reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass transforms simple global variables that never have their address
// taken.  If obviously true, it marks read/write globals as constant, deletes
// variables only stored to, etc.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/GlobalOpt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "globalopt"

STATISTIC(NumMarked    , "Number of globals marked constant");
STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
STATISTIC(NumDeleted   , "Number of globals deleted");
STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
STATISTIC(NumLocalized , "Number of globals localized");
STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
STATISTIC(NumInternalFunc, "Number of internal functions");
STATISTIC(NumColdCC, "Number of functions marked coldcc");

static cl::opt<bool>
    EnableColdCCStressTest("enable-coldcc-stress-test",
                           cl::desc("Enable stress test of coldcc by adding "
                                    "calling conv to all internal functions."),
                           cl::init(false), cl::Hidden);

static cl::opt<int> ColdCCRelFreq(
    "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
    cl::desc(
        "Maximum block frequency, expressed as a percentage of caller's "
        "entry frequency, for a call site to be considered cold for enabling"
        "coldcc"));

/// Is this global variable possibly used by a leak checker as a root?  If so,
/// we might not really want to eliminate the stores to it.
static bool isLeakCheckerRoot(GlobalVariable *GV) {
  // A global variable is a root if it is a pointer, or could plausibly contain
  // a pointer.  There are two challenges; one is that we could have a struct
  // the has an inner member which is a pointer.  We recurse through the type to
  // detect these (up to a point).  The other is that we may actually be a union
  // of a pointer and another type, and so our LLVM type is an integer which
  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
  // potentially contained here.

  if (GV->hasPrivateLinkage())
    return false;

  SmallVector<Type *, 4> Types;
  Types.push_back(GV->getValueType());

  unsigned Limit = 20;
  do {
    Type *Ty = Types.pop_back_val();
    switch (Ty->getTypeID()) {
      default: break;
      case Type::PointerTyID: return true;
      case Type::ArrayTyID:
      case Type::VectorTyID: {
        SequentialType *STy = cast<SequentialType>(Ty);
        Types.push_back(STy->getElementType());
        break;
      }
      case Type::StructTyID: {
        StructType *STy = cast<StructType>(Ty);
        if (STy->isOpaque()) return true;
        for (StructType::element_iterator I = STy->element_begin(),
                 E = STy->element_end(); I != E; ++I) {
          Type *InnerTy = *I;
          if (isa<PointerType>(InnerTy)) return true;
          if (isa<CompositeType>(InnerTy))
            Types.push_back(InnerTy);
        }
        break;
      }
    }
    if (--Limit == 0) return true;
  } while (!Types.empty());
  return false;
}

/// Given a value that is stored to a global but never read, determine whether
/// it's safe to remove the store and the chain of computation that feeds the
/// store.
static bool IsSafeComputationToRemove(
    Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  do {
    if (isa<Constant>(V))
      return true;
    if (!V->hasOneUse())
      return false;
    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
        isa<GlobalValue>(V))
      return false;
    if (isAllocationFn(V, GetTLI))
      return true;

    Instruction *I = cast<Instruction>(V);
    if (I->mayHaveSideEffects())
      return false;
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
      if (!GEP->hasAllConstantIndices())
        return false;
    } else if (I->getNumOperands() != 1) {
      return false;
    }

    V = I->getOperand(0);
  } while (true);
}

/// This GV is a pointer root.  Loop over all users of the global and clean up
/// any that obviously don't assign the global a value that isn't dynamically
/// allocated.
static bool
CleanupPointerRootUsers(GlobalVariable *GV,
                        function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  // A brief explanation of leak checkers.  The goal is to find bugs where
  // pointers are forgotten, causing an accumulating growth in memory
  // usage over time.  The common strategy for leak checkers is to whitelist the
  // memory pointed to by globals at exit.  This is popular because it also
  // solves another problem where the main thread of a C++ program may shut down
  // before other threads that are still expecting to use those globals.  To
  // handle that case, we expect the program may create a singleton and never
  // destroy it.

  bool Changed = false;

  // If Dead[n].first is the only use of a malloc result, we can delete its
  // chain of computation and the store to the global in Dead[n].second.
  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;

