;
}

void PPC64::writeGotHeader(uint8_t *buf) const {
  write64(buf, getPPC64TocBase());
}

void PPC64::writePltHeader(uint8_t *buf) const {
  // The generic resolver stub goes first.
  write32(buf +  0, 0x7c0802a6); // mflr r0
  write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
  write32(buf +  8, 0x7d6802a6); // mflr r11
  write32(buf + 12, 0x7c0803a6); // mtlr r0
  write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
  write32(buf + 20, 0x380cffcc); // subi r0,r12,52
  write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
  write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
  write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
  write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
  write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
  write32(buf + 44, 0x7d8903a6); // mtctr   r12
  write32(buf + 48, 0x4e800420); // bctr

  // The 'bcl' instruction will set the link register to the address of the
  // following instruction ('mflr r11'). Here we store the offset from that
  // instruction  to the first entry in the GotPlt section.
  int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
  write64(buf + 52, gotPltOffset);
}

void PPC64::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
                     uint64_t pltEntryAddr, int32_t index,
                     unsigned relOff) const {
  int32_t offset = pltHeaderSize + index * pltEntrySize;
  // bl __glink_PLTresolve
  write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
}

static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
  // Relocations relative to the toc-base need to be adjusted by the Toc offset.
  uint64_t tocBiasedVal = val - ppc64TocOffset;
  // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
  uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;

  switch (type) {
  // TOC biased relocation.
  case R_PPC64_GOT16:
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSLD16:
  case R_PPC64_TOC16:
    return {R_PPC64_ADDR16, tocBiasedVal};
  case R_PPC64_GOT16_DS:
  case R_PPC64_TOC16_DS:
  case R_PPC64_GOT_TPREL16_DS:
  case R_PPC64_GOT_DTPREL16_DS:
    return {R_PPC64_ADDR16_DS, tocBiasedVal};
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT_TLSGD16_HA:
  case R_PPC64_GOT_TLSLD16_HA:
  case R_PPC64_GOT_TPREL16_HA:
  case R_PPC64_GOT_DTPREL16_HA:
  case R_PPC64_TOC16_HA:
    return {R_PPC64_ADDR16_HA, tocBiasedVal};
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT_TLSGD16_HI:
  case R_PPC64_GOT_TLSLD16_HI:
  case R_PPC64_GOT_TPREL16_HI:
  case R_PPC64_GOT_DTPREL16_HI:
  case R_PPC64_TOC16_HI:
    return {R_PPC64_ADDR16_HI, tocBiasedVal};
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT_TLSGD16_LO:
  case R_PPC64_GOT_TLSLD16_LO:
  case R_PPC64_TOC16_LO:
    return {R_PPC64_ADDR16_LO, tocBiasedVal};
  case R_PPC64_GOT16_LO_DS:
  case R_PPC64_TOC16_LO_DS:
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_DTPREL16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};

  // Dynamic Thread pointer biased relocation types.
  case R_PPC64_DTPREL16:
    return {R_PPC64_ADDR16, dtpBiasedVal};
  case R_PPC64_DTPREL16_DS:
    return {R_PPC64_ADDR16_DS, dtpBiasedVal};
  case R_PPC64_DTPREL16_HA:
    return {R_PPC64_ADDR16_HA, dtpBiasedVal};
  case R_PPC64_DTPREL16_HI:
    return {R_PPC64_ADDR16_HI, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHER:
    return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHERA:
    return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHEST:
    return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHESTA:
    return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
  case R_PPC64_DTPREL16_LO:
    return {R_PPC64_ADDR16_LO, dtpBiasedVal};
  case R_PPC64_DTPREL16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
  case R_PPC64_DTPREL64:
    return {R_PPC64_ADDR64, dtpBiasedVal};

  default:
    return {type, val};
  }
}

static bool isTocOptType(RelType type) {
  switch (type) {
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_LO_DS:
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_LO_DS:
  case R_PPC64_TOC16_LO:
    return true;
  default:
    return false;
  }
}

void PPC64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
  // We need to save the original relocation type to use in diagnostics, and
  // use the original type to determine if we should toc-optimize the
  // instructions being relocated.
  RelType originalType = type;
  bool shouldTocOptimize =  isTocOptType(type);
  // For dynamic thread pointer relative, toc-relative, and got-indirect
  // relocations, proceed in terms of the corresponding ADDR16 relocation type.
  std::tie(type, val) = toAddr16Rel(type, val);

  switch (type) {
  case R_PPC64_ADDR14: {
    checkAlignment(loc, val, 4, type);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = loc[3];
    write16(loc + 2, (aalk & 3) | (val & 0xfffc));
    break;
  }
  case R_PPC64_ADDR16:
    checkIntUInt(loc, val, 16, originalType);
    write16(loc, val);
    break;
  case R_PPC64_ADDR32:
    checkIntUInt(loc, val, 32, originalType);
    write32(loc, val);
    break;
  case R_PPC64_ADDR16_DS:
  case R_PPC64_TPREL16_DS: {
    checkInt(loc, val, 16, originalType);
    // DQ-form instructions use bits 28-31 as part of the instruction encoding
    // DS-form instructions only use bits 30-31.
    uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
    checkAlignment(loc, lo(val), mask + 1, originalType);
    write16(loc, (read16(loc) & mask) | lo(val));
  } break;
  case R_PPC64_ADDR16_HA:
  case R_PPC64_REL16_HA:
  case R_PPC64_TPREL16_HA:
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
      writeFromHalf16(loc, 0x60000000);
    else
      write16(loc, ha(val));
    break;
  case R_PPC64_ADDR16_HI:
  case R_PPC64_REL16_HI:
  case R_PPC64_TPREL16_HI:
    write16(loc, hi(val));
    break;
  case R_PPC64_ADDR16_HIGHER:
  case R_PPC64_TPREL16_HIGHER:
    write16(loc, higher(val));
    break;
  case R_PPC64_ADDR16_HIGHERA:
  case R_PPC64_TPREL16_HIGHERA:
    write16(loc, highera(val));
    break;
  case R_PPC64_ADDR16_HIGHEST:
  case R_PPC64_TPREL16_HIGHEST:
    write16(loc, highest(val));
    break;
  case R_PPC64_ADDR16_HIGHESTA:
  case R_PPC64_TPREL16_HIGHESTA:
    write16(loc, highesta(val));
    break;
  case R_PPC64_ADDR16_LO:
  case R_PPC64_REL16_LO:
  case R_PPC64_TPREL16_LO:
    // When the high-adjusted part of a toc relocation evaluates to 0, it is
    // changed into a nop. The lo part then needs to be updated to use the
    // toc-pointer register r2, as the base register.
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
      uint32_t insn = readFromHalf16(loc);
      if (isInstructionUpdateForm(insn))
        error(getErrorLocation(loc) +
              "can't toc-optimize an update instruction: 0x" +
              utohexstr(insn));
      writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
    } else {
      write16(loc, lo(val));
    }
    break;
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_TPREL16_LO_DS: {
    // DQ-form instructions use bits 28-31 as part of the instruction encoding
    // DS-form instructions only use bits 30-31.
    uint32_t insn = readFromHalf16(loc);
    uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
    checkAlignment(loc, lo(val), mask + 1, originalType);
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
      // When the high-adjusted part of a toc relocation evaluates to 0, it is
      // changed into a nop. The lo part then needs to be updated to use the toc
      // pointer register r2, as the base register.
      if (isInstructionUpdateForm(insn))
        error(getErrorLocation(loc) +
              "Can't toc-optimize an update instruction: 0x" +
              Twine::utohexstr(insn));
      insn &= 0xffe00000 | mask;
      writeFromHalf16(loc, insn | 0x00020000 | lo(val));
    } else {
      write16(loc, (read16(loc) & mask) | lo(val));
    }
  } break;
  case R_PPC64_TPREL16:
    checkInt(loc, val, 16, originalType);
    write16(loc, val);
    break;
  case R_PPC64_REL32:
    checkInt(loc, val, 32, type);
    write32(loc, val);
    break;
  case R_PPC64_ADDR64:
  case R_PPC64_REL64:
  case R_PPC64_TOC:
    write64(loc, val);
    break;
  case R_PPC64_REL14: {
    uint32_t mask = 0x0000FFFC;
    checkInt(loc, val, 16, type);
    checkAlignment(loc, val, 4, type);
    write32(loc, (read32(loc) & ~mask) | (val & mask));
    break;
  }
  case R_PPC64_REL24: {
    uint32_t mask = 0x03FFFFFC;
    checkInt(loc, val, 26, type);
    checkAlignment(loc, val, 4, type);
    write32(loc, (read32(loc) & ~mask) | (val & mask));
    break;
  }
  case R_PPC64_DTPREL64:
    write64(loc, val - dynamicThreadPointerOffset);
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                       uint64_t branchAddr, const Symbol &s) const {
  if (type != R_PPC64_REL14 && type != R_PPC64_REL24)
    return false;

  // If a function is in the Plt it needs to be called with a call-stub.
  if (s.isInPlt())
    return true;

  // If a symbol is a weak undefined and we are compiling an executable
  // it doesn't need a range-extending thunk since it can't be called.
  if (s.isUndefWeak() && !config->shared)
    return false;

  // If the offset exceeds the range of the branch type then it will need
  // a range-extending thunk.
  // See the comment in getRelocTargetVA() about R_PPC64_CALL.
  return !inBranchRange(type, branchAddr,
                        s.getVA() +
                            getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
}

uint32_t PPC64::getThunkSectionSpacing() const {
  // See comment in Arch/ARM.cpp for a more detailed explanation of
  // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
  // R_PPC64_REL24, which is used by unconditional branch instructions.
  // 0x2000000 = (1 << 24-1) * 4
  return 0x2000000;
}

bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  int64_t offset = dst - src;
  if (type == R_PPC64_REL14)
    return isInt<16>(offset);
  if (type == R_PPC64_REL24)
    return isInt<26>(offset);
  llvm_unreachable("unsupported relocation type used in branch");
}

RelExpr PPC64::adjustRelaxExpr(RelType type, const uint8_t *data,
                               RelExpr expr) const {
  if (expr == R_RELAX_TLS_GD_TO_IE)
    return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
  if (expr == R_RELAX_TLS_LD_TO_LE)
    return R_RELAX_TLS_LD_TO_LE_ABS;
  return expr;
}

// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` uses 4 instructions.
// Instruction                    Relocation                Symbol
// addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
// addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
// bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
//                                R_PPC64_REL24               __tls_get_addr
// nop                            None                       None
//
// Relaxing to initial-exec entails:
// 1) Convert the addis/addi pair that builds the address of the tls_index
//    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
// 2) Convert the call to __tls_get_addr to a nop.
// 3) Convert the nop following the call to an add of the loaded offset to the
//    thread pointer.
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
// used as the relaxation hint for both steps 2 and 3.
void PPC64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_PPC64_GOT_TLSGD16_HA:
    // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
    //                      addis rT, r2, sym@got@tprel@ha.
    relocateOne(loc, R_PPC64_GOT_TPREL16_HA, val);
    return;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_LO: {
    // Relax from addi  r3, rA, sym@got@tlsgd@l to
    //            ld r3, sym@got@tprel@l(rA)
    uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
    writeFromHalf16(loc, 0xe8600000 | ra);
    relocateOne(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
    return;
  }
  case R_PPC64_TLSGD:
    write32(loc, 0x60000000);     // bl __tls_get_addr(sym@tlsgd) --> nop
    write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
    return;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
  }
}

// The prologue for a split-stack function is expected to look roughly
// like this:
//    .Lglobal_entry_point:
//      # TOC pointer initialization.
//      ...
//    .Llocal_entry_point:
//      # load the __private_ss member of the threads tcbhead.
//      ld r0,-0x7000-64(r13)
//      # subtract the functions stack size from the stack pointer.
//      addis r12, r1, ha(-stack-frame size)
//      addi  r12, r12, l(-stack-frame size)
//      # compare needed to actual and branch to allocate_more_stack if more
//      # space is needed, otherwise fallthrough to 'normal' function body.
//      cmpld cr7,r12,r0
//      blt- cr7, .Lallocate_more_stack
//
// -) The allocate_more_stack block might be placed after the split-stack
//    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
//    instead.
// -) If either the addis or addi is not needed due to the stack size being
//    smaller then 32K or a multiple of 64K they will be replaced with a nop,
//    but there will always be 2 instructions the linker can overwrite for the
//    adjusted stack size.
//
// The linkers job here is to increase the stack size used in the addis/addi
// pair by split-stack-size-adjust.
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
// addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                             uint8_t stOther) const {
  // If the caller has a global entry point adjust the buffer past it. The start
  // of the split-stack prologue will be at the local entry point.
  loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);

  // At the very least we expect to see a load of some split-stack data from the
  // tcb, and 2 instructions that calculate the ending stack address this
  // function will require. If there is not enough room for at least 3
  // instructions it can't be a split-stack prologue.
  if (loc + 12 >= end)
    return false;

  // First instruction must be `ld r0, -0x7000-64(r13)`
  if (read32(loc) != 0xe80d8fc0)
    return false;

  int16_t hiImm = 0;
  int16_t loImm = 0;
  // First instruction can be either an addis if the frame size is larger then
  // 32K, or an addi if the size is less then 32K.
  int32_t firstInstr = read32(loc + 4);
  if (getPrimaryOpCode(firstInstr) == 15) {
    hiImm = firstInstr & 0xFFFF;
  } else if (getPrimaryOpCode(firstInstr) == 14) {
    loImm = firstInstr & 0xFFFF;
  } else {
    return false;
  }

  // Second instruction is either an addi or a nop. If the first instruction was
  // an addi then LoImm is set and the second instruction must be a nop.
  uint32_t secondInstr = read32(loc + 8);
  if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
    loImm = secondInstr & 0xFFFF;
  } else if (secondInstr != 0x60000000) {
    return false;
  }

  // The register operands of the first instruction should be the stack-pointer
  // (r1) as the input (RA) and r12 as the output (RT). If the second
  // instruction is not a nop, then it should use r12 as both input and output.
  auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
                             uint8_t expectedRA) {
    return ((instr & 0x3E00000) >> 21 == expectedRT) &&
           ((instr & 0x1F0000) >> 16 == expectedRA);
  };
  if (!checkRegOperands(firstInstr, 12, 1))
    return false;
  if (secondInstr != 0x60000000 && !checkRegOperands(secondInstr, 12, 12))
    return false;

  int32_t stackFrameSize = (hiImm * 65536) + loImm;
  // Check that the adjusted size doesn't overflow what we can represent with 2
  // instructions.
  if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
    error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
    return false;
  }

  int32_t adjustedStackFrameSize =
      stackFrameSize - config->splitStackAdjustSize;

  loImm = adjustedStackFrameSize & 0xFFFF;
  hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
  if (hiImm) {
    write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
    // If the low immediate is zero the second instruction will be a nop.
    secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : 0x60000000;
    write32(loc + 8, secondInstr);
  } else {
    // addi r12, r1, imm
    write32(loc + 4, (0x39810000) | (uint16_t)loImm);
    write32(loc + 8, 0x60000000);
  }

  return true;
}

TargetInfo *getPPC64TargetInfo() {
  static PPC64 target;
  return &target;
}

} // namespace elf
} // namespace lld