reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Loop Distribution Pass.  Its main focus is to
// distribute loops that cannot be vectorized due to dependence cycles.  It
// tries to isolate the offending dependences into a new loop allowing
// vectorization of the remaining parts.
//
// For dependence analysis, the pass uses the LoopVectorizer's
// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
// memory operations, special care is taken to preserve the lexical order of
// these operations.
//
// Similarly to the Vectorizer, the pass also supports loop versioning to
// run-time disambiguate potentially overlapping arrays.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDistribute.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <functional>
#include <list>
#include <tuple>
#include <utility>

using namespace llvm;

#define LDIST_NAME "loop-distribute"
#define DEBUG_TYPE LDIST_NAME

/// @{
/// Metadata attribute names
static const char *const LLVMLoopDistributeFollowupAll =
    "llvm.loop.distribute.followup_all";
static const char *const LLVMLoopDistributeFollowupCoincident =
    "llvm.loop.distribute.followup_coincident";
static const char *const LLVMLoopDistributeFollowupSequential =
    "llvm.loop.distribute.followup_sequential";
static const char *const LLVMLoopDistributeFollowupFallback =
    "llvm.loop.distribute.followup_fallback";
/// @}

static cl::opt<bool>
    LDistVerify("loop-distribute-verify", cl::Hidden,
                cl::desc("Turn on DominatorTree and LoopInfo verification "
                         "after Loop Distribution"),
                cl::init(false));

static cl::opt<bool> DistributeNonIfConvertible(
    "loop-distribute-non-if-convertible", cl::Hidden,
    cl::desc("Whether to distribute into a loop that may not be "
             "if-convertible by the loop vectorizer"),
    cl::init(false));

static cl::opt<unsigned> DistributeSCEVCheckThreshold(
    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed for Loop "
             "Distribution"));

static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
    cl::Hidden,
    cl::desc(
        "The maximum number of SCEV checks allowed for Loop "
        "Distribution for loop marked with #pragma loop distribute(enable)"));

static cl::opt<bool> EnableLoopDistribute(
    "enable-loop-distribute", cl::Hidden,
    cl::desc("Enable the new, experimental LoopDistribution Pass"),
    cl::init(false));

STATISTIC(NumLoopsDistributed, "Number of loops distributed");

namespace {

/// Maintains the set of instructions of the loop for a partition before
/// cloning.  After cloning, it hosts the new loop.
class InstPartition {
  using InstructionSet = SmallPtrSet<Instruction *, 8>;

public:
  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
      : DepCycle(DepCycle), OrigLoop(L) {
    Set.insert(I);
  }

  /// Returns whether this partition contains a dependence cycle.
  bool hasDepCycle() const { return DepCycle; }

  /// Adds an instruction to this partition.
  void add(Instruction *I) { Set.insert(I); }

  /// Collection accessors.
  InstructionSet::iterator begin() { return Set.begin(); }
  InstructionSet::iterator end() { return Set.end(); }
  InstructionSet::const_iterator begin() const { return Set.begin(); }
  InstructionSet::const_iterator end() const { return Set.end(); }
  bool empty() const { return Set.empty(); }

  /// Moves this partition into \p Other.  This partition becomes empty
  /// after this.
  void moveTo(InstPartition &Other) {
    Other.Set.insert(Set.begin(), Set.end());
    Set.clear();
    Other.DepCycle |= DepCycle;
  }

  /// Populates the partition with a transitive closure of all the
  /// instructions that the seeded instructions dependent on.
  void populateUsedSet() {
    // FIXME: We currently don't use control-dependence but simply include all
    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
    // up.
    for (auto *B : OrigLoop->getBlocks())
      Set.insert(B->getTerminator());

    // Follow the use-def chains to form a transitive closure of all the
    // instructions that the originally seeded instructions depend on.
    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
    while (!Worklist.empty()) {
      Instruction *I = Worklist.pop_back_val();
      // Insert instructions from the loop that we depend on.
      for (Value *V : I->operand_values()) {
        auto *I = dyn_cast<Instruction>(V);
        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
          Worklist.push_back(I);
      }
    }
  }

  /// Clones the original loop.
  ///
  /// Updates LoopInfo and DominatorTree using the information that block \p
  /// LoopDomBB dominates the loop.
  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
                               unsigned Index, LoopInfo *LI,
                               DominatorTree *DT) {
    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
                                          VMap, Twine(".ldist") + Twine(Index),
                                          LI, DT, ClonedLoopBlocks);
    return ClonedLoop;
  }