  // Constants can't be pointers to dynamically allocated memory.
  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
       UI != E;) {
    User *U = *UI++;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      Value *V = SI->getValueOperand();
      if (isa<Constant>(V)) {
        Changed = true;
        SI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, SI));
      }
    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
      if (isa<Constant>(MSI->getValue())) {
        Changed = true;
        MSI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, MSI));
      }
    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
      if (MemSrc && MemSrc->isConstant()) {
        Changed = true;
        MTI->eraseFromParent();
      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
        if (I->hasOneUse())
          Dead.push_back(std::make_pair(I, MTI));
      }
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (Constant *C = dyn_cast<Constant>(U)) {
      if (isSafeToDestroyConstant(C)) {
        C->destroyConstant();
        // This could have invalidated UI, start over from scratch.
        Dead.clear();
        CleanupPointerRootUsers(GV, GetTLI);
        return true;
      }
    }
  }

  for (int i = 0, e = Dead.size(); i != e; ++i) {
    if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
      Dead[i].second->eraseFromParent();
      Instruction *I = Dead[i].first;
      do {
        if (isAllocationFn(I, GetTLI))
          break;
        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
        if (!J)
          break;
        I->eraseFromParent();
        I = J;
      } while (true);
      I->eraseFromParent();
    }
  }

  return Changed;
}

/// We just marked GV constant.  Loop over all users of the global, cleaning up
/// the obvious ones.  This is largely just a quick scan over the use list to
/// clean up the easy and obvious cruft.  This returns true if it made a change.
static bool CleanupConstantGlobalUsers(
    Value *V, Constant *Init, const DataLayout &DL,
    function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  bool Changed = false;
  // Note that we need to use a weak value handle for the worklist items. When
  // we delete a constant array, we may also be holding pointer to one of its
  // elements (or an element of one of its elements if we're dealing with an
  // array of arrays) in the worklist.
  SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
  while (!WorkList.empty()) {
    Value *UV = WorkList.pop_back_val();
    if (!UV)
      continue;

    User *U = cast<User>(UV);

    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (Init) {
        // Replace the load with the initializer.
        LI->replaceAllUsesWith(Init);
        LI->eraseFromParent();
        Changed = true;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // Store must be unreachable or storing Init into the global.
      SI->eraseFromParent();
      Changed = true;
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        Constant *SubInit = nullptr;
        if (Init)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
      } else if ((CE->getOpcode() == Instruction::BitCast &&
                  CE->getType()->isPointerTy()) ||
                 CE->getOpcode() == Instruction::AddrSpaceCast) {
        // Pointer cast, delete any stores and memsets to the global.
        Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
      }

      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
      // and will invalidate our notion of what Init is.
      Constant *SubInit = nullptr;
      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
        ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
            ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);

        // If the initializer is an all-null value and we have an inbounds GEP,
        // we already know what the result of any load from that GEP is.
        // TODO: Handle splats.
        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
          SubInit = Constant::getNullValue(GEP->getResultElementType());
      }
      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);

      if (GEP->use_empty()) {
        GEP->eraseFromParent();
        Changed = true;
      }
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
      if (MI->getRawDest() == V) {
        MI->eraseFromParent();
        Changed = true;
      }

    } else if (Constant *C = dyn_cast<Constant>(U)) {
      // If we have a chain of dead constantexprs or other things dangling from
      // us, and if they are all dead, nuke them without remorse.
      if (isSafeToDestroyConstant(C)) {
        C->destroyConstant();
        CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
        return true;
      }
    }
  }
  return Changed;
}

static bool isSafeSROAElementUse(Value *V);

/// Return true if the specified GEP is a safe user of a derived
/// expression from a global that we want to SROA.
static bool isSafeSROAGEP(User *U) {
  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
  // don't like < 3 operand CE's, and we don't like non-constant integer
  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
  // value of C.
  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
      !cast<Constant>(U->getOperand(1))->isNullValue())
    return false;

  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
  ++GEPI; // Skip over the pointer index.

  // For all other level we require that the indices are constant and inrange.
  // In particular, consider: A[0][i].  We cannot know that the user isn't doing
  // invalid things like allowing i to index an out-of-range subscript that
  // accesses A[1]. This can also happen between different members of a struct
  // in llvm IR.
  for (; GEPI != E; ++GEPI) {
    if (GEPI.isStruct())
      continue;

    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    if (!IdxVal || (GEPI.isBoundedSequential() &&
                    IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
      return false;
  }

  return llvm::all_of(U->users(),
                      [](User *UU) { return isSafeSROAElementUse(UU); });
}

/// Return true if the specified instruction is a safe user of a derived
/// expression from a global that we want to SROA.
static bool isSafeSROAElementUse(Value *V) {
  // We might have a dead and dangling constant hanging off of here.
  if (Constant *C = dyn_cast<Constant>(V))
    return isSafeToDestroyConstant(C);

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Loads are ok.
  if (isa<LoadInst>(I)) return true;

  // Stores *to* the pointer are ok.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getOperand(0) != V;

  // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
  return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
}

/// Look at all uses of the global and decide whether it is safe for us to
/// perform this transformation.
static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
  for (User *U : GV->users()) {
    // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    if (!isa<GetElementPtrInst>(U) &&
        (!isa<ConstantExpr>(U) ||
        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
      return false;

