reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
//===- InstrProf.cpp - Instrumented profiling format support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's instrumentation based PGO and
// coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SwapByteOrder.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;

static cl::opt<bool> StaticFuncFullModulePrefix(
    "static-func-full-module-prefix", cl::init(true), cl::Hidden,
    cl::desc("Use full module build paths in the profile counter names for "
             "static functions."));

// This option is tailored to users that have different top-level directory in
// profile-gen and profile-use compilation. Users need to specific the number
// of levels to strip. A value larger than the number of directories in the
// source file will strip all the directory names and only leave the basename.
//
// Note current ThinLTO module importing for the indirect-calls assumes
// the source directory name not being stripped. A non-zero option value here
// can potentially prevent some inter-module indirect-call-promotions.
static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
    "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
    cl::desc("Strip specified level of directory name from source path in "
             "the profile counter name for static functions."));

static std::string getInstrProfErrString(instrprof_error Err) {
  switch (Err) {
  case instrprof_error::success:
    return "Success";
  case instrprof_error::eof:
    return "End of File";
  case instrprof_error::unrecognized_format:
    return "Unrecognized instrumentation profile encoding format";
  case instrprof_error::bad_magic:
    return "Invalid instrumentation profile data (bad magic)";
  case instrprof_error::bad_header:
    return "Invalid instrumentation profile data (file header is corrupt)";
  case instrprof_error::unsupported_version:
    return "Unsupported instrumentation profile format version";
  case instrprof_error::unsupported_hash_type:
    return "Unsupported instrumentation profile hash type";
  case instrprof_error::too_large:
    return "Too much profile data";
  case instrprof_error::truncated:
    return "Truncated profile data";
  case instrprof_error::malformed:
    return "Malformed instrumentation profile data";
  case instrprof_error::unknown_function:
    return "No profile data available for function";
  case instrprof_error::hash_mismatch:
    return "Function control flow change detected (hash mismatch)";
  case instrprof_error::count_mismatch:
    return "Function basic block count change detected (counter mismatch)";
  case instrprof_error::counter_overflow:
    return "Counter overflow";
  case instrprof_error::value_site_count_mismatch:
    return "Function value site count change detected (counter mismatch)";
  case instrprof_error::compress_failed:
    return "Failed to compress data (zlib)";
  case instrprof_error::uncompress_failed:
    return "Failed to uncompress data (zlib)";
  case instrprof_error::empty_raw_profile:
    return "Empty raw profile file";
  case instrprof_error::zlib_unavailable:
    return "Profile uses zlib compression but the profile reader was built without zlib support";
  }
  llvm_unreachable("A value of instrprof_error has no message.");
}

namespace {

// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class InstrProfErrorCategoryType : public std::error_category {
  const char *name() const noexcept override { return "llvm.instrprof"; }

  std::string message(int IE) const override {
    return getInstrProfErrString(static_cast<instrprof_error>(IE));
  }
};

} // end anonymous namespace

static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;

const std::error_category &llvm::instrprof_category() {
  return *ErrorCategory;
}

namespace {

const char *InstrProfSectNameCommon[] = {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
  SectNameCommon,
#include "llvm/ProfileData/InstrProfData.inc"
};

const char *InstrProfSectNameCoff[] = {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
  SectNameCoff,
#include "llvm/ProfileData/InstrProfData.inc"
};

const char *InstrProfSectNamePrefix[] = {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
  Prefix,
#include "llvm/ProfileData/InstrProfData.inc"
};

} // namespace

namespace llvm {

std::string getInstrProfSectionName(InstrProfSectKind IPSK,
                                    Triple::ObjectFormatType OF,
                                    bool AddSegmentInfo) {
  std::string SectName;

  if (OF == Triple::MachO && AddSegmentInfo)
    SectName = InstrProfSectNamePrefix[IPSK];

  if (OF == Triple::COFF)
    SectName += InstrProfSectNameCoff[IPSK];
  else
    SectName += InstrProfSectNameCommon[IPSK];

  if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
    SectName += ",regular,live_support";

  return SectName;
}

void SoftInstrProfErrors::addError(instrprof_error IE) {
  if (IE == instrprof_error::success)
    return;

  if (FirstError == instrprof_error::success)
    FirstError = IE;

  switch (IE) {
  case instrprof_error::hash_mismatch:
    ++NumHashMismatches;
    break;
  case instrprof_error::count_mismatch:
    ++NumCountMismatches;
    break;
  case instrprof_error::counter_overflow:
    ++NumCounterOverflows;
    break;
  case instrprof_error::value_site_count_mismatch:
    ++NumValueSiteCountMismatches;
    break;
  default:
    llvm_unreachable("Not a soft error");
  }
}

std::string InstrProfError::message() const {
  return getInstrProfErrString(Err);
}

char InstrProfError::ID = 0;

std::string getPGOFuncName(StringRef RawFuncName,
                           GlobalValue::LinkageTypes Linkage,
                           StringRef FileName,
                           uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
  return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
}