  /// The cloned loop.  If this partition is mapped to the original loop,
  /// this is null.
  const Loop *getClonedLoop() const { return ClonedLoop; }

  /// Returns the loop where this partition ends up after distribution.
  /// If this partition is mapped to the original loop then use the block from
  /// the loop.
  Loop *getDistributedLoop() const {
    return ClonedLoop ? ClonedLoop : OrigLoop;
  }

  /// The VMap that is populated by cloning and then used in
  /// remapinstruction to remap the cloned instructions.
  ValueToValueMapTy &getVMap() { return VMap; }

  /// Remaps the cloned instructions using VMap.
  void remapInstructions() {
    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
  }

  /// Based on the set of instructions selected for this partition,
  /// removes the unnecessary ones.
  void removeUnusedInsts() {
    SmallVector<Instruction *, 8> Unused;

    for (auto *Block : OrigLoop->getBlocks())
      for (auto &Inst : *Block)
        if (!Set.count(&Inst)) {
          Instruction *NewInst = &Inst;
          if (!VMap.empty())
            NewInst = cast<Instruction>(VMap[NewInst]);

          assert(!isa<BranchInst>(NewInst) &&
                 "Branches are marked used early on");
          Unused.push_back(NewInst);
        }

    // Delete the instructions backwards, as it has a reduced likelihood of
    // having to update as many def-use and use-def chains.
    for (auto *Inst : reverse(Unused)) {
      if (!Inst->use_empty())
        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
      Inst->eraseFromParent();
    }
  }

  void print() const {
    if (DepCycle)
      dbgs() << "  (cycle)\n";
    for (auto *I : Set)
      // Prefix with the block name.
      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
  }

  void printBlocks() const {
    for (auto *BB : getDistributedLoop()->getBlocks())
      dbgs() << *BB;
  }

private:
  /// Instructions from OrigLoop selected for this partition.
  InstructionSet Set;

  /// Whether this partition contains a dependence cycle.
  bool DepCycle;

  /// The original loop.
  Loop *OrigLoop;

  /// The cloned loop.  If this partition is mapped to the original loop,
  /// this is null.
  Loop *ClonedLoop = nullptr;

  /// The blocks of ClonedLoop including the preheader.  If this
  /// partition is mapped to the original loop, this is empty.
  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;

  /// These gets populated once the set of instructions have been
  /// finalized. If this partition is mapped to the original loop, these are not
  /// set.
  ValueToValueMapTy VMap;
};

/// Holds the set of Partitions.  It populates them, merges them and then
/// clones the loops.
class InstPartitionContainer {
  using InstToPartitionIdT = DenseMap<Instruction *, int>;

public:
  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
      : L(L), LI(LI), DT(DT) {}

  /// Returns the number of partitions.
  unsigned getSize() const { return PartitionContainer.size(); }

  /// Adds \p Inst into the current partition if that is marked to
  /// contain cycles.  Otherwise start a new partition for it.
  void addToCyclicPartition(Instruction *Inst) {
    // If the current partition is non-cyclic.  Start a new one.
    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
    else
      PartitionContainer.back().add(Inst);
  }

  /// Adds \p Inst into a partition that is not marked to contain
  /// dependence cycles.
  ///
  //  Initially we isolate memory instructions into as many partitions as
  //  possible, then later we may merge them back together.
  void addToNewNonCyclicPartition(Instruction *Inst) {
    PartitionContainer.emplace_back(Inst, L);
  }

  /// Merges adjacent non-cyclic partitions.
  ///
  /// The idea is that we currently only want to isolate the non-vectorizable
  /// partition.  We could later allow more distribution among these partition
  /// too.
  void mergeAdjacentNonCyclic() {
    mergeAdjacentPartitionsIf(
        [](const InstPartition *P) { return !P->hasDepCycle(); });
  }

  /// If a partition contains only conditional stores, we won't vectorize
  /// it.  Try to merge it with a previous cyclic partition.
  void mergeNonIfConvertible() {
    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
      if (Partition->hasDepCycle())
        return true;

      // Now, check if all stores are conditional in this partition.
      bool seenStore = false;

      for (auto *Inst : *Partition)
        if (isa<StoreInst>(Inst)) {
          seenStore = true;
          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
            return false;
        }
      return seenStore;
    });
  }