    // Check the gep and it's users are safe to SRA
    if (!isSafeSROAGEP(U))
      return false;
  }

  return true;
}

/// Copy over the debug info for a variable to its SRA replacements.
static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
                                 uint64_t FragmentOffsetInBits,
                                 uint64_t FragmentSizeInBits,
                                 unsigned NumElements) {
  SmallVector<DIGlobalVariableExpression *, 1> GVs;
  GV->getDebugInfo(GVs);
  for (auto *GVE : GVs) {
    DIVariable *Var = GVE->getVariable();
    DIExpression *Expr = GVE->getExpression();
    if (NumElements > 1) {
      if (auto E = DIExpression::createFragmentExpression(
              Expr, FragmentOffsetInBits, FragmentSizeInBits))
        Expr = *E;
      else
        return;
    }
    auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
    NGV->addDebugInfo(NGVE);
  }
}

/// Perform scalar replacement of aggregates on the specified global variable.
/// This opens the door for other optimizations by exposing the behavior of the
/// program in a more fine-grained way.  We have determined that this
/// transformation is safe already.  We return the first global variable we
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
  // Make sure this global only has simple uses that we can SRA.
  if (!GlobalUsersSafeToSRA(GV))
    return nullptr;

  assert(GV->hasLocalLinkage());
  Constant *Init = GV->getInitializer();
  Type *Ty = Init->getType();

  std::vector<GlobalVariable *> NewGlobals;
  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();

  // Get the alignment of the global, either explicit or target-specific.
  unsigned StartAlignment = GV->getAlignment();
  if (StartAlignment == 0)
    StartAlignment = DL.getABITypeAlignment(GV->getType());

  if (StructType *STy = dyn_cast<StructType>(Ty)) {
    unsigned NumElements = STy->getNumElements();
    NewGlobals.reserve(NumElements);
    const StructLayout &Layout = *DL.getStructLayout(STy);
    for (unsigned i = 0, e = NumElements; i != e; ++i) {
      Constant *In = Init->getAggregateElement(i);
      assert(In && "Couldn't get element of initializer?");
      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
                                               GlobalVariable::InternalLinkage,
                                               In, GV->getName()+"."+Twine(i),
                                               GV->getThreadLocalMode(),
                                              GV->getType()->getAddressSpace());
      NGV->setExternallyInitialized(GV->isExternallyInitialized());
      NGV->copyAttributesFrom(GV);
      Globals.push_back(NGV);
      NewGlobals.push_back(NGV);

      // Calculate the known alignment of the field.  If the original aggregate
      // had 256 byte alignment for example, something might depend on that:
      // propagate info to each field.
      uint64_t FieldOffset = Layout.getElementOffset(i);
      Align NewAlign(MinAlign(StartAlignment, FieldOffset));
      if (NewAlign > Align(DL.getABITypeAlignment(STy->getElementType(i))))
        NGV->setAlignment(NewAlign);

      // Copy over the debug info for the variable.
      uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
      uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
      transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
    }
  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    unsigned NumElements = STy->getNumElements();
    if (NumElements > 16 && GV->hasNUsesOrMore(16))
      return nullptr; // It's not worth it.
    NewGlobals.reserve(NumElements);
    auto ElTy = STy->getElementType();
    uint64_t EltSize = DL.getTypeAllocSize(ElTy);
    Align EltAlign(DL.getABITypeAlignment(ElTy));
    uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
    for (unsigned i = 0, e = NumElements; i != e; ++i) {
      Constant *In = Init->getAggregateElement(i);
      assert(In && "Couldn't get element of initializer?");

      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
                                               GlobalVariable::InternalLinkage,
                                               In, GV->getName()+"."+Twine(i),
                                               GV->getThreadLocalMode(),
                                              GV->getType()->getAddressSpace());
      NGV->setExternallyInitialized(GV->isExternallyInitialized());
      NGV->copyAttributesFrom(GV);
      Globals.push_back(NGV);
      NewGlobals.push_back(NGV);

      // Calculate the known alignment of the field.  If the original aggregate
      // had 256 byte alignment for example, something might depend on that:
      // propagate info to each field.
      Align NewAlign(MinAlign(StartAlignment, EltSize * i));
      if (NewAlign > EltAlign)
        NGV->setAlignment(NewAlign);
      transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
                           NumElements);
    }
  }

  if (NewGlobals.empty())
    return nullptr;

  LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");

  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));

  // Loop over all of the uses of the global, replacing the constantexpr geps,
  // with smaller constantexpr geps or direct references.
  while (!GV->use_empty()) {
    User *GEP = GV->user_back();
    assert(((isa<ConstantExpr>(GEP) &&
             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");

    // Ignore the 1th operand, which has to be zero or else the program is quite
    // broken (undefined).  Get the 2nd operand, which is the structure or array
    // index.
    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.