// Strip NumPrefix level of directory name from PathNameStr. If the number of
// directory separators is less than NumPrefix, strip all the directories and
// leave base file name only.
static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
  uint32_t Count = NumPrefix;
  uint32_t Pos = 0, LastPos = 0;
  for (auto & CI : PathNameStr) {
    ++Pos;
    if (llvm::sys::path::is_separator(CI)) {
      LastPos = Pos;
      --Count;
    }
    if (Count == 0)
      break;
  }
  return PathNameStr.substr(LastPos);
}

// Return the PGOFuncName. This function has some special handling when called
// in LTO optimization. The following only applies when calling in LTO passes
// (when \c InLTO is true): LTO's internalization privatizes many global linkage
// symbols. This happens after value profile annotation, but those internal
// linkage functions should not have a source prefix.
// Additionally, for ThinLTO mode, exported internal functions are promoted
// and renamed. We need to ensure that the original internal PGO name is
// used when computing the GUID that is compared against the profiled GUIDs.
// To differentiate compiler generated internal symbols from original ones,
// PGOFuncName meta data are created and attached to the original internal
// symbols in the value profile annotation step
// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
// data, its original linkage must be non-internal.
std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
  if (!InLTO) {
    StringRef FileName(F.getParent()->getSourceFileName());
    uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
    if (StripLevel < StaticFuncStripDirNamePrefix)
      StripLevel = StaticFuncStripDirNamePrefix;
    if (StripLevel)
      FileName = stripDirPrefix(FileName, StripLevel);
    return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
  }

  // In LTO mode (when InLTO is true), first check if there is a meta data.
  if (MDNode *MD = getPGOFuncNameMetadata(F)) {
    StringRef S = cast<MDString>(MD->getOperand(0))->getString();
    return S.str();
  }

  // If there is no meta data, the function must be a global before the value
  // profile annotation pass. Its current linkage may be internal if it is
  // internalized in LTO mode.
  return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
}

StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
  if (FileName.empty())
    return PGOFuncName;
  // Drop the file name including ':'. See also getPGOFuncName.
  if (PGOFuncName.startswith(FileName))
    PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
  return PGOFuncName;
}

// \p FuncName is the string used as profile lookup key for the function. A
// symbol is created to hold the name. Return the legalized symbol name.
std::string getPGOFuncNameVarName(StringRef FuncName,
                                  GlobalValue::LinkageTypes Linkage) {
  std::string VarName = getInstrProfNameVarPrefix();
  VarName += FuncName;

  if (!GlobalValue::isLocalLinkage(Linkage))
    return VarName;

  // Now fix up illegal chars in local VarName that may upset the assembler.
  const char *InvalidChars = "-:<>/\"'";
  size_t found = VarName.find_first_of(InvalidChars);
  while (found != std::string::npos) {
    VarName[found] = '_';
    found = VarName.find_first_of(InvalidChars, found + 1);
  }
  return VarName;
}

GlobalVariable *createPGOFuncNameVar(Module &M,
                                     GlobalValue::LinkageTypes Linkage,
                                     StringRef PGOFuncName) {
  // We generally want to match the function's linkage, but available_externally
  // and extern_weak both have the wrong semantics, and anything that doesn't
  // need to link across compilation units doesn't need to be visible at all.
  if (Linkage == GlobalValue::ExternalWeakLinkage)
    Linkage = GlobalValue::LinkOnceAnyLinkage;
  else if (Linkage == GlobalValue::AvailableExternallyLinkage)
    Linkage = GlobalValue::LinkOnceODRLinkage;
  else if (Linkage == GlobalValue::InternalLinkage ||
           Linkage == GlobalValue::ExternalLinkage)
    Linkage = GlobalValue::PrivateLinkage;

  auto *Value =
      ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
  auto FuncNameVar =
      new GlobalVariable(M, Value->getType(), true, Linkage, Value,
                         getPGOFuncNameVarName(PGOFuncName, Linkage));

