reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that optimizes memory intrinsics
// such as memcpy using the size value profile. When memory intrinsic size
// value profile metadata is available, a single memory intrinsic is expanded
// to a sequence of guarded specialized versions that are called with the
// hottest size(s), for later expansion into more optimal inline sequences.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "pgo-memop-opt"

STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized.");
STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated.");

// The minimum call count to optimize memory intrinsic calls.
static cl::opt<unsigned>
    MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore,
                        cl::init(1000),
                        cl::desc("The minimum count to optimize memory "
                                 "intrinsic calls"));

// Command line option to disable memory intrinsic optimization. The default is
// false. This is for debug purpose.
static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false),
                                     cl::Hidden, cl::desc("Disable optimize"));

// The percent threshold to optimize memory intrinsic calls.
static cl::opt<unsigned>
    MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40),
                          cl::Hidden, cl::ZeroOrMore,
                          cl::desc("The percentage threshold for the "
                                   "memory intrinsic calls optimization"));

// Maximum number of versions for optimizing memory intrinsic call.
static cl::opt<unsigned>
    MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden,
                    cl::ZeroOrMore,
                    cl::desc("The max version for the optimized memory "
                             " intrinsic calls"));

// Scale the counts from the annotation using the BB count value.
static cl::opt<bool>
    MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden,
                    cl::desc("Scale the memop size counts using the basic "
                             " block count value"));

// This option sets the rangge of precise profile memop sizes.
extern cl::opt<std::string> MemOPSizeRange;

// This option sets the value that groups large memop sizes
extern cl::opt<unsigned> MemOPSizeLarge;

namespace {
class PGOMemOPSizeOptLegacyPass : public FunctionPass {
public:
  static char ID;

  PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) {
    initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "PGOMemOPSize"; }

private:
  bool runOnFunction(Function &F) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};
} // end anonymous namespace

char PGOMemOPSizeOptLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
                      "Optimize memory intrinsic using its size value profile",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
                    "Optimize memory intrinsic using its size value profile",
                    false, false)

FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() {
  return new PGOMemOPSizeOptLegacyPass();
}

namespace {
class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> {
public:
  MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI,
               OptimizationRemarkEmitter &ORE, DominatorTree *DT)
      : Func(Func), BFI(BFI), ORE(ORE), DT(DT), Changed(false) {
    ValueDataArray =
        std::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2);
    // Get the MemOPSize range information from option MemOPSizeRange,
    getMemOPSizeRangeFromOption(MemOPSizeRange, PreciseRangeStart,
                                PreciseRangeLast);
  }
  bool isChanged() const { return Changed; }
  void perform() {
    WorkList.clear();
    visit(Func);

    for (auto &MI : WorkList) {
      ++NumOfPGOMemOPAnnotate;
      if (perform(MI)) {
        Changed = true;
        ++NumOfPGOMemOPOpt;
        LLVM_DEBUG(dbgs() << "MemOP call: "
                          << MI->getCalledFunction()->getName()
                          << "is Transformed.\n");
      }
    }
  }

  void visitMemIntrinsic(MemIntrinsic &MI) {
    Value *Length = MI.getLength();
    // Not perform on constant length calls.
    if (dyn_cast<ConstantInt>(Length))
      return;
    WorkList.push_back(&MI);
  }

private:
  Function &Func;
  BlockFrequencyInfo &BFI;
  OptimizationRemarkEmitter &ORE;
  DominatorTree *DT;
  bool Changed;
  std::vector<MemIntrinsic *> WorkList;
  // Start of the previse range.
  int64_t PreciseRangeStart;
  // Last value of the previse range.
  int64_t PreciseRangeLast;
  // The space to read the profile annotation.
  std::unique_ptr<InstrProfValueData[]> ValueDataArray;
  bool perform(MemIntrinsic *MI);

  // This kind shows which group the value falls in. For PreciseValue, we have
  // the profile count for that value. LargeGroup groups the values that are in
  // range [LargeValue, +inf). NonLargeGroup groups the rest of values.
  enum MemOPSizeKind { PreciseValue, NonLargeGroup, LargeGroup };