    Value *NewPtr = NewGlobals[Val];
    Type *NewTy = NewGlobals[Val]->getValueType();

    // Form a shorter GEP if needed.
    if (GEP->getNumOperands() > 3) {
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
        SmallVector<Constant*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
          Idxs.push_back(CE->getOperand(i));
        NewPtr =
            ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
      } else {
        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
        SmallVector<Value*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
          Idxs.push_back(GEPI->getOperand(i));
        NewPtr = GetElementPtrInst::Create(
            NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
      }
    }
    GEP->replaceAllUsesWith(NewPtr);

    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
      GEPI->eraseFromParent();
    else
      cast<ConstantExpr>(GEP)->destroyConstant();
  }

  // Delete the old global, now that it is dead.
  Globals.erase(GV);
  ++NumSRA;

  // Loop over the new globals array deleting any globals that are obviously
  // dead.  This can arise due to scalarization of a structure or an array that
  // has elements that are dead.
  unsigned FirstGlobal = 0;
  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    if (NewGlobals[i]->use_empty()) {
      Globals.erase(NewGlobals[i]);
      if (FirstGlobal == i) ++FirstGlobal;
    }

  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
}

/// Return true if all users of the specified value will trap if the value is
/// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
/// reprocessing them.
static bool AllUsesOfValueWillTrapIfNull(const Value *V,
                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
  for (const User *U : V->users()) {
    if (const Instruction *I = dyn_cast<Instruction>(U)) {
      // If null pointer is considered valid, then all uses are non-trapping.
      // Non address-space 0 globals have already been pruned by the caller.
      if (NullPointerIsDefined(I->getFunction()))
        return false;
    }
    if (isa<LoadInst>(U)) {
      // Will trap.
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
      if (SI->getOperand(0) == V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Storing the value.
      }
    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
      if (CI->getCalledValue() != V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Not calling the ptr
      }
    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
      if (II->getCalledValue() != V) {
        //cerr << "NONTRAPPING USE: " << *U;
        return false;  // Not calling the ptr
      }
    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
      // If we've already seen this phi node, ignore it, it has already been
      // checked.
      if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
        return false;
    } else if (isa<ICmpInst>(U) &&
               isa<ConstantPointerNull>(U->getOperand(1))) {
      // Ignore icmp X, null
    } else {
      //cerr << "NONTRAPPING USE: " << *U;
      return false;
    }
  }
  return true;
}

/// Return true if all uses of any loads from GV will trap if the loaded value
/// is null.  Note that this also permits comparisons of the loaded value
/// against null, as a special case.
static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
  for (const User *U : GV->users())
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      SmallPtrSet<const PHINode*, 8> PHIs;
      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
        return false;
    } else if (isa<StoreInst>(U)) {
      // Ignore stores to the global.
    } else {
      // We don't know or understand this user, bail out.
      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
      return false;
    }
  return true;
}

static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
  bool Changed = false;
  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
    Instruction *I = cast<Instruction>(*UI++);
    // Uses are non-trapping if null pointer is considered valid.
    // Non address-space 0 globals are already pruned by the caller.
    if (NullPointerIsDefined(I->getFunction()))
      return false;
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      LI->setOperand(0, NewV);
      Changed = true;
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      if (SI->getOperand(1) == V) {
        SI->setOperand(1, NewV);
        Changed = true;
      }
    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
      CallSite CS(I);
      if (CS.getCalledValue() == V) {
        // Calling through the pointer!  Turn into a direct call, but be careful
        // that the pointer is not also being passed as an argument.
        CS.setCalledFunction(NewV);
        Changed = true;
        bool PassedAsArg = false;
        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
          if (CS.getArgument(i) == V) {
            PassedAsArg = true;
            CS.setArgument(i, NewV);
          }

        if (PassedAsArg) {
          // Being passed as an argument also.  Be careful to not invalidate UI!
          UI = V->user_begin();
        }
      }
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
                                ConstantExpr::getCast(CI->getOpcode(),
                                                      NewV, CI->getType()));
      if (CI->use_empty()) {
        Changed = true;
        CI->eraseFromParent();
      }
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
      // Should handle GEP here.
      SmallVector<Constant*, 8> Idxs;
      Idxs.reserve(GEPI->getNumOperands()-1);
      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
           i != e; ++i)
        if (Constant *C = dyn_cast<Constant>(*i))
          Idxs.push_back(C);
        else
          break;
      if (Idxs.size() == GEPI->getNumOperands()-1)
        Changed |= OptimizeAwayTrappingUsesOfValue(
            GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
                                                 NewV, Idxs));
      if (GEPI->use_empty()) {
        Changed = true;
        GEPI->eraseFromParent();
      }
    }
  }

  return Changed;
}

/// The specified global has only one non-null value stored into it.  If there
/// are uses of the loaded value that would trap if the loaded value is
/// dynamically null, then we know that they cannot be reachable with a null
/// optimize away the load.
static bool OptimizeAwayTrappingUsesOfLoads(
    GlobalVariable *GV, Constant *LV, const DataLayout &DL,
    function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  bool Changed = false;

