reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Deletion Pass. This pass is responsible
// for eliminating loops with non-infinite computable trip counts that have no
// side effects or volatile instructions, and do not contribute to the
// computation of the function's return value.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;

#define DEBUG_TYPE "loop-delete"

STATISTIC(NumDeleted, "Number of loops deleted");

enum class LoopDeletionResult {
  Unmodified,
  Modified,
  Deleted,
};

/// Determines if a loop is dead.
///
/// This assumes that we've already checked for unique exit and exiting blocks,
/// and that the code is in LCSSA form.
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
                       SmallVectorImpl<BasicBlock *> &ExitingBlocks,
                       BasicBlock *ExitBlock, bool &Changed,
                       BasicBlock *Preheader) {
  // Make sure that all PHI entries coming from the loop are loop invariant.
  // Because the code is in LCSSA form, any values used outside of the loop
  // must pass through a PHI in the exit block, meaning that this check is
  // sufficient to guarantee that no loop-variant values are used outside
  // of the loop.
  bool AllEntriesInvariant = true;
  bool AllOutgoingValuesSame = true;
  for (PHINode &P : ExitBlock->phis()) {
    Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]);

    // Make sure all exiting blocks produce the same incoming value for the exit
    // block.  If there are different incoming values for different exiting
    // blocks, then it is impossible to statically determine which value should
    // be used.
    AllOutgoingValuesSame =
        all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
          return incoming == P.getIncomingValueForBlock(BB);
        });

    if (!AllOutgoingValuesSame)
      break;

    if (Instruction *I = dyn_cast<Instruction>(incoming))
      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
        AllEntriesInvariant = false;
        break;
      }
  }

  if (Changed)
    SE.forgetLoopDispositions(L);

  if (!AllEntriesInvariant || !AllOutgoingValuesSame)
    return false;

  // Make sure that no instructions in the block have potential side-effects.
  // This includes instructions that could write to memory, and loads that are
  // marked volatile.
  for (auto &I : L->blocks())
    if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); }))
      return false;
  return true;
}

/// This function returns true if there is no viable path from the
/// entry block to the header of \p L. Right now, it only does
/// a local search to save compile time.
static bool isLoopNeverExecuted(Loop *L) {
  using namespace PatternMatch;

  auto *Preheader = L->getLoopPreheader();
  // TODO: We can relax this constraint, since we just need a loop
  // predecessor.
  assert(Preheader && "Needs preheader!");

  if (Preheader == &Preheader->getParent()->getEntryBlock())
    return false;
  // All predecessors of the preheader should have a constant conditional
  // branch, with the loop's preheader as not-taken.
  for (auto *Pred: predecessors(Preheader)) {
    BasicBlock *Taken, *NotTaken;
    ConstantInt *Cond;
    if (!match(Pred->getTerminator(),
               m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
      return false;
    if (!Cond->getZExtValue())
      std::swap(Taken, NotTaken);
    if (Taken == Preheader)
      return false;
  }
  assert(!pred_empty(Preheader) &&
         "Preheader should have predecessors at this point!");
  // All the predecessors have the loop preheader as not-taken target.
  return true;
}

/// Remove a loop if it is dead.
///
/// A loop is considered dead if it does not impact the observable behavior of
/// the program other than finite running time. This never removes a loop that
/// might be infinite (unless it is never executed), as doing so could change
/// the halting/non-halting nature of a program.
///
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
/// order to make various safety checks work.
///
/// \returns true if any changes were made. This may mutate the loop even if it
/// is unable to delete it due to hoisting trivially loop invariant
/// instructions out of the loop.
static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT,
                                           ScalarEvolution &SE, LoopInfo &LI) {
  assert(L->isLCSSAForm(DT) && "Expected LCSSA!");

  // We can only remove the loop if there is a preheader that we can branch from
  // after removing it. Also, if LoopSimplify form is not available, stay out
  // of trouble.
  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader || !L->hasDedicatedExits()) {
    LLVM_DEBUG(
        dbgs()
        << "Deletion requires Loop with preheader and dedicated exits.\n");
    return LoopDeletionResult::Unmodified;
  }
  // We can't remove loops that contain subloops.  If the subloops were dead,
  // they would already have been removed in earlier executions of this pass.
  if (L->begin() != L->end()) {
    LLVM_DEBUG(dbgs() << "Loop contains subloops.\n");
    return LoopDeletionResult::Unmodified;
  }


  BasicBlock *ExitBlock = L->getUniqueExitBlock();

  if (ExitBlock && isLoopNeverExecuted(L)) {
    LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!");
    // Set incoming value to undef for phi nodes in the exit block.
    for (PHINode &P : ExitBlock->phis()) {
      std::fill(P.incoming_values().begin(), P.incoming_values().end(),
                UndefValue::get(P.getType()));
    }
    deleteDeadLoop(L, &DT, &SE, &LI);
    ++NumDeleted;
    return LoopDeletionResult::Deleted;
  }

  // The remaining checks below are for a loop being dead because all statements
  // in the loop are invariant.
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  // We require that the loop only have a single exit block.  Otherwise, we'd
  // be in the situation of needing to be able to solve statically which exit
  // block will be branched to, or trying to preserve the branching logic in
  // a loop invariant manner.
  if (!ExitBlock) {
    LLVM_DEBUG(dbgs() << "Deletion requires single exit block\n");
    return LoopDeletionResult::Unmodified;
  }
  // Finally, we have to check that the loop really is dead.
  bool Changed = false;
  if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader)) {
    LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
    return Changed ? LoopDeletionResult::Modified
                   : LoopDeletionResult::Unmodified;
  }

  // Don't remove loops for which we can't solve the trip count.
  // They could be infinite, in which case we'd be changing program behavior.
  const SCEV *S = SE.getConstantMaxBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(S)) {
    LLVM_DEBUG(dbgs() << "Could not compute SCEV MaxBackedgeTakenCount.\n");
    return Changed ? LoopDeletionResult::Modified
                   : LoopDeletionResult::Unmodified;
  }

  LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!");
  deleteDeadLoop(L, &DT, &SE, &LI);
  ++NumDeleted;

  return LoopDeletionResult::Deleted;
}

PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
                                        LoopStandardAnalysisResults &AR,
                                        LPMUpdater &Updater) {

  LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
  LLVM_DEBUG(L.dump());
  std::string LoopName = L.getName();
  auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI);
  if (Result == LoopDeletionResult::Unmodified)
    return PreservedAnalyses::all();

  if (Result == LoopDeletionResult::Deleted)
    Updater.markLoopAsDeleted(L, LoopName);

  return getLoopPassPreservedAnalyses();
}

namespace {
class LoopDeletionLegacyPass : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopDeletionLegacyPass() : LoopPass(ID) {
    initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  // Possibly eliminate loop L if it is dead.
  bool runOnLoop(Loop *L, LPPassManager &) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    getLoopAnalysisUsage(AU);
  }
};
}

char LoopDeletionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
                      "Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
                    "Delete dead loops", false, false)

Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }

bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
  LLVM_DEBUG(L->dump());

  LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI);

  if (Result == LoopDeletionResult::Deleted)
    LPM.markLoopAsDeleted(*L);

  return Result != LoopDeletionResult::Unmodified;
}