  // Hide the symbol so that we correctly get a copy for each executable.
  if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
    FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);

  return FuncNameVar;
}

GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
  return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
}

Error InstrProfSymtab::create(Module &M, bool InLTO) {
  for (Function &F : M) {
    // Function may not have a name: like using asm("") to overwrite the name.
    // Ignore in this case.
    if (!F.hasName())
      continue;
    const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
    if (Error E = addFuncName(PGOFuncName))
      return E;
    MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
    // In ThinLTO, local function may have been promoted to global and have
    // suffix added to the function name. We need to add the stripped function
    // name to the symbol table so that we can find a match from profile.
    if (InLTO) {
      auto pos = PGOFuncName.find('.');
      if (pos != std::string::npos) {
        const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
        if (Error E = addFuncName(OtherFuncName))
          return E;
        MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
      }
    }
  }
  Sorted = false;
  finalizeSymtab();
  return Error::success();
}

uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
  finalizeSymtab();
  auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
    return A.first < Address;
  });
  // Raw function pointer collected by value profiler may be from
  // external functions that are not instrumented. They won't have
  // mapping data to be used by the deserializer. Force the value to
  // be 0 in this case.
  if (It != AddrToMD5Map.end() && It->first == Address)
    return (uint64_t)It->second;
  return 0;
}

Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
                                bool doCompression, std::string &Result) {
  assert(!NameStrs.empty() && "No name data to emit");

  uint8_t Header[16], *P = Header;
  std::string UncompressedNameStrings =
      join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());

  assert(StringRef(UncompressedNameStrings)
                 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
         "PGO name is invalid (contains separator token)");

  unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
  P += EncLen;

  auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
    EncLen = encodeULEB128(CompressedLen, P);
    P += EncLen;
    char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
    unsigned HeaderLen = P - &Header[0];
    Result.append(HeaderStr, HeaderLen);
    Result += InputStr;
    return Error::success();
  };

  if (!doCompression) {
    return WriteStringToResult(0, UncompressedNameStrings);
  }

  SmallString<128> CompressedNameStrings;
  Error E = zlib::compress(StringRef(UncompressedNameStrings),
                           CompressedNameStrings, zlib::BestSizeCompression);
  if (E) {
    consumeError(std::move(E));
    return make_error<InstrProfError>(instrprof_error::compress_failed);
  }

  return WriteStringToResult(CompressedNameStrings.size(),
                             CompressedNameStrings);
}

StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
  auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
  StringRef NameStr =
      Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
  return NameStr;
}

Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
                                std::string &Result, bool doCompression) {
  std::vector<std::string> NameStrs;
  for (auto *NameVar : NameVars) {
    NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
  }
  return collectPGOFuncNameStrings(
      NameStrs, zlib::isAvailable() && doCompression, Result);
}

Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
  const uint8_t *P = NameStrings.bytes_begin();
  const uint8_t *EndP = NameStrings.bytes_end();
  while (P < EndP) {
    uint32_t N;
    uint64_t UncompressedSize = decodeULEB128(P, &N);
    P += N;
    uint64_t CompressedSize = decodeULEB128(P, &N);
    P += N;
    bool isCompressed = (CompressedSize != 0);
    SmallString<128> UncompressedNameStrings;
    StringRef NameStrings;
    if (isCompressed) {
      if (!llvm::zlib::isAvailable())
        return make_error<InstrProfError>(instrprof_error::zlib_unavailable);

      StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
                                      CompressedSize);
      if (Error E =
              zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
                               UncompressedSize)) {
        consumeError(std::move(E));
        return make_error<InstrProfError>(instrprof_error::uncompress_failed);
      }
      P += CompressedSize;
      NameStrings = StringRef(UncompressedNameStrings.data(),
                              UncompressedNameStrings.size());
    } else {
      NameStrings =
          StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
      P += UncompressedSize;
    }
    // Now parse the name strings.
    SmallVector<StringRef, 0> Names;
    NameStrings.split(Names, getInstrProfNameSeparator());
    for (StringRef &Name : Names)
      if (Error E = Symtab.addFuncName(Name))
        return E;

    while (P < EndP && *P == 0)
      P++;
  }
  return Error::success();
}

void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
  uint64_t FuncSum = 0;
  Sum.NumEntries += Counts.size();
  for (size_t F = 0, E = Counts.size(); F < E; ++F)
    FuncSum += Counts[F];
  Sum.CountSum += FuncSum;