  // Keep track of whether we are able to remove all the uses of the global
  // other than the store that defines it.
  bool AllNonStoreUsesGone = true;

  // Replace all uses of loads with uses of uses of the stored value.
  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
    User *GlobalUser = *GUI++;
    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
      // If we were able to delete all uses of the loads
      if (LI->use_empty()) {
        LI->eraseFromParent();
        Changed = true;
      } else {
        AllNonStoreUsesGone = false;
      }
    } else if (isa<StoreInst>(GlobalUser)) {
      // Ignore the store that stores "LV" to the global.
      assert(GlobalUser->getOperand(1) == GV &&
             "Must be storing *to* the global");
    } else {
      AllNonStoreUsesGone = false;

      // If we get here we could have other crazy uses that are transitively
      // loaded.
      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
              isa<BitCastInst>(GlobalUser) ||
              isa<GetElementPtrInst>(GlobalUser)) &&
             "Only expect load and stores!");
    }
  }

  if (Changed) {
    LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
                      << "\n");
    ++NumGlobUses;
  }

  // If we nuked all of the loads, then none of the stores are needed either,
  // nor is the global.
  if (AllNonStoreUsesGone) {
    if (isLeakCheckerRoot(GV)) {
      Changed |= CleanupPointerRootUsers(GV, GetTLI);
    } else {
      Changed = true;
      CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
    }
    if (GV->use_empty()) {
      LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
      Changed = true;
      GV->eraseFromParent();
      ++NumDeleted;
    }
  }
  return Changed;
}

/// Walk the use list of V, constant folding all of the instructions that are
/// foldable.
static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
                                TargetLibraryInfo *TLI) {
  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
    if (Instruction *I = dyn_cast<Instruction>(*UI++))
      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
        I->replaceAllUsesWith(NewC);

        // Advance UI to the next non-I use to avoid invalidating it!
        // Instructions could multiply use V.
        while (UI != E && *UI == I)
          ++UI;
        if (isInstructionTriviallyDead(I, TLI))
          I->eraseFromParent();
      }
}

/// This function takes the specified global variable, and transforms the
/// program as if it always contained the result of the specified malloc.
/// Because it is always the result of the specified malloc, there is no reason
/// to actually DO the malloc.  Instead, turn the malloc into a global, and any
/// loads of GV as uses of the new global.
static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
                              ConstantInt *NElements, const DataLayout &DL,
                              TargetLibraryInfo *TLI) {
  LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
                    << '\n');

  Type *GlobalType;
  if (NElements->getZExtValue() == 1)
    GlobalType = AllocTy;
  else
    // If we have an array allocation, the global variable is of an array.
    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());

  // Create the new global variable.  The contents of the malloc'd memory is
  // undefined, so initialize with an undef value.
  GlobalVariable *NewGV = new GlobalVariable(
      *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
      UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
      GV->getThreadLocalMode());

  // If there are bitcast users of the malloc (which is typical, usually we have
  // a malloc + bitcast) then replace them with uses of the new global.  Update
  // other users to use the global as well.
  BitCastInst *TheBC = nullptr;
  while (!CI->use_empty()) {
    Instruction *User = cast<Instruction>(CI->user_back());
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
      if (BCI->getType() == NewGV->getType()) {
        BCI->replaceAllUsesWith(NewGV);
        BCI->eraseFromParent();
      } else {
        BCI->setOperand(0, NewGV);
      }
    } else {
      if (!TheBC)
        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
      User->replaceUsesOfWith(CI, TheBC);
    }
  }

  Constant *RepValue = NewGV;
  if (NewGV->getType() != GV->getValueType())
    RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());

  // If there is a comparison against null, we will insert a global bool to
  // keep track of whether the global was initialized yet or not.
  GlobalVariable *InitBool =
    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
                       GlobalValue::InternalLinkage,
                       ConstantInt::getFalse(GV->getContext()),
                       GV->getName()+".init", GV->getThreadLocalMode());
  bool InitBoolUsed = false;

  // Loop over all uses of GV, processing them in turn.
  while (!GV->use_empty()) {
    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
      // The global is initialized when the store to it occurs.
      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
                    None, SI->getOrdering(), SI->getSyncScopeID(), SI);
      SI->eraseFromParent();
      continue;
    }

    LoadInst *LI = cast<LoadInst>(GV->user_back());
    while (!LI->use_empty()) {
      Use &LoadUse = *LI->use_begin();
      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
      if (!ICI) {
        LoadUse = RepValue;
        continue;
      }