  MemOPSizeKind getMemOPSizeKind(int64_t Value) const {
    if (Value == MemOPSizeLarge && MemOPSizeLarge != 0)
      return LargeGroup;
    if (Value == PreciseRangeLast + 1)
      return NonLargeGroup;
    return PreciseValue;
  }
};

static const char *getMIName(const MemIntrinsic *MI) {
  switch (MI->getIntrinsicID()) {
  case Intrinsic::memcpy:
    return "memcpy";
  case Intrinsic::memmove:
    return "memmove";
  case Intrinsic::memset:
    return "memset";
  default:
    return "unknown";
  }
}

static bool isProfitable(uint64_t Count, uint64_t TotalCount) {
  assert(Count <= TotalCount);
  if (Count < MemOPCountThreshold)
    return false;
  if (Count < TotalCount * MemOPPercentThreshold / 100)
    return false;
  return true;
}

static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num,
                                      uint64_t Denom) {
  if (!MemOPScaleCount)
    return Count;
  bool Overflowed;
  uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed);
  return ScaleCount / Denom;
}

bool MemOPSizeOpt::perform(MemIntrinsic *MI) {
  assert(MI);
  if (MI->getIntrinsicID() == Intrinsic::memmove)
    return false;

  uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2;
  uint64_t TotalCount;
  if (!getValueProfDataFromInst(*MI, IPVK_MemOPSize, MaxNumPromotions,
                                ValueDataArray.get(), NumVals, TotalCount))
    return false;

  uint64_t ActualCount = TotalCount;
  uint64_t SavedTotalCount = TotalCount;
  if (MemOPScaleCount) {
    auto BBEdgeCount = BFI.getBlockProfileCount(MI->getParent());
    if (!BBEdgeCount)
      return false;
    ActualCount = *BBEdgeCount;
  }

  ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals);
  LLVM_DEBUG(dbgs() << "Read one memory intrinsic profile with count "
                    << ActualCount << "\n");
  LLVM_DEBUG(
      for (auto &VD
           : VDs) { dbgs() << "  (" << VD.Value << "," << VD.Count << ")\n"; });

  if (ActualCount < MemOPCountThreshold)
    return false;
  // Skip if the total value profiled count is 0, in which case we can't
  // scale up the counts properly (and there is no profitable transformation).
  if (TotalCount == 0)
    return false;

  TotalCount = ActualCount;
  if (MemOPScaleCount)
    LLVM_DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount
                      << " denominator = " << SavedTotalCount << "\n");

  // Keeping track of the count of the default case:
  uint64_t RemainCount = TotalCount;
  uint64_t SavedRemainCount = SavedTotalCount;
  SmallVector<uint64_t, 16> SizeIds;
  SmallVector<uint64_t, 16> CaseCounts;
  uint64_t MaxCount = 0;
  unsigned Version = 0;
  // Default case is in the front -- save the slot here.
  CaseCounts.push_back(0);
  for (auto &VD : VDs) {
    int64_t V = VD.Value;
    uint64_t C = VD.Count;
    if (MemOPScaleCount)
      C = getScaledCount(C, ActualCount, SavedTotalCount);

    // Only care precise value here.
    if (getMemOPSizeKind(V) != PreciseValue)
      continue;

    // ValueCounts are sorted on the count. Break at the first un-profitable
    // value.
    if (!isProfitable(C, RemainCount))
      break;

    SizeIds.push_back(V);
    CaseCounts.push_back(C);
    if (C > MaxCount)
      MaxCount = C;

    assert(RemainCount >= C);
    RemainCount -= C;
    assert(SavedRemainCount >= VD.Count);
    SavedRemainCount -= VD.Count;

    if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0)
      break;
  }

  if (Version == 0)
    return false;

  CaseCounts[0] = RemainCount;
  if (RemainCount > MaxCount)
    MaxCount = RemainCount;

  uint64_t SumForOpt = TotalCount - RemainCount;

  LLVM_DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version
                    << " Versions (covering " << SumForOpt << " out of "
                    << TotalCount << ")\n");