  for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
    uint64_t KindSum = 0;
    uint32_t NumValueSites = getNumValueSites(VK);
    for (size_t I = 0; I < NumValueSites; ++I) {
      uint32_t NV = getNumValueDataForSite(VK, I);
      std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
      for (uint32_t V = 0; V < NV; V++)
        KindSum += VD[V].Count;
    }
    Sum.ValueCounts[VK] += KindSum;
  }
}

void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
                                       uint32_t ValueKind,
                                       OverlapStats &Overlap,
                                       OverlapStats &FuncLevelOverlap) {
  this->sortByTargetValues();
  Input.sortByTargetValues();
  double Score = 0.0f, FuncLevelScore = 0.0f;
  auto I = ValueData.begin();
  auto IE = ValueData.end();
  auto J = Input.ValueData.begin();
  auto JE = Input.ValueData.end();
  while (I != IE && J != JE) {
    if (I->Value == J->Value) {
      Score += OverlapStats::score(I->Count, J->Count,
                                   Overlap.Base.ValueCounts[ValueKind],
                                   Overlap.Test.ValueCounts[ValueKind]);
      FuncLevelScore += OverlapStats::score(
          I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
          FuncLevelOverlap.Test.ValueCounts[ValueKind]);
      ++I;
    } else if (I->Value < J->Value) {
      ++I;
      continue;
    }
    ++J;
  }
  Overlap.Overlap.ValueCounts[ValueKind] += Score;
  FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
}

// Return false on mismatch.
void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
                                           InstrProfRecord &Other,
                                           OverlapStats &Overlap,
                                           OverlapStats &FuncLevelOverlap) {
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
  assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
  if (!ThisNumValueSites)
    return;

  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
      getOrCreateValueSitesForKind(ValueKind);
  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
      Other.getValueSitesForKind(ValueKind);
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
    ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
                               FuncLevelOverlap);
}

void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
                              OverlapStats &FuncLevelOverlap,
                              uint64_t ValueCutoff) {
  // FuncLevel CountSum for other should already computed and nonzero.
  assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
  accumulateCounts(FuncLevelOverlap.Base);
  bool Mismatch = (Counts.size() != Other.Counts.size());

  // Check if the value profiles mismatch.
  if (!Mismatch) {
    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
      uint32_t ThisNumValueSites = getNumValueSites(Kind);
      uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
      if (ThisNumValueSites != OtherNumValueSites) {
        Mismatch = true;
        break;
      }
    }
  }
  if (Mismatch) {
    Overlap.addOneMismatch(FuncLevelOverlap.Test);
    return;
  }

  // Compute overlap for value counts.
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);

  double Score = 0.0;
  uint64_t MaxCount = 0;
  // Compute overlap for edge counts.
  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
    Score += OverlapStats::score(Counts[I], Other.Counts[I],
                                 Overlap.Base.CountSum, Overlap.Test.CountSum);
    MaxCount = std::max(Other.Counts[I], MaxCount);
  }
  Overlap.Overlap.CountSum += Score;
  Overlap.Overlap.NumEntries += 1;

  if (MaxCount >= ValueCutoff) {
    double FuncScore = 0.0;
    for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
      FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
                                       FuncLevelOverlap.Base.CountSum,
                                       FuncLevelOverlap.Test.CountSum);
    FuncLevelOverlap.Overlap.CountSum = FuncScore;
    FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
    FuncLevelOverlap.Valid = true;
  }
}

void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
                                     uint64_t Weight,
                                     function_ref<void(instrprof_error)> Warn) {
  this->sortByTargetValues();
  Input.sortByTargetValues();
  auto I = ValueData.begin();
  auto IE = ValueData.end();
  for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
       ++J) {
    while (I != IE && I->Value < J->Value)
      ++I;
    if (I != IE && I->Value == J->Value) {
      bool Overflowed;
      I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
      if (Overflowed)
        Warn(instrprof_error::counter_overflow);
      ++I;
      continue;
    }
    ValueData.insert(I, *J);
  }
}

void InstrProfValueSiteRecord::scale(uint64_t Weight,
                                     function_ref<void(instrprof_error)> Warn) {
  for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
    bool Overflowed;
    I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
    if (Overflowed)
      Warn(instrprof_error::counter_overflow);
  }
}