      // Replace the cmp X, 0 with a use of the bool value.
      // Sink the load to where the compare was, if atomic rules allow us to.
      Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
                               InitBool->getName() + ".val", false, None,
                               LI->getOrdering(), LI->getSyncScopeID(),
                               LI->isUnordered() ? (Instruction *)ICI : LI);
      InitBoolUsed = true;
      switch (ICI->getPredicate()) {
      default: llvm_unreachable("Unknown ICmp Predicate!");
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_SLT:   // X < null -> always false
        LV = ConstantInt::getFalse(GV->getContext());
        break;
      case ICmpInst::ICMP_ULE:
      case ICmpInst::ICMP_SLE:
      case ICmpInst::ICMP_EQ:
        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
        break;
      case ICmpInst::ICMP_NE:
      case ICmpInst::ICMP_UGE:
      case ICmpInst::ICMP_SGE:
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_SGT:
        break;  // no change.
      }
      ICI->replaceAllUsesWith(LV);
      ICI->eraseFromParent();
    }
    LI->eraseFromParent();
  }

  // If the initialization boolean was used, insert it, otherwise delete it.
  if (!InitBoolUsed) {
    while (!InitBool->use_empty())  // Delete initializations
      cast<StoreInst>(InitBool->user_back())->eraseFromParent();
    delete InitBool;
  } else
    GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);

  // Now the GV is dead, nuke it and the malloc..
  GV->eraseFromParent();
  CI->eraseFromParent();

  // To further other optimizations, loop over all users of NewGV and try to
  // constant prop them.  This will promote GEP instructions with constant
  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
  ConstantPropUsersOf(NewGV, DL, TLI);
  if (RepValue != NewGV)
    ConstantPropUsersOf(RepValue, DL, TLI);

  return NewGV;
}

/// Scan the use-list of V checking to make sure that there are no complex uses
/// of V.  We permit simple things like dereferencing the pointer, but not
/// storing through the address, unless it is to the specified global.
static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
                                                      const GlobalVariable *GV,
                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
  for (const User *U : V->users()) {
    const Instruction *Inst = cast<Instruction>(U);

    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
      continue; // Fine, ignore.
    }

    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
        return false;  // Storing the pointer itself... bad.
      continue; // Otherwise, storing through it, or storing into GV... fine.
    }

    // Must index into the array and into the struct.
    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
        return false;
      continue;
    }

    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
      // cycles.
      if (PHIs.insert(PN).second)
        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
          return false;
      continue;
    }

    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
        return false;
      continue;
    }

    return false;
  }
  return true;
}

/// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
/// allocation into loads from the global and uses of the resultant pointer.
/// Further, delete the store into GV.  This assumes that these value pass the
/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
                                          GlobalVariable *GV) {
  while (!Alloc->use_empty()) {
    Instruction *U = cast<Instruction>(*Alloc->user_begin());
    Instruction *InsertPt = U;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // If this is the store of the allocation into the global, remove it.
      if (SI->getOperand(1) == GV) {
        SI->eraseFromParent();
        continue;
      }
    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
      // Insert the load in the corresponding predecessor, not right before the
      // PHI.
      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
    } else if (isa<BitCastInst>(U)) {
      // Must be bitcast between the malloc and store to initialize the global.
      ReplaceUsesOfMallocWithGlobal(U, GV);
      U->eraseFromParent();
      continue;
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      // If this is a "GEP bitcast" and the user is a store to the global, then
      // just process it as a bitcast.
      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
          if (SI->getOperand(1) == GV) {
            // Must be bitcast GEP between the malloc and store to initialize
            // the global.
            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
            GEPI->eraseFromParent();
            continue;
          }
    }

    // Insert a load from the global, and use it instead of the malloc.
    Value *NL =
        new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
    U->replaceUsesOfWith(Alloc, NL);
  }
}

/// Verify that all uses of V (a load, or a phi of a load) are simple enough to
/// perform heap SRA on.  This permits GEP's that index through the array and
/// struct field, icmps of null, and PHIs.
static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
  // We permit two users of the load: setcc comparing against the null
  // pointer, and a getelementptr of a specific form.
  for (const User *U : V->users()) {
    const Instruction *UI = cast<Instruction>(U);

    // Comparison against null is ok.
    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
        return false;
      continue;
    }

    // getelementptr is also ok, but only a simple form.
    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
      // Must index into the array and into the struct.
      if (GEPI->getNumOperands() < 3)
        return false;

      // Otherwise the GEP is ok.
      continue;
    }

    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
      if (!LoadUsingPHIsPerLoad.insert(PN).second)
        // This means some phi nodes are dependent on each other.
        // Avoid infinite looping!
        return false;
      if (!LoadUsingPHIs.insert(PN).second)
        // If we have already analyzed this PHI, then it is safe.
        continue;

