reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
//===- ARMErrataFix.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around the
// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
// can result in an incorrect instruction fetch or processor deadlock." The
// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
// Cortex-A8. A high level description of the patching technique is given in
// the opening comment of AArch64ErrataFix.cpp.
//===----------------------------------------------------------------------===//

#include "ARMErrataFix.h"

#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;

namespace lld {
namespace elf {

// The documented title for Erratum 657417 is:
// "A 32bit branch instruction that spans two 4K regions can result in an
// incorrect instruction fetch or processor deadlock". Graphically using a
// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
// xxxxxx000 // Memory region 1 start
// target:
// ...
// xxxxxxffe f7fe // First halfword of branch to target:
// xxxxxx000 // Memory region 2 start
// xxxxxx002 bfff // Second halfword of branch to target:
//
// The specific trigger conditions that can be detected at link time are:
// - There is a 32-bit Thumb-2 branch instruction with an address of the form
//   xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
//   second 2 bytes are in region 2.
// - The branch instruction is one of BLX, BL, B.w BCC.w
// - The instruction preceding the branch is a 32-bit non-branch instruction.
// - The target of the branch is in region 1.
//
// The linker mitigation for the fix is to redirect any branch that meets the
// erratum conditions to a patch section containing a branch to the target.
//
// As adding patch sections may move branches onto region boundaries the patch
// must iterate until no more patches are added.
//
// Example, before:
// 00000FFA func: NOP.w      // 32-bit Thumb function
// 00000FFE       B.W func   // 32-bit branch spanning 2 regions, dest in 1st.
// Example, after:
// 00000FFA func: NOP.w      // 32-bit Thumb function
// 00000FFE       B.w __CortexA8657417_00000FFE
// 00001002       2 - bytes padding
// 00001004 __CortexA8657417_00000FFE: B.w func

class Patch657417Section : public SyntheticSection {
public:
  Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);

  void writeTo(uint8_t *buf) override;

  size_t getSize() const override { return 4; }

  // Get the virtual address of the branch instruction at patcheeOffset.
  uint64_t getBranchAddr() const;

  // The Section we are patching.
  const InputSection *patchee;
  // The offset of the instruction in the Patchee section we are patching.
  uint64_t patcheeOffset;
  // A label for the start of the Patch that we can use as a relocation target.
  Symbol *patchSym;
  // A decoding of the branch instruction at patcheeOffset.
  uint32_t instr;
  // True If the patch is to be written in ARM state, otherwise the patch will
  // be written in Thumb state.
  bool isARM;
};

// Return true if the half-word, when taken as the first of a pair of halfwords
// is the first half of a 32-bit instruction.
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3: 32-bit Thumb instruction encoding
// |             HW1                   |               HW2                |
// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op|           x (15)              |
// With op1 == 0b00, a 16-bit instruction is encoded.
//
// We test only the first halfword, looking for op != 0b00.
static bool is32bitInstruction(uint16_t hw) {
  return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
}

// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3.4 Branches and miscellaneous control.
// |             HW1              |               HW2                |
// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
// op1 == 0x1               | Branch (B.W)
// op1 == 1x0               | Branch with Link and Exchange (BLX.w)
// op1 == 1x1               | Branch with Link (BL.W)

static bool isBcc(uint32_t instr) {
  return (instr & 0xf800d000) == 0xf0008000 &&
         (instr & 0x03800000) != 0x03800000;
}

static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }

static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }

static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }

static bool is32bitBranch(uint32_t instr) {
  return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
}

Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
                                       uint32_t instr, bool isARM)
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
                       ".text.patch"),
      patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
  parent = p->getParent();
  patchSym = addSyntheticLocal(
      saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
      isARM ? 0 : 1, getSize(), *this);
  addSyntheticLocal(saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
}

uint64_t Patch657417Section::getBranchAddr() const {
  return patchee->getVA(patcheeOffset);
}