// Merge Value Profile data from Src record to this record for ValueKind.
// Scale merged value counts by \p Weight.
void InstrProfRecord::mergeValueProfData(
    uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
    function_ref<void(instrprof_error)> Warn) {
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
  uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
  if (ThisNumValueSites != OtherNumValueSites) {
    Warn(instrprof_error::value_site_count_mismatch);
    return;
  }
  if (!ThisNumValueSites)
    return;
  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
      getOrCreateValueSitesForKind(ValueKind);
  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
      Src.getValueSitesForKind(ValueKind);
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
    ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
}

void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
                            function_ref<void(instrprof_error)> Warn) {
  // If the number of counters doesn't match we either have bad data
  // or a hash collision.
  if (Counts.size() != Other.Counts.size()) {
    Warn(instrprof_error::count_mismatch);
    return;
  }

  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
    bool Overflowed;
    Counts[I] =
        SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
    if (Overflowed)
      Warn(instrprof_error::counter_overflow);
  }

  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    mergeValueProfData(Kind, Other, Weight, Warn);
}

void InstrProfRecord::scaleValueProfData(
    uint32_t ValueKind, uint64_t Weight,
    function_ref<void(instrprof_error)> Warn) {
  for (auto &R : getValueSitesForKind(ValueKind))
    R.scale(Weight, Warn);
}

void InstrProfRecord::scale(uint64_t Weight,
                            function_ref<void(instrprof_error)> Warn) {
  for (auto &Count : this->Counts) {
    bool Overflowed;
    Count = SaturatingMultiply(Count, Weight, &Overflowed);
    if (Overflowed)
      Warn(instrprof_error::counter_overflow);
  }
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    scaleValueProfData(Kind, Weight, Warn);
}

// Map indirect call target name hash to name string.
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
                                     InstrProfSymtab *SymTab) {
  if (!SymTab)
    return Value;

  if (ValueKind == IPVK_IndirectCallTarget)
    return SymTab->getFunctionHashFromAddress(Value);

  return Value;
}

void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
                                   InstrProfValueData *VData, uint32_t N,
                                   InstrProfSymtab *ValueMap) {
  for (uint32_t I = 0; I < N; I++) {
    VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
  }
  std::vector<InstrProfValueSiteRecord> &ValueSites =
      getOrCreateValueSitesForKind(ValueKind);
  if (N == 0)
    ValueSites.emplace_back();
  else
    ValueSites.emplace_back(VData, VData + N);
}

#define INSTR_PROF_COMMON_API_IMPL
#include "llvm/ProfileData/InstrProfData.inc"

/*!
 * ValueProfRecordClosure Interface implementation for  InstrProfRecord
 *  class. These C wrappers are used as adaptors so that C++ code can be
 *  invoked as callbacks.
 */
uint32_t getNumValueKindsInstrProf(const void *Record) {
  return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
}

uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
  return reinterpret_cast<const InstrProfRecord *>(Record)
      ->getNumValueSites(VKind);
}

uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
  return reinterpret_cast<const InstrProfRecord *>(Record)
      ->getNumValueData(VKind);
}

uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
                                         uint32_t S) {
  return reinterpret_cast<const InstrProfRecord *>(R)
      ->getNumValueDataForSite(VK, S);
}

void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
                              uint32_t K, uint32_t S) {
  reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
}

ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
  ValueProfData *VD =
      (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
  memset(VD, 0, TotalSizeInBytes);
  return VD;
}

static ValueProfRecordClosure InstrProfRecordClosure = {
    nullptr,
    getNumValueKindsInstrProf,
    getNumValueSitesInstrProf,
    getNumValueDataInstrProf,
    getNumValueDataForSiteInstrProf,
    nullptr,
    getValueForSiteInstrProf,
    allocValueProfDataInstrProf};

// Wrapper implementation using the closure mechanism.
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
  auto Closure = InstrProfRecordClosure;
  Closure.Record = &Record;
  return getValueProfDataSize(&Closure);
}

// Wrapper implementation using the closure mechanism.
std::unique_ptr<ValueProfData>
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
  InstrProfRecordClosure.Record = &Record;

  std::unique_ptr<ValueProfData> VPD(
      serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
  return VPD;
}

void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
                                    InstrProfSymtab *SymTab) {
  Record.reserveSites(Kind, NumValueSites);

  InstrProfValueData *ValueData = getValueProfRecordValueData(this);
  for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
    uint8_t ValueDataCount = this->SiteCountArray[VSite];
    Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
    ValueData += ValueDataCount;
  }
}