      // Make sure all uses of the PHI are simple enough to transform.
      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
        return false;

      continue;
    }

    // Otherwise we don't know what this is, not ok.
    return false;
  }

  return true;
}

/// If all users of values loaded from GV are simple enough to perform HeapSRA,
/// return true.
static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
                                                    Instruction *StoredVal) {
  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
  for (const User *U : GV->users())
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
                                          LoadUsingPHIsPerLoad))
        return false;
      LoadUsingPHIsPerLoad.clear();
    }

  // If we reach here, we know that all uses of the loads and transitive uses
  // (through PHI nodes) are simple enough to transform.  However, we don't know
  // that all inputs the to the PHI nodes are in the same equivalence sets.
  // Check to verify that all operands of the PHIs are either PHIS that can be
  // transformed, loads from GV, or MI itself.
  for (const PHINode *PN : LoadUsingPHIs) {
    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
      Value *InVal = PN->getIncomingValue(op);

      // PHI of the stored value itself is ok.
      if (InVal == StoredVal) continue;

      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
        // One of the PHIs in our set is (optimistically) ok.
        if (LoadUsingPHIs.count(InPN))
          continue;
        return false;
      }

      // Load from GV is ok.
      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
        if (LI->getOperand(0) == GV)
          continue;

      // UNDEF? NULL?

      // Anything else is rejected.
      return false;
    }
  }

  return true;
}

static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
  std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];

  if (FieldNo >= FieldVals.size())
    FieldVals.resize(FieldNo+1);

  // If we already have this value, just reuse the previously scalarized
  // version.
  if (Value *FieldVal = FieldVals[FieldNo])
    return FieldVal;

  // Depending on what instruction this is, we have several cases.
  Value *Result;
  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
    // This is a scalarized version of the load from the global.  Just create
    // a new Load of the scalarized global.
    Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
                                InsertedScalarizedValues, PHIsToRewrite);
    Result = new LoadInst(V->getType()->getPointerElementType(), V,
                          LI->getName() + ".f" + Twine(FieldNo), LI);
  } else {
    PHINode *PN = cast<PHINode>(V);
    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
    // field.

    PointerType *PTy = cast<PointerType>(PN->getType());
    StructType *ST = cast<StructType>(PTy->getElementType());

    unsigned AS = PTy->getAddressSpace();
    PHINode *NewPN =
      PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
                     PN->getNumIncomingValues(),
                     PN->getName()+".f"+Twine(FieldNo), PN);
    Result = NewPN;
    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
  }

  return FieldVals[FieldNo] = Result;
}

/// Given a load instruction and a value derived from the load, rewrite the
/// derived value to use the HeapSRoA'd load.
static void RewriteHeapSROALoadUser(Instruction *LoadUser,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
  // If this is a comparison against null, handle it.
  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
    // If we have a setcc of the loaded pointer, we can use a setcc of any
    // field.
    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
                                   InsertedScalarizedValues, PHIsToRewrite);

    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
                              Constant::getNullValue(NPtr->getType()),
                              SCI->getName());
    SCI->replaceAllUsesWith(New);
    SCI->eraseFromParent();
    return;
  }

  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
           && "Unexpected GEPI!");

    // Load the pointer for this field.
    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
                                     InsertedScalarizedValues, PHIsToRewrite);

    // Create the new GEP idx vector.
    SmallVector<Value*, 8> GEPIdx;
    GEPIdx.push_back(GEPI->getOperand(1));
    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());

    Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
                                             GEPI->getName(), GEPI);
    GEPI->replaceAllUsesWith(NGEPI);
    GEPI->eraseFromParent();
    return;
  }

  // Recursively transform the users of PHI nodes.  This will lazily create the
  // PHIs that are needed for individual elements.  Keep track of what PHIs we
  // see in InsertedScalarizedValues so that we don't get infinite loops (very
  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
  // already been seen first by another load, so its uses have already been
  // processed.
  PHINode *PN = cast<PHINode>(LoadUser);
  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
                                              std::vector<Value *>())).second)
    return;

  // If this is the first time we've seen this PHI, recursively process all
  // users.
  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
  }
}

/// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
/// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
                  std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
  }

  if (Load->use_empty()) {
    Load->eraseFromParent();
    InsertedScalarizedValues.erase(Load);
  }
}

/// CI is an allocation of an array of structures.  Break it up into multiple
/// allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
                                            Value *NElems, const DataLayout &DL,
                                            const TargetLibraryInfo *TLI) {
  LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
                    << '\n');
  Type *MAT = getMallocAllocatedType(CI, TLI);
  StructType *STy = cast<StructType>(MAT);

  // There is guaranteed to be at least one use of the malloc (storing
  // it into GV).  If there are other uses, change them to be uses of
  // the global to simplify later code.  This also deletes the store
  // into GV.
  ReplaceUsesOfMallocWithGlobal(CI, GV);