// Given a branch instruction instr at sourceAddr work out its destination
// address. This is only used when the branch instruction has no relocation.
static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
  uint8_t buf[4];
  write16le(buf, instr >> 16);
  write16le(buf + 2, instr & 0x0000ffff);
  int64_t offset;
  if (isBcc(instr))
    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
  else if (isB(instr))
    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
  else
    offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
  return sourceAddr + offset + 4;
}

void Patch657417Section::writeTo(uint8_t *buf) {
  // The base instruction of the patch is always a 32-bit unconditional branch.
  if (isARM)
    write32le(buf, 0xea000000);
  else
    write32le(buf, 0x9000f000);
  // If we have a relocation then apply it. For a SyntheticSection buf already
  // has outSecOff added, but relocateAlloc also adds outSecOff so we need to
  // subtract to avoid double counting.
  if (!relocations.empty()) {
    relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
    return;
  }

  // If we don't have a relocation then we must calculate and write the offset
  // ourselves.
  // Get the destination offset from the addend in the branch instruction.
  // We cannot use the instruction in the patchee section as this will have
  // been altered to point to us!
  uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
  uint64_t p = getVA(4);
  target->relocateOne(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
}

// Given a branch instruction spanning two 4KiB regions, at offset off from the
// start of isec, return true if the destination of the branch is within the
// first of the two 4Kib regions.
static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
                                    uint32_t instr, const Relocation *r) {
  uint64_t sourceAddr = isec->getVA(0) + off;
  assert((sourceAddr & 0xfff) == 0xffe);
  uint64_t destAddr = sourceAddr;
  // If there is a branch relocation at the same offset we must use this to
  // find the destination address as the branch could be indirected via a thunk
  // or the PLT.
  if (r) {
    uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
    // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
    destAddr = dst + r->addend + 4;
  } else {
    // If there is no relocation, we must have an intra-section branch
    // We must extract the offset from the addend manually.
    destAddr = getThumbDestAddr(sourceAddr, instr);
  }

  return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
}

// Return true if a branch can reach a patch section placed after isec.
// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
static bool patchInRange(const InputSection *isec, uint64_t off,
                         uint32_t instr) {

  // We need the branch at source to reach a patch section placed immediately
  // after isec. As there can be more than one patch in the patch section we
  // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
  // for a 1 MiB range.
  return target->inBranchRange(
      isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
      isec->getVA() + isec->getSize() + 0x100);
}

struct ScanResult {
  // Offset of branch within its InputSection.
  uint64_t off;
  // Cached decoding of the branch instruction.
  uint32_t instr;
  // Branch relocation at off. Will be nullptr if no relocation exists.
  Relocation *rel;
};

// Detect the erratum sequence, returning the offset of the branch instruction
// and a decoding of the branch. If the erratum sequence is not found then
// return an offset of 0 for the branch. 0 is a safe value to use for no patch
// as there must be at least one 32-bit non-branch instruction before the
// branch so the minimum offset for a patch is 4.
static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
                                           uint64_t limit) {
  uint64_t isecAddr = isec->getVA(0);
  // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
  // need to check for a 32-bit instruction immediately before a 32-bit branch
  // at 0xffe modulo 0x1000.
  off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
  if (off >= limit || limit - off < 8) {
    // Need at least 2 4-byte sized instructions to trigger erratum.
    off = limit;
    return {0, 0, nullptr};
  }

  ScanResult scanRes = {0, 0, nullptr};
  const uint8_t *buf = isec->data().begin();
  // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
  // little-endian halfwords.
  const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
  uint16_t hw11 = *instBuf++;
  uint16_t hw12 = *instBuf++;
  uint16_t hw21 = *instBuf++;
  uint16_t hw22 = *instBuf++;
  if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
    uint32_t instr1 = (hw11 << 16) | hw12;
    uint32_t instr2 = (hw21 << 16) | hw22;
    if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
      // Find a relocation for the branch if it exists. This will be used
      // to determine the target.
      uint64_t branchOff = off + 4;
      auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
        return r.offset == branchOff &&
               (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
                r.type == R_ARM_THM_CALL);
      });
      if (relIt != isec->relocations.end())
        scanRes.rel = &(*relIt);
      if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
        if (patchInRange(isec, branchOff, instr2)) {
          scanRes.off = branchOff;
          scanRes.instr = instr2;
        } else {
          warn(toString(isec->file) +
               ": skipping cortex-a8 657417 erratum sequence, section " +
               isec->name + " is too large to patch");
        }
      }
    }
  }
  off += 0x1000;
  return scanRes;
}

void ARMErr657417Patcher::init() {
  // The Arm ABI permits a mix of ARM, Thumb and Data in the same
  // InputSection. We must only scan Thumb instructions to avoid false
  // matches. We use the mapping symbols in the InputObjects to identify this
  // data, caching the results in sectionMap so we don't have to recalculate
  // it each pass.

  // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
  // half open intervals [Symbol Value, Next Symbol Value) of code and data
  // within sections. If there is no next symbol then the half open interval is
  // [Symbol Value, End of section). The type, code or data, is determined by
  // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
  auto isArmMapSymbol = [](const Symbol *s) {
    return s->getName() == "$a" || s->getName().startswith("$a.");
  };
  auto isThumbMapSymbol = [](const Symbol *s) {
    return s->getName() == "$t" || s->getName().startswith("$t.");
  };
  auto isDataMapSymbol = [](const Symbol *s) {
    return s->getName() == "$d" || s->getName().startswith("$d.");
  };

  // Collect mapping symbols for every executable InputSection.
  for (InputFile *file : objectFiles) {
    auto *f = cast<ObjFile<ELF32LE>>(file);
    for (Symbol *s : f->getLocalSymbols()) {
      auto *def = dyn_cast<Defined>(s);
      if (!def)
        continue;
      if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
          !isDataMapSymbol(def))
        continue;
      if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
        if (sec->flags & SHF_EXECINSTR)
          sectionMap[sec].push_back(def);
    }
  }
  // For each InputSection make sure the mapping symbols are in sorted in
  // ascending order and are in alternating Thumb, non-Thumb order.
  for (auto &kv : sectionMap) {
    std::vector<const Defined *> &mapSyms = kv.second;
    llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
      return a->value < b->value;
    });
    mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
                              [=](const Defined *a, const Defined *b) {
                                return (isThumbMapSymbol(a) ==
                                        isThumbMapSymbol(b));
                              }),
                  mapSyms.end());
    // Always start with a Thumb Mapping Symbol
    if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
      mapSyms.erase(mapSyms.begin());
  }
  initialized = true;
}

void ARMErr657417Patcher::insertPatches(
    InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
  uint64_t spacing = 0x100000 - 0x7500;
  uint64_t isecLimit;
  uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
  uint64_t patchUpperBound = prevIsecLimit + spacing;
  uint64_t outSecAddr = isd.sections.front()->getParent()->addr;

  // Set the outSecOff of patches to the place where we want to insert them.
  // We use a similar strategy to initial thunk placement, using 1 MiB as the
  // range of the Thumb-2 conditional branch with a contingency accounting for
  // thunk generation.
  auto patchIt = patches.begin();
  auto patchEnd = patches.end();
  for (const InputSection *isec : isd.sections) {
    isecLimit = isec->outSecOff + isec->getSize();
    if (isecLimit > patchUpperBound) {
      for (; patchIt != patchEnd; ++patchIt) {
        if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
          break;
        (*patchIt)->outSecOff = prevIsecLimit;
      }
      patchUpperBound = prevIsecLimit + spacing;
    }
    prevIsecLimit = isecLimit;
  }
  for (; patchIt != patchEnd; ++patchIt)
    (*patchIt)->outSecOff = isecLimit;

  // Merge all patch sections. We use the outSecOff assigned above to
  // determine the insertion point. This is ok as we only merge into an
  // InputSectionDescription once per pass, and at the end of the pass
  // assignAddresses() will recalculate all the outSecOff values.
  std::vector<InputSection *> tmp;
  tmp.reserve(isd.sections.size() + patches.size());
  auto mergeCmp = [](const InputSection *a, const InputSection *b) {
    if (a->outSecOff != b->outSecOff)
      return a->outSecOff < b->outSecOff;
    return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
  };
  std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
             patches.end(), std::back_inserter(tmp), mergeCmp);
  isd.sections = std::move(tmp);
}