// For writing/serializing,  Old is the host endianness, and  New is
// byte order intended on disk. For Reading/deserialization, Old
// is the on-disk source endianness, and New is the host endianness.
void ValueProfRecord::swapBytes(support::endianness Old,
                                support::endianness New) {
  using namespace support;

  if (Old == New)
    return;

  if (getHostEndianness() != Old) {
    sys::swapByteOrder<uint32_t>(NumValueSites);
    sys::swapByteOrder<uint32_t>(Kind);
  }
  uint32_t ND = getValueProfRecordNumValueData(this);
  InstrProfValueData *VD = getValueProfRecordValueData(this);

  // No need to swap byte array: SiteCountArrray.
  for (uint32_t I = 0; I < ND; I++) {
    sys::swapByteOrder<uint64_t>(VD[I].Value);
    sys::swapByteOrder<uint64_t>(VD[I].Count);
  }
  if (getHostEndianness() == Old) {
    sys::swapByteOrder<uint32_t>(NumValueSites);
    sys::swapByteOrder<uint32_t>(Kind);
  }
}

void ValueProfData::deserializeTo(InstrProfRecord &Record,
                                  InstrProfSymtab *SymTab) {
  if (NumValueKinds == 0)
    return;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    VR->deserializeTo(Record, SymTab);
    VR = getValueProfRecordNext(VR);
  }
}

template <class T>
static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
  using namespace support;

  if (Orig == little)
    return endian::readNext<T, little, unaligned>(D);
  else
    return endian::readNext<T, big, unaligned>(D);
}

static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
  return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
                                            ValueProfData());
}

Error ValueProfData::checkIntegrity() {
  if (NumValueKinds > IPVK_Last + 1)
    return make_error<InstrProfError>(instrprof_error::malformed);
  // Total size needs to be mulltiple of quadword size.
  if (TotalSize % sizeof(uint64_t))
    return make_error<InstrProfError>(instrprof_error::malformed);

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < this->NumValueKinds; K++) {
    if (VR->Kind > IPVK_Last)
      return make_error<InstrProfError>(instrprof_error::malformed);
    VR = getValueProfRecordNext(VR);
    if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
      return make_error<InstrProfError>(instrprof_error::malformed);
  }
  return Error::success();
}

Expected<std::unique_ptr<ValueProfData>>
ValueProfData::getValueProfData(const unsigned char *D,
                                const unsigned char *const BufferEnd,
                                support::endianness Endianness) {
  using namespace support;

  if (D + sizeof(ValueProfData) > BufferEnd)
    return make_error<InstrProfError>(instrprof_error::truncated);

  const unsigned char *Header = D;
  uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
  if (D + TotalSize > BufferEnd)
    return make_error<InstrProfError>(instrprof_error::too_large);

  std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
  memcpy(VPD.get(), D, TotalSize);
  // Byte swap.
  VPD->swapBytesToHost(Endianness);

  Error E = VPD->checkIntegrity();
  if (E)
    return std::move(E);

  return std::move(VPD);
}

void ValueProfData::swapBytesToHost(support::endianness Endianness) {
  using namespace support;

  if (Endianness == getHostEndianness())
    return;

  sys::swapByteOrder<uint32_t>(TotalSize);
  sys::swapByteOrder<uint32_t>(NumValueKinds);

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    VR->swapBytes(Endianness, getHostEndianness());
    VR = getValueProfRecordNext(VR);
  }
}

void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
  using namespace support;

  if (Endianness == getHostEndianness())
    return;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    ValueProfRecord *NVR = getValueProfRecordNext(VR);
    VR->swapBytes(getHostEndianness(), Endianness);
    VR = NVR;
  }
  sys::swapByteOrder<uint32_t>(TotalSize);
  sys::swapByteOrder<uint32_t>(NumValueKinds);
}

void annotateValueSite(Module &M, Instruction &Inst,
                       const InstrProfRecord &InstrProfR,
                       InstrProfValueKind ValueKind, uint32_t SiteIdx,
                       uint32_t MaxMDCount) {
  uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
  if (!NV)
    return;

  uint64_t Sum = 0;
  std::unique_ptr<InstrProfValueData[]> VD =
      InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);

  ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
  annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
}

void annotateValueSite(Module &M, Instruction &Inst,
                       ArrayRef<InstrProfValueData> VDs,
                       uint64_t Sum, InstrProfValueKind ValueKind,
                       uint32_t MaxMDCount) {
  LLVMContext &Ctx = M.getContext();
  MDBuilder MDHelper(Ctx);
  SmallVector<Metadata *, 3> Vals;
  // Tag
  Vals.push_back(MDHelper.createString("VP"));
  // Value Kind
  Vals.push_back(MDHelper.createConstant(
      ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
  // Total Count
  Vals.push_back(
      MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));

  // Value Profile Data
  uint32_t MDCount = MaxMDCount;
  for (auto &VD : VDs) {
    Vals.push_back(MDHelper.createConstant(
        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
    Vals.push_back(MDHelper.createConstant(
        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
    if (--MDCount == 0)
      break;
  }
  Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
}

bool getValueProfDataFromInst(const Instruction &Inst,
                              InstrProfValueKind ValueKind,
                              uint32_t MaxNumValueData,
                              InstrProfValueData ValueData[],
                              uint32_t &ActualNumValueData, uint64_t &TotalC) {
  MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
  if (!MD)
    return false;

  unsigned NOps = MD->getNumOperands();

  if (NOps < 5)
    return false;

  // Operand 0 is a string tag "VP":
  MDString *Tag = cast<MDString>(MD->getOperand(0));
  if (!Tag)
    return false;

  if (!Tag->getString().equals("VP"))
    return false;

  // Now check kind:
  ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
  if (!KindInt)
    return false;
  if (KindInt->getZExtValue() != ValueKind)
    return false;

  // Get total count
  ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
  if (!TotalCInt)
    return false;
  TotalC = TotalCInt->getZExtValue();

  ActualNumValueData = 0;

  for (unsigned I = 3; I < NOps; I += 2) {
    if (ActualNumValueData >= MaxNumValueData)
      break;
    ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
    ConstantInt *Count =
        mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
    if (!Value || !Count)
      return false;
    ValueData[ActualNumValueData].Value = Value->getZExtValue();
    ValueData[ActualNumValueData].Count = Count->getZExtValue();
    ActualNumValueData++;
  }
  return true;
}

MDNode *getPGOFuncNameMetadata(const Function &F) {
  return F.getMetadata(getPGOFuncNameMetadataName());
}

void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
  // Only for internal linkage functions.
  if (PGOFuncName == F.getName())
      return;
  // Don't create duplicated meta-data.
  if (getPGOFuncNameMetadata(F))
    return;
  LLVMContext &C = F.getContext();
  MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
  F.setMetadata(getPGOFuncNameMetadataName(), N);
}

bool needsComdatForCounter(const Function &F, const Module &M) {
  if (F.hasComdat())
    return true;

  if (!Triple(M.getTargetTriple()).supportsCOMDAT())
    return false;

  // See createPGOFuncNameVar for more details. To avoid link errors, profile
  // counters for function with available_externally linkage needs to be changed
  // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
  // created. Without using comdat, duplicate entries won't be removed by the
  // linker leading to increased data segement size and raw profile size. Even
  // worse, since the referenced counter from profile per-function data object
  // will be resolved to the common strong definition, the profile counts for
  // available_externally functions will end up being duplicated in raw profile
  // data. This can result in distorted profile as the counts of those dups
  // will be accumulated by the profile merger.
  GlobalValue::LinkageTypes Linkage = F.getLinkage();
  if (Linkage != GlobalValue::ExternalWeakLinkage &&
      Linkage != GlobalValue::AvailableExternallyLinkage)
    return false;

  return true;
}

// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
bool isIRPGOFlagSet(const Module *M) {
  auto IRInstrVar =
      M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
  if (!IRInstrVar || IRInstrVar->isDeclaration() ||
      IRInstrVar->hasLocalLinkage())
    return false;

  // Check if the flag is set.
  if (!IRInstrVar->hasInitializer())
    return false;

  auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
  if (!InitVal)
    return false;
  return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
}

// Check if we can safely rename this Comdat function.
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
  if (F.getName().empty())
    return false;
  if (!needsComdatForCounter(F, *(F.getParent())))
    return false;
  // Unsafe to rename the address-taken function (which can be used in
  // function comparison).
  if (CheckAddressTaken && F.hasAddressTaken())
    return false;
  // Only safe to do if this function may be discarded if it is not used
  // in the compilation unit.
  if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
    return false;

  // For AvailableExternallyLinkage functions.
  if (!F.hasComdat()) {
    assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
    return true;
  }
  return true;
}

// Parse the value profile options.
void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
                                 int64_t &RangeLast) {
  static const int64_t DefaultMemOPSizeRangeStart = 0;
  static const int64_t DefaultMemOPSizeRangeLast = 8;
  RangeStart = DefaultMemOPSizeRangeStart;
  RangeLast = DefaultMemOPSizeRangeLast;

  if (!MemOPSizeRange.empty()) {
    auto Pos = MemOPSizeRange.find(':');
    if (Pos != std::string::npos) {
      if (Pos > 0)
        MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
      if (Pos < MemOPSizeRange.size() - 1)
        MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
    } else
      MemOPSizeRange.getAsInteger(10, RangeLast);
  }
  assert(RangeLast >= RangeStart);
}

// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
// aware this is an ir_level profile so it can set the version flag.
void createIRLevelProfileFlagVar(Module &M, bool IsCS) {
  const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
  Type *IntTy64 = Type::getInt64Ty(M.getContext());
  uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
  if (IsCS)
    ProfileVersion |= VARIANT_MASK_CSIR_PROF;
  auto IRLevelVersionVariable = new GlobalVariable(
      M, IntTy64, true, GlobalValue::WeakAnyLinkage,
      Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
  IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
  Triple TT(M.getTargetTriple());
  if (TT.supportsCOMDAT()) {
    IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
    IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
  }
}

// Create the variable for the profile file name.
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
  if (InstrProfileOutput.empty())
    return;
  Constant *ProfileNameConst =
      ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
  GlobalVariable *ProfileNameVar = new GlobalVariable(
      M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
      ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
  Triple TT(M.getTargetTriple());
  if (TT.supportsCOMDAT()) {
    ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
    ProfileNameVar->setComdat(M.getOrInsertComdat(
        StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
  }
}

Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
                                     const std::string &TestFilename,
                                     bool IsCS) {
  auto getProfileSum = [IsCS](const std::string &Filename,
                              CountSumOrPercent &Sum) -> Error {
    auto ReaderOrErr = InstrProfReader::create(Filename);
    if (Error E = ReaderOrErr.takeError()) {
      return E;
    }
    auto Reader = std::move(ReaderOrErr.get());
    Reader->accumulateCounts(Sum, IsCS);
    return Error::success();
  };
  auto Ret = getProfileSum(BaseFilename, Base);
  if (Ret)
    return Ret;
  Ret = getProfileSum(TestFilename, Test);
  if (Ret)
    return Ret;
  this->BaseFilename = &BaseFilename;
  this->TestFilename = &TestFilename;
  Valid = true;
  return Error::success();
}

void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
  Mismatch.NumEntries += 1;
  Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
    if (Test.ValueCounts[I] >= 1.0f)
      Mismatch.ValueCounts[I] +=
          MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
  }
}

void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
  Unique.NumEntries += 1;
  Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
    if (Test.ValueCounts[I] >= 1.0f)
      Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
  }
}

void OverlapStats::dump(raw_fd_ostream &OS) const {
  if (!Valid)
    return;

  const char *EntryName =
      (Level == ProgramLevel ? "functions" : "edge counters");
  if (Level == ProgramLevel) {
    OS << "Profile overlap infomation for base_profile: " << *BaseFilename
       << " and test_profile: " << *TestFilename << "\nProgram level:\n";
  } else {
    OS << "Function level:\n"
       << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
  }

  OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
  if (Mismatch.NumEntries)
    OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries
       << "\n";
  if (Unique.NumEntries)
    OS << "  # of " << EntryName
       << " only in test_profile: " << Unique.NumEntries << "\n";

  OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
     << "\n";
  if (Mismatch.NumEntries)
    OS << "  Mismatched count percentage (Edge): "
       << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
  if (Unique.NumEntries)
    OS << "  Percentage of Edge profile only in test_profile: "
       << format("%.3f%%", Unique.CountSum * 100) << "\n";
  OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum)
     << "\n"
     << "  Edge profile test count sum: " << format("%.0f", Test.CountSum)
     << "\n";

  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
    if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
      continue;
    char ProfileKindName[20];
    switch (I) {
    case IPVK_IndirectCallTarget:
      strncpy(ProfileKindName, "IndirectCall", 19);
      break;
    case IPVK_MemOPSize:
      strncpy(ProfileKindName, "MemOP", 19);
      break;
    default:
      snprintf(ProfileKindName, 19, "VP[%d]", I);
      break;
    }
    OS << "  " << ProfileKindName
       << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
       << "\n";
    if (Mismatch.NumEntries)
      OS << "  Mismatched count percentage (" << ProfileKindName
         << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
    if (Unique.NumEntries)
      OS << "  Percentage of " << ProfileKindName
         << " profile only in test_profile: "
         << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
    OS << "  " << ProfileKindName
       << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
       << "\n"
       << "  " << ProfileKindName
       << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
       << "\n";
  }
}

} // end namespace llvm