  /// Merges the partitions according to various heuristics.
  void mergeBeforePopulating() {
    mergeAdjacentNonCyclic();
    if (!DistributeNonIfConvertible)
      mergeNonIfConvertible();
  }

  /// Merges partitions in order to ensure that no loads are duplicated.
  ///
  /// We can't duplicate loads because that could potentially reorder them.
  /// LoopAccessAnalysis provides dependency information with the context that
  /// the order of memory operation is preserved.
  ///
  /// Return if any partitions were merged.
  bool mergeToAvoidDuplicatedLoads() {
    using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
    using ToBeMergedT = EquivalenceClasses<InstPartition *>;

    LoadToPartitionT LoadToPartition;
    ToBeMergedT ToBeMerged;

    // Step through the partitions and create equivalence between partitions
    // that contain the same load.  Also put partitions in between them in the
    // same equivalence class to avoid reordering of memory operations.
    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
                                       E = PartitionContainer.end();
         I != E; ++I) {
      auto *PartI = &*I;

      // If a load occurs in two partitions PartI and PartJ, merge all
      // partitions (PartI, PartJ] into PartI.
      for (Instruction *Inst : *PartI)
        if (isa<LoadInst>(Inst)) {
          bool NewElt;
          LoadToPartitionT::iterator LoadToPart;

          std::tie(LoadToPart, NewElt) =
              LoadToPartition.insert(std::make_pair(Inst, PartI));
          if (!NewElt) {
            LLVM_DEBUG(dbgs()
                       << "Merging partitions due to this load in multiple "
                       << "partitions: " << PartI << ", " << LoadToPart->second
                       << "\n"
                       << *Inst << "\n");

            auto PartJ = I;
            do {
              --PartJ;
              ToBeMerged.unionSets(PartI, &*PartJ);
            } while (&*PartJ != LoadToPart->second);
          }
        }
    }
    if (ToBeMerged.empty())
      return false;

    // Merge the member of an equivalence class into its class leader.  This
    // makes the members empty.
    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
         I != E; ++I) {
      if (!I->isLeader())
        continue;

      auto PartI = I->getData();
      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
                                   ToBeMerged.member_end())) {
        PartJ->moveTo(*PartI);
      }
    }

    // Remove the empty partitions.
    PartitionContainer.remove_if(
        [](const InstPartition &P) { return P.empty(); });

    return true;
  }

  /// Sets up the mapping between instructions to partitions.  If the
  /// instruction is duplicated across multiple partitions, set the entry to -1.
  void setupPartitionIdOnInstructions() {
    int PartitionID = 0;
    for (const auto &Partition : PartitionContainer) {
      for (Instruction *Inst : Partition) {
        bool NewElt;
        InstToPartitionIdT::iterator Iter;

        std::tie(Iter, NewElt) =
            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
        if (!NewElt)
          Iter->second = -1;
      }
      ++PartitionID;
    }
  }

  /// Populates the partition with everything that the seeding
  /// instructions require.
  void populateUsedSet() {
    for (auto &P : PartitionContainer)
      P.populateUsedSet();
  }

  /// This performs the main chunk of the work of cloning the loops for
  /// the partitions.
  void cloneLoops() {
    BasicBlock *OrigPH = L->getLoopPreheader();
    // At this point the predecessor of the preheader is either the memcheck
    // block or the top part of the original preheader.
    BasicBlock *Pred = OrigPH->getSinglePredecessor();
    assert(Pred && "Preheader does not have a single predecessor");
    BasicBlock *ExitBlock = L->getExitBlock();
    assert(ExitBlock && "No single exit block");
    Loop *NewLoop;

    assert(!PartitionContainer.empty() && "at least two partitions expected");
    // We're cloning the preheader along with the loop so we already made sure
    // it was empty.
    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
           "preheader not empty");

    // Preserve the original loop ID for use after the transformation.
    MDNode *OrigLoopID = L->getLoopID();

    // Create a loop for each partition except the last.  Clone the original
    // loop before PH along with adding a preheader for the cloned loop.  Then
    // update PH to point to the newly added preheader.
    BasicBlock *TopPH = OrigPH;
    unsigned Index = getSize() - 1;
    for (auto I = std::next(PartitionContainer.rbegin()),
              E = PartitionContainer.rend();
         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
      auto *Part = &*I;

      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);