  // Okay, at this point, there are no users of the malloc.  Insert N
  // new mallocs at the same place as CI, and N globals.
  std::vector<Value *> FieldGlobals;
  std::vector<Value *> FieldMallocs;

  SmallVector<OperandBundleDef, 1> OpBundles;
  CI->getOperandBundlesAsDefs(OpBundles);

  unsigned AS = GV->getType()->getPointerAddressSpace();
  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
    Type *FieldTy = STy->getElementType(FieldNo);
    PointerType *PFieldTy = PointerType::get(FieldTy, AS);

    GlobalVariable *NGV = new GlobalVariable(
        *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
        Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
        nullptr, GV->getThreadLocalMode());
    NGV->copyAttributesFrom(GV);
    FieldGlobals.push_back(NGV);

    unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
    if (StructType *ST = dyn_cast<StructType>(FieldTy))
      TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
    Type *IntPtrTy = DL.getIntPtrType(CI->getType());
    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
                                        ConstantInt::get(IntPtrTy, TypeSize),
                                        NElems, OpBundles, nullptr,
                                        CI->getName() + ".f" + Twine(FieldNo));
    FieldMallocs.push_back(NMI);
    new StoreInst(NMI, NGV, CI);
  }

  // The tricky aspect of this transformation is handling the case when malloc
  // fails.  In the original code, malloc failing would set the result pointer
  // of malloc to null.  In this case, some mallocs could succeed and others
  // could fail.  As such, we emit code that looks like this:
  //    F0 = malloc(field0)
  //    F1 = malloc(field1)
  //    F2 = malloc(field2)
  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
  //      if (F0) { free(F0); F0 = 0; }
  //      if (F1) { free(F1); F1 = 0; }
  //      if (F2) { free(F2); F2 = 0; }
  //    }
  // The malloc can also fail if its argument is too large.
  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
                                  ConstantZero, "isneg");
  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
                             Constant::getNullValue(FieldMallocs[i]->getType()),
                               "isnull");
    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
  }

  // Split the basic block at the old malloc.
  BasicBlock *OrigBB = CI->getParent();
  BasicBlock *ContBB =
      OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");

  // Create the block to check the first condition.  Put all these blocks at the
  // end of the function as they are unlikely to be executed.
  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
                                                "malloc_ret_null",
                                                OrigBB->getParent());

  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
  // branch on RunningOr.
  OrigBB->getTerminator()->eraseFromParent();
  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);

  // Within the NullPtrBlock, we need to emit a comparison and branch for each
  // pointer, because some may be null while others are not.
  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
    Value *GVVal =
        new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
                     FieldGlobals[i], "tmp", NullPtrBlock);
    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
                              Constant::getNullValue(GVVal->getType()));
    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
                                               OrigBB->getParent());
    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
                                               OrigBB->getParent());
    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
                                         Cmp, NullPtrBlock);

    // Fill in FreeBlock.
    CallInst::CreateFree(GVVal, OpBundles, BI);
    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
                  FreeBlock);
    BranchInst::Create(NextBlock, FreeBlock);

    NullPtrBlock = NextBlock;
  }

  BranchInst::Create(ContBB, NullPtrBlock);

  // CI is no longer needed, remove it.
  CI->eraseFromParent();

  /// As we process loads, if we can't immediately update all uses of the load,
  /// keep track of what scalarized loads are inserted for a given load.
  DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
  InsertedScalarizedValues[GV] = FieldGlobals;

  std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;

  // Okay, the malloc site is completely handled.  All of the uses of GV are now
  // loads, and all uses of those loads are simple.  Rewrite them to use loads
  // of the per-field globals instead.
  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);

    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
      continue;
    }

    // Must be a store of null.
    StoreInst *SI = cast<StoreInst>(User);
    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
           "Unexpected heap-sra user!");

    // Insert a store of null into each global.
    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
      Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
      Constant *Null = Constant::getNullValue(ValTy);
      new StoreInst(Null, FieldGlobals[i], SI);
    }
    // Erase the original store.
    SI->eraseFromParent();
  }

  // While we have PHIs that are interesting to rewrite, do it.
  while (!PHIsToRewrite.empty()) {
    PHINode *PN = PHIsToRewrite.back().first;
    unsigned FieldNo = PHIsToRewrite.back().second;
    PHIsToRewrite.pop_back();
    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");

    // Add all the incoming values.  This can materialize more phis.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
                               PHIsToRewrite);
      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
    }
  }

  // Drop all inter-phi links and any loads that made it this far.
  for (DenseMap<Value *, std::vector<Value *>>::iterator
       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
       I != E; ++I) {
    if (PHINode *PN = dyn_cast<PHINode>(I->first))
      PN->dropAllReferences();
    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
      LI->dropAllReferences();
  }

  // Delete all the phis and loads now that inter-