  // mem_op(..., size)
  // ==>
  // switch (size) {
  //   case s1:
  //      mem_op(..., s1);
  //      goto merge_bb;
  //   case s2:
  //      mem_op(..., s2);
  //      goto merge_bb;
  //   ...
  //   default:
  //      mem_op(..., size);
  //      goto merge_bb;
  // }
  // merge_bb:

  BasicBlock *BB = MI->getParent();
  LLVM_DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
  LLVM_DEBUG(dbgs() << *BB << "\n");
  auto OrigBBFreq = BFI.getBlockFreq(BB);

  BasicBlock *DefaultBB = SplitBlock(BB, MI, DT);
  BasicBlock::iterator It(*MI);
  ++It;
  assert(It != DefaultBB->end());
  BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It), DT);
  MergeBB->setName("MemOP.Merge");
  BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency());
  DefaultBB->setName("MemOP.Default");

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  auto &Ctx = Func.getContext();
  IRBuilder<> IRB(BB);
  BB->getTerminator()->eraseFromParent();
  Value *SizeVar = MI->getLength();
  SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size());

  // Clear the value profile data.
  MI->setMetadata(LLVMContext::MD_prof, nullptr);
  // If all promoted, we don't need the MD.prof metadata.
  if (SavedRemainCount > 0 || Version != NumVals)
    // Otherwise we need update with the un-promoted records back.
    annotateValueSite(*Func.getParent(), *MI, VDs.slice(Version),
                      SavedRemainCount, IPVK_MemOPSize, NumVals);

  LLVM_DEBUG(dbgs() << "\n\n== Basic Block After==\n");

  std::vector<DominatorTree::UpdateType> Updates;
  if (DT)
    Updates.reserve(2 * SizeIds.size());

  for (uint64_t SizeId : SizeIds) {
    BasicBlock *CaseBB = BasicBlock::Create(
        Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB);
    Instruction *NewInst = MI->clone();
    // Fix the argument.
    auto *MemI = cast<MemIntrinsic>(NewInst);
    auto *SizeType = dyn_cast<IntegerType>(MemI->getLength()->getType());
    assert(SizeType && "Expected integer type size argument.");
    ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId);
    MemI->setLength(CaseSizeId);
    CaseBB->getInstList().push_back(NewInst);
    IRBuilder<> IRBCase(CaseBB);
    IRBCase.CreateBr(MergeBB);
    SI->addCase(CaseSizeId, CaseBB);
    if (DT) {
      Updates.push_back({DominatorTree::Insert, CaseBB, MergeBB});
      Updates.push_back({DominatorTree::Insert, BB, CaseBB});
    }
    LLVM_DEBUG(dbgs() << *CaseBB << "\n");
  }
  DTU.applyUpdates(Updates);
  Updates.clear();

  setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount);

  LLVM_DEBUG(dbgs() << *BB << "\n");
  LLVM_DEBUG(dbgs() << *DefaultBB << "\n");
  LLVM_DEBUG(dbgs() << *MergeBB << "\n");

  ORE.emit([&]() {
    using namespace ore;
    return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MI)
             << "optimized " << NV("Intrinsic", StringRef(getMIName(MI)))
             << " with count " << NV("Count", SumForOpt) << " out of "
             << NV("Total", TotalCount) << " for " << NV("Versions", Version)
             << " versions";
  });

  return true;
}
} // namespace

static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI,
                                OptimizationRemarkEmitter &ORE,
                                DominatorTree *DT) {
  if (DisableMemOPOPT)
    return false;

  if (F.hasFnAttribute(Attribute::OptimizeForSize))
    return false;
  MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE, DT);
  MemOPSizeOpt.perform();
  return MemOPSizeOpt.isChanged();
}

bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) {
  BlockFrequencyInfo &BFI =
      getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  return PGOMemOPSizeOptImpl(F, BFI, ORE, DT);
}

namespace llvm {
char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID;

PreservedAnalyses PGOMemOPSizeOpt::run(Function &F,
                                       FunctionAnalysisManager &FAM) {
  auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
  bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE, DT);
  if (!Changed)
    return PreservedAnalyses::all();
  auto PA = PreservedAnalyses();
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}
} // namespace llvm