      Part->getVMap()[ExitBlock] = TopPH;
      Part->remapInstructions();
      setNewLoopID(OrigLoopID, Part);
    }
    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);

    // Also set a new loop ID for the last loop.
    setNewLoopID(OrigLoopID, &PartitionContainer.back());

    // Now go in forward order and update the immediate dominator for the
    // preheaders with the exiting block of the previous loop.  Dominance
    // within the loop is updated in cloneLoopWithPreheader.
    for (auto Curr = PartitionContainer.cbegin(),
              Next = std::next(PartitionContainer.cbegin()),
              E = PartitionContainer.cend();
         Next != E; ++Curr, ++Next)
      DT->changeImmediateDominator(
          Next->getDistributedLoop()->getLoopPreheader(),
          Curr->getDistributedLoop()->getExitingBlock());
  }

  /// Removes the dead instructions from the cloned loops.
  void removeUnusedInsts() {
    for (auto &Partition : PartitionContainer)
      Partition.removeUnusedInsts();
  }

  /// For each memory pointer, it computes the partitionId the pointer is
  /// used in.
  ///
  /// This returns an array of int where the I-th entry corresponds to I-th
  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
  /// partitions its entry is set to -1.
  SmallVector<int, 8>
  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();

    unsigned N = RtPtrCheck->Pointers.size();
    SmallVector<int, 8> PtrToPartitions(N);
    for (unsigned I = 0; I < N; ++I) {
      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
      auto Instructions =
          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);

      int &Partition = PtrToPartitions[I];
      // First set it to uninitialized.
      Partition = -2;
      for (Instruction *Inst : Instructions) {
        // Note that this could be -1 if Inst is duplicated across multiple
        // partitions.
        int ThisPartition = this->InstToPartitionId[Inst];
        if (Partition == -2)
          Partition = ThisPartition;
        // -1 means belonging to multiple partitions.
        else if (Partition == -1)
          break;
        else if (Partition != (int)ThisPartition)
          Partition = -1;
      }
      assert(Partition != -2 && "Pointer not belonging to any partition");
    }

    return PtrToPartitions;
  }

  void print(raw_ostream &OS) const {
    unsigned Index = 0;
    for (const auto &P : PartitionContainer) {
      OS << "Partition " << Index++ << " (" << &P << "):\n";
      P.print();
    }
  }

  void dump() const { print(dbgs()); }

#ifndef NDEBUG
  friend raw_ostream &operator<<(raw_ostream &OS,
                                 const InstPartitionContainer &Partitions) {
    Partitions.print(OS);
    return OS;
  }
#endif

  void printBlocks() const {
    unsigned Index = 0;
    for (const auto &P : PartitionContainer) {
      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
      P.printBlocks();
    }
  }

private:
  using PartitionContainerT = std::list<InstPartition>;

  /// List of partitions.
  PartitionContainerT PartitionContainer;

  /// Mapping from Instruction to partition Id.  If the instruction
  /// belongs to multiple partitions the entry contains -1.
  InstToPartitionIdT InstToPartitionId;

  Loop *L;
  LoopInfo *LI;
  DominatorTree *DT;

  /// The control structure to merge adjacent partitions if both satisfy
  /// the \p Predicate.
  template <class UnaryPredicate>
  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
    InstPartition *PrevMatch = nullptr;
    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
      auto DoesMatch = Predicate(&*I);
      if (PrevMatch == nullptr && DoesMatch) {
        PrevMatch = &*I;
        ++I;
      } else if (PrevMatch != nullptr && DoesMatch) {
        I->moveTo(*PrevMatch);
        I = PartitionContainer.erase(I);
      } else {
        PrevMatch = nullptr;
        ++I;
      }
    }
  }

  /// Assign new LoopIDs for the partition's cloned loop.
  void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
    Optional<MDNode *> PartitionID = makeFollowupLoopID(
        OrigLoopID,
        {LLVMLoopDistributeFollowupAll,
         Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
                             : LLVMLoopDistributeFollowupCoincident});
    if (PartitionID.hasValue()) {
      Loop *NewLoop = Part->getDistributedLoop();
      NewLoop->setLoopID(PartitionID.getValue());
    }
  }
};

/// For each memory instruction, this class maintains difference of the
/// number of unsafe dependences that start out from this instruction minus
/// those that end here.
///
/// By traversing the memory instructions in program order and accumulating this
/// number, we know whether any unsafe dependence crosses over a program point.
class MemoryInstructionDependences {
  using Dependence = MemoryDepChecker::Dependence;

public:
  struct Entry {
    Instruction *Inst;
    unsigned NumUnsafeDependencesStartOrEnd = 0;