// Given a branch instruction described by ScanRes redirect it to a patch
// section containing an unconditional branch instruction to the target.
// Ensure that this patch section is 4-byte aligned so that the branch cannot
// span two 4 KiB regions. Place the patch section so that it is always after
// isec so the branch we are patching always goes forwards.
static void implementPatch(ScanResult sr, InputSection *isec,
                           std::vector<Patch657417Section *> &patches) {

  log("detected cortex-a8-657419 erratum sequence starting at " +
      utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
  Patch657417Section *psec;
  // We have two cases to deal with.
  // Case 1. There is a relocation at patcheeOffset to a symbol. The
  // unconditional branch in the patch must have a relocation so that any
  // further redirection via the PLT or a Thunk happens as normal. At
  // patcheeOffset we redirect the existing relocation to a Symbol defined at
  // the start of the patch section.
  //
  // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
  // a symbol that we can use as a target for a relocation in the patch section.
  // Luckily we know that the destination cannot be indirected via the PLT or
  // a Thunk so we can just write the destination directly.
  if (sr.rel) {
    // Case 1. We have an existing relocation to redirect to patch and a
    // Symbol target.

    // Create a branch relocation for the unconditional branch in the patch.
    // This can be redirected via the PLT or Thunks.
    RelType patchRelType = R_ARM_THM_JUMP24;
    int64_t patchRelAddend = sr.rel->addend;
    bool destIsARM = false;
    if (isBL(sr.instr) || isBLX(sr.instr)) {
      // The final target of the branch may be ARM or Thumb, if the target
      // is ARM then we write the patch in ARM state to avoid a state change
      // Thunk from the patch to the target.
      uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
                                                       : sr.rel->sym->getVA();
      destIsARM = (dstSymAddr & 1) == 0;
    }
    psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
    if (destIsARM) {
      // The patch will be in ARM state. Use an ARM relocation and account for
      // the larger ARM PC-bias of 8 rather than Thumb's 4.
      patchRelType = R_ARM_JUMP24;
      patchRelAddend -= 4;
    }
    psec->relocations.push_back(
        Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
    // Redirect the existing branch relocation to the patch.
    sr.rel->expr = R_PC;
    sr.rel->addend = -4;
    sr.rel->sym = psec->patchSym;
  } else {
    // Case 2. We do not have a relocation to the patch. Add a relocation of the
    // appropriate type to the patch at patcheeOffset.

    // The destination is ARM if we have a BLX.
    psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
    RelType type;
    if (isBcc(sr.instr))
      type = R_ARM_THM_JUMP19;
    else if (isB(sr.instr))
      type = R_ARM_THM_JUMP24;
    else
      type = R_ARM_THM_CALL;
    isec->relocations.push_back(
        Relocation{R_PC, type, sr.off, -4, psec->patchSym});
  }
  patches.push_back(psec);
}

// Scan all the instructions in InputSectionDescription, for each instance of
// the erratum sequence create a Patch657417Section. We return the list of
// Patch657417Sections that need to be applied to the InputSectionDescription.
std::vector<Patch657417Section *>
ARMErr657417Patcher::patchInputSectionDescription(
    InputSectionDescription &isd) {
  std::vector<Patch657417Section *> patches;
  for (InputSection *isec : isd.sections) {
    // LLD doesn't use the erratum sequence in SyntheticSections.
    if (isa<SyntheticSection>(isec))
      continue;
    // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
    // data. We have already sorted mapSyms in ascending order and removed
    // consecutive mapping symbols of the same type. Our range of executable
    // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
    // or [thumbSym->value, section size).
    std::vector<const Defined *> &mapSyms = sectionMap[isec];

    auto thumbSym = mapSyms.begin();
    while (thumbSym != mapSyms.end()) {
      auto nonThumbSym = std::next(thumbSym);
      uint64_t off = (*thumbSym)->value;
      uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
                                                      : (*nonThumbSym)->value;

      while (off < limit) {
        ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
        if (sr.off)
          implementPatch(sr, isec, patches);
      }
      if (nonThumbSym == mapSyms.end())
        break;
      thumbSym = std::next(nonThumbSym);
    }
  }
  return patches;
}

bool ARMErr657417Patcher::createFixes() {
  if (!initialized)
    init();

  bool addressesChanged = false;
  for (OutputSection *os : outputSections) {
    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
      continue;
    for (BaseCommand *bc : os->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
        std::vector<Patch657417Section *> patches =
            patchInputSectionDescription(*isd);
        if (!patches.empty()) {
          insertPatches(*isd, patches);
          addressesChanged = true;
        }
      }
  }
  return addressesChanged;
}

} // namespace elf
} // namespace lld