reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
//===- CallGraphSort.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Implementation of Call-Chain Clustering from: Optimizing Function Placement
/// for Large-Scale Data-Center Applications
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
///
/// The goal of this algorithm is to improve runtime performance of the final
/// executable by arranging code sections such that page table and i-cache
/// misses are minimized.
///
/// Definitions:
/// * Cluster
///   * An ordered list of input sections which are laid out as a unit. At the
///     beginning of the algorithm each input section has its own cluster and
///     the weight of the cluster is the sum of the weight of all incoming
///     edges.
/// * Call-Chain Clustering (C³) Heuristic
///   * Defines when and how clusters are combined. Pick the highest weighted
///     input section then add it to its most likely predecessor if it wouldn't
///     penalize it too much.
/// * Density
///   * The weight of the cluster divided by the size of the cluster. This is a
///     proxy for the amount of execution time spent per byte of the cluster.
///
/// It does so given a call graph profile by the following:
/// * Build a weighted call graph from the call graph profile
/// * Sort input sections by weight
/// * For each input section starting with the highest weight
///   * Find its most likely predecessor cluster
///   * Check if the combined cluster would be too large, or would have too low
///     a density.
///   * If not, then combine the clusters.
/// * Sort non-empty clusters by density
///
//===----------------------------------------------------------------------===//

#include "CallGraphSort.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"

#include <numeric>

using namespace llvm;

namespace lld {
namespace elf {

namespace {
struct Edge {
  int from;
  uint64_t weight;
};

struct Cluster {
  Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}

  double getDensity() const {
    if (size == 0)
      return 0;
    return double(weight) / double(size);
  }

  int next;
  int prev;
  size_t size = 0;
  uint64_t weight = 0;
  uint64_t initialWeight = 0;
  Edge bestPred = {-1, 0};
};

class CallGraphSort {
public:
  CallGraphSort();

  DenseMap<const InputSectionBase *, int> run();

private:
  std::vector<Cluster> clusters;
  std::vector<const InputSectionBase *> sections;
};

// Maximum amount the combined cluster density can be worse than the original
// cluster to consider merging.
constexpr int MAX_DENSITY_DEGRADATION = 8;

// Maximum cluster size in bytes.
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
} // end anonymous namespace

using SectionPair =
    std::pair<const InputSectionBase *, const InputSectionBase *>;

// Take the edge list in Config->CallGraphProfile, resolve symbol names to
// Symbols, and generate a graph between InputSections with the provided
// weights.
CallGraphSort::CallGraphSort() {
  MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
  DenseMap<const InputSectionBase *, int> secToCluster;

  auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
    auto res = secToCluster.try_emplace(isec, clusters.size());
    if (res.second) {
      sections.push_back(isec);
      clusters.emplace_back(clusters.size(), isec->getSize());
    }
    return res.first->second;
  };

  // Create the graph.
  for (std::pair<SectionPair, uint64_t> &c : profile) {
    const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
    const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
    uint64_t weight = c.second;

    // Ignore edges between input sections belonging to different output
    // sections.  This is done because otherwise we would end up with clusters
    // containing input sections that can't actually be placed adjacently in the
    // output.  This messes with the cluster size and density calculations.  We
    // would also end up moving input sections in other output sections without
    // moving them closer to what calls them.
    if (fromSB->getOutputSection() != toSB->getOutputSection())
      continue;

    int from = getOrCreateNode(fromSB);
    int to = getOrCreateNode(toSB);

    clusters[to].weight += weight;

    if (from == to)
      continue;

    // Remember the best edge.
    Cluster &toC = clusters[to];
    if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
      toC.bestPred.from = from;
      toC.bestPred.weight = weight;
    }
  }
  for (Cluster &c : clusters)
    c.initialWeight = c.weight;
}

// It's bad to merge clusters which would degrade the density too much.
static bool isNewDensityBad(Cluster &a, Cluster &b) {
  double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
  return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
}

// Find the leader of V's belonged cluster (represented as an equivalence
// class). We apply union-find path-halving technique (simple to implement) in
// the meantime as it decreases depths and the time complexity.
static int getLeader(std::vector<int> &leaders, int v) {
  while (leaders[v] != v) {
    leaders[v] = leaders[leaders[v]];
    v = leaders[v];
  }
  return v;
}

static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
                          Cluster &from, int fromIdx) {
  int tail1 = into.prev, tail2 = from.prev;
  into.prev = tail2;
  cs[tail2].next = intoIdx;
  from.prev = tail1;
  cs[tail1].next = fromIdx;
  into.size += from.size;
  into.weight += from.weight;
  from.size = 0;
  from.weight = 0;
}

// Group InputSections into clusters using the Call-Chain Clustering heuristic
// then sort the clusters by density.
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
  std::vector<int> sorted(clusters.size());
  std::vector<int> leaders(clusters.size());

  std::iota(leaders.begin(), leaders.end(), 0);
  std::iota(sorted.begin(), sorted.end(), 0);
  llvm::stable_sort(sorted, [&](int a, int b) {
    return clusters[a].getDensity() > clusters[b].getDensity();
  });

  for (int l : sorted) {
    // The cluster index is the same as the index of its leader here because
    // clusters[L] has not been merged into another cluster yet.
    Cluster &c = clusters[l];

    // Don't consider merging if the edge is unlikely.
    if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
      continue;

    int predL = getLeader(leaders, c.bestPred.from);
    if (l == predL)
      continue;

    Cluster *predC = &clusters[predL];
    if (c.size + predC->size > MAX_CLUSTER_SIZE)
      continue;

    if (isNewDensityBad(*predC, c))
      continue;

    leaders[l] = predL;
    mergeClusters(clusters, *predC, predL, c, l);
  }

  // Sort remaining non-empty clusters by density.
  sorted.clear();
  for (int i = 0, e = (int)clusters.size(); i != e; ++i)
    if (clusters[i].size > 0)
      sorted.push_back(i);
  llvm::stable_sort(sorted, [&](int a, int b) {
    return clusters[a].getDensity() > clusters[b].getDensity();
  });

  DenseMap<const InputSectionBase *, int> orderMap;
  int curOrder = 1;
  for (int leader : sorted)
    for (int i = leader;;) {
      orderMap[sections[i]] = curOrder++;
      i = clusters[i].next;
      if (i == leader)
        break;
    }

  if (!config->printSymbolOrder.empty()) {
    std::error_code ec;
    raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
    if (ec) {
      error("cannot open " + config->printSymbolOrder + ": " + ec.message());
      return orderMap;
    }

    // Print the symbols ordered by C3, in the order of increasing curOrder
    // Instead of sorting all the orderMap, just repeat the loops above.
    for (int leader : sorted)
      for (int i = leader;;) {
        // Search all the symbols in the file of the section
        // and find out a Defined symbol with name that is within the section.
        for (Symbol *sym : sections[i]->file->getSymbols())
          if (!sym->isSection()) // Filter out section-type symbols here.
            if (auto *d = dyn_cast<Defined>(sym))
              if (sections[i] == d->section)
                os << sym->getName() << "\n";
        i = clusters[i].next;
        if (i == leader)
          break;
      }
  }

  return orderMap;
}

// Sort sections by the profile data provided by -callgraph-profile-file
//
// This first builds a call graph based on the profile data then merges sections
// according to the C³ huristic. All clusters are then sorted by a density
// metric to further improve locality.
DenseMap<const InputSectionBase *, int> computeCallGraphProfileOrder() {
  return CallGraphSort().run();
}

} // namespace elf
} // namespace lld