    Entry(Instruction *Inst) : Inst(Inst) {}
  };

  using AccessesType = SmallVector<Entry, 8>;

  AccessesType::const_iterator begin() const { return Accesses.begin(); }
  AccessesType::const_iterator end() const { return Accesses.end(); }

  MemoryInstructionDependences(
      const SmallVectorImpl<Instruction *> &Instructions,
      const SmallVectorImpl<Dependence> &Dependences) {
    Accesses.append(Instructions.begin(), Instructions.end());

    LLVM_DEBUG(dbgs() << "Backward dependences:\n");
    for (auto &Dep : Dependences)
      if (Dep.isPossiblyBackward()) {
        // Note that the designations source and destination follow the program
        // order, i.e. source is always first.  (The direction is given by the
        // DepType.)
        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;

        LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
      }
  }

private:
  AccessesType Accesses;
};

/// The actual class performing the per-loop work.
class LoopDistributeForLoop {
public:
  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
                        ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
      : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) {
    setForced();
  }

  /// Try to distribute an inner-most loop.
  bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
    assert(L->empty() && "Only process inner loops.");

    LLVM_DEBUG(dbgs() << "\nLDist: In \""
                      << L->getHeader()->getParent()->getName()
                      << "\" checking " << *L << "\n");

    if (!L->getExitBlock())
      return fail("MultipleExitBlocks", "multiple exit blocks");
    if (!L->isLoopSimplifyForm())
      return fail("NotLoopSimplifyForm",
                  "loop is not in loop-simplify form");

    BasicBlock *PH = L->getLoopPreheader();

    // LAA will check that we only have a single exiting block.
    LAI = &GetLAA(*L);

    // Currently, we only distribute to isolate the part of the loop with
    // dependence cycles to enable partial vectorization.
    if (LAI->canVectorizeMemory())
      return fail("MemOpsCanBeVectorized",
                  "memory operations are safe for vectorization");

    auto *Dependences = LAI->getDepChecker().getDependences();
    if (!Dependences || Dependences->empty())
      return fail("NoUnsafeDeps", "no unsafe dependences to isolate");

    InstPartitionContainer Partitions(L, LI, DT);

    // First, go through each memory operation and assign them to consecutive
    // partitions (the order of partitions follows program order).  Put those
    // with unsafe dependences into "cyclic" partition otherwise put each store
    // in its own "non-cyclic" partition (we'll merge these later).
    //
    // Note that a memory operation (e.g. Load2 below) at a program point that
    // has an unsafe dependence (Store3->Load1) spanning over it must be
    // included in the same cyclic partition as the dependent operations.  This
    // is to preserve the original program order after distribution.  E.g.:
    //
    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
    //  Load1   -.                     1                       0->1
    //  Load2    | /Unsafe/            0                       1
    //  Store3  -'                    -1                       1->0
    //  Load4                          0                       0
    //
    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
    // we just keep assigning to the same cyclic partition until
    // NumUnsafeDependencesActive reaches 0.
    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
                                     *Dependences);

    int NumUnsafeDependencesActive = 0;
    for (auto &InstDep : MID) {
      Instruction *I = InstDep.Inst;
      // We update NumUnsafeDependencesActive post-instruction, catch the
      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
      if (NumUnsafeDependencesActive ||
          InstDep.NumUnsafeDependencesStartOrEnd > 0)
        Partitions.addToCyclicPartition(I);
      else
        Partitions.addToNewNonCyclicPartition(I);
      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
      assert(NumUnsafeDependencesActive >= 0 &&
             "Negative number of dependences active");
    }

    // Add partitions for values used outside.  These partitions can be out of
    // order from the original program order.  This is OK because if the
    // partition uses a load we will merge this partition with the original
    // partition of the load that we set up in the previous loop (see
    // mergeToAvoidDuplicatedLoads).
    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
    for (auto *Inst : DefsUsedOutside)
      Partitions.addToNewNonCyclicPartition(Inst);

    LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
    if (Partitions.getSize() < 2)
      return fail("CantIsolateUnsafeDeps",
                  "cannot isolate unsafe dependencies");

    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
    // should be able to vectorize these together.
    Partitions.mergeBeforePopulating();
    LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
    if (Partitions.getSize() < 2)
      return fail("CantIsolateUnsafeDeps",
                  "cannot isolate unsafe dependencies");

    // Now, populate the partitions with non-memory operations.
    Partitions.populateUsedSet();
    LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);

    // In order to preserve original lexical order for loads, keep them in the
    // partition that we set up in the MemoryInstructionDependences loop.
    if (Partitions.mergeToAvoidDuplicatedLoads()) {
      LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
                        << Partitions);
      if (Partitions.getSize() < 2)
        return fail("CantIsolateUnsafeDeps",
                    "cannot isolate unsafe dependencies");
    }

    // Don't distribute the loop if we need too many SCEV run-time checks, or
    // any if it's illegal.
    const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
    if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
      return fail("RuntimeCheckWithConvergent",
                  "may not insert runtime check with convergent operation");
    }

    if (Pred.getComplexity() > (IsForced.getValueOr(false)
                                    ? PragmaDistributeSCEVCheckThreshold
                                    : DistributeSCEVCheckThreshold))
      return fail("TooManySCEVRuntimeChecks",
                  "too many SCEV run-time checks needed.\n");

    if (!IsForced.getValueOr(false) && hasDisableAllTransformsHint(L))
      return fail("HeuristicDisabled", "distribution heuristic disabled");

    LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
    // We're done forming the partitions set up the reverse mapping from
    // instructions to partitions.
    Partitions.setupPartitionIdOnInstructions();

    // To keep things simple have an empty preheader before we version or clone
    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
    // rely on PH having a predecessor.)
    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
      SplitBlock(PH, PH->getTerminator(), DT, LI);

    // If we need run-time checks, version the loop now.
    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
    const auto &AllChecks = RtPtrChecking->getChecks();
    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
                                                  RtPtrChecking);

    if (LAI->hasConvergentOp() && !Checks.empty()) {
      return fail("RuntimeCheckWithConvergent",
                  "may not insert runtime check with convergent operation");
    }

    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
      assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");

      MDNode *OrigLoopID = L->getLoopID();

      LLVM_DEBUG(dbgs() << "\nPointers:\n");
      LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
      LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
      LVer.setAliasChecks(std::move(Checks));
      LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
      LVer.versionLoop(DefsUsedOutside);
      LVer.annotateLoopWithNoAlias();

      // The unversioned loop will not be changed, so we inherit all attributes
      // from the original loop, but remove the loop distribution metadata to
      // avoid to distribute it again.
      MDNode *UnversionedLoopID =
          makeFollowupLoopID(OrigLoopID,
                             {LLVMLoopDistributeFollowupAll,
                              LLVMLoopDistributeFollowupFallback},
                             "llvm.loop.distribute.", true)
              .getValue();
      LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
    }

    // Create identical copies of the original loop for each partition and hook
    // them up sequentially.
    Partitions.cloneLoops();

    // Now, we remove the instruction from each loop that don't belong to that
    // partition.
    Partitions.removeUnusedInsts();
    LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
    LLVM_DEBUG(Partitions.printBlocks());

    if (LDistVerify) {
      LI->verify(*DT);
      assert(DT->verify(DominatorTree::VerificationLevel::Fast));
    }

    ++NumLoopsDistributed;
    // Report the success.
    ORE->emit([&]() {
      return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
                                L->getHeader())
             << "distributed loop";
    });
    return true;
  }

  /// Provide diagnostics then \return with false.
  bool fail(StringRef RemarkName, StringRef Message) {
    LLVMContext &Ctx = F->getContext();
    bool Forced = isForced().getValueOr(false);

    LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");

    // With Rpass-missed report that distribution failed.
    ORE->emit([&]() {
      return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
                                      L->getStartLoc(), L->getHeader())
             << "loop not distributed: use -Rpass-analysis=loop-distribute for "
                "more "
                "info";
    });

    // With Rpass-analysis report why.  This is on by default if distribution
    // was requested explicitly.
    ORE->emit(OptimizationRemarkAnalysis(
                  Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
                  RemarkName, L->getStartLoc(), L->getHeader())
              << "loop not distributed: " << Message);

    // Also issue a warning if distribution was requested explicitly but it
    // failed.
    if (Forced)
      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
          *F, L->getStartLoc(), "loop not distributed: failed "
                                "explicitly specified loop distribution"));

    return false;
  }

  /// Return if distribution forced to be enabled/disabled for the loop.
  ///
  /// If the optional has a value, it indicates whether distribution was forced
  /// to be enabled (true) or disabled (false).  If the optional has no value
  /// distribution was not forced either way.
  const Optional<bool> &isForced() const { return IsForced; }

private:
  /// Filter out checks between pointers from the same partition.
  ///
  /// \p PtrToPartition contains the partition number for pointers.  Partition
  /// number -1 means that the pointer is used in multiple partitions.  In this
  /// case we can't safely omit the check.
  SmallVector<RuntimePointerChecking::PointerCheck, 4>
  includeOnlyCrossPartitionChecks(
      const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
      const SmallVectorImpl<int> &PtrToPartition,
      const RuntimePointerChecking *RtPtrChecking) {
    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;

    copy_if(AllChecks, std::back_inserter(Checks),
            [&](const RuntimePointerChecking::PointerCheck &Check) {
              for (unsigned PtrIdx1 : Check.first->Members)
                for (unsigned PtrIdx2 : Check.second->Members)
                  // Only include this check if there is a pair of pointers
                  // that require checking and the pointers fall into
                  // separate partitions.
                  //
                  // (Note that we already know at this point that the two
                  // pointer groups need checking but it doesn't follow
                  // that each pair of pointers within the two groups need
                  // checking as well.
                  //
                  // In other words we don't want to include a check just
                  // because there is a pair of pointers between the two
                  // pointer groups that require checks and a different
                  // pair whose pointers fall into different partitions.)
                  if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
                      !RuntimePointerChecking::arePointersInSamePartition(
                          PtrToPartition, PtrIdx1, PtrIdx2))
                    return true;
              return false;
            });

    return Checks;
  }

  /// Check whether the loop metadata is forcing distribution to be
  /// enabled/disabled.
  void setForced() {
    Optional<const MDOperand *> Value =
        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
    if (!Value)
      return;

    const MDOperand *Op = *Value;
    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
  }

  Loop *L;
  Function *F;

  // Analyses used.
  LoopInfo *LI;
  const LoopAccessInfo *LAI = nullptr;
  DominatorTree *DT;
  ScalarEvolution *SE;
  OptimizationRemarkEmitter *ORE;

  /// Indicates whether distribution is forced to be enabled/disabled for
  /// the loop.
  ///
  /// If the optional has a value, it indicates whether distribution was forced
  /// to be enabled (true) or disabled (false).  If the optional has no value
  /// distribution was not forced either way.
  Optional<bool> IsForced;
};

} // end anonymous namespace

/// Shared implementation between new and old PMs.
static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
                    ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
                    std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
  // Build up a worklist of inner-loops to vectorize. This is necessary as the
  // act of distributing a loop creates new loops and can invalidate iterators
  // across the loops.
  SmallVector<Loop *, 8> Worklist;

  for (Loop *TopLevelLoop : *LI)
    for (Loop *L : depth_first(TopLevelLoop))
      // We only handle inner-most loops.
      if (L->empty())
        Worklist.push_back(L);

  // Now walk the identified inner loops.
  bool Changed = false;
  for (Loop *L : Worklist) {
    LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);

    // If distribution was forced for the specific loop to be
    // enabled/disabled, follow that.  Otherwise use the global flag.
    if (LDL.isForced().getValueOr(EnableLoopDistribute))
      Changed |= LDL.processLoop(GetLAA);
  }

  // Process each loop nest in the function.
  return Changed;
}

namespace {

/// The pass class.
class LoopDistributeLegacy : public FunctionPass {
public:
  static char ID;

  LoopDistributeLegacy() : FunctionPass(ID) {
    // The default is set by the caller.
    initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };

    return runImpl(F, LI, DT, SE, ORE, GetLAA);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

PreservedAnalyses LoopDistributePass::run(Function &F,
                                          FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  // We don't directly need these analyses but they're required for loop
  // analyses so provide them below.
  auto &AA = AM.getResult<AAManager>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);

  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
  std::function<const LoopAccessInfo &(Loop &)> GetLAA =
      [&](Loop &L) -> const LoopAccessInfo & {
    LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
    return LAM.getResult<LoopAccessAnalysis>(L, AR);
  };

  bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<LoopAnalysis>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char LoopDistributeLegacy::ID;

static const char ldist_name[] = "Loop Distribution";

INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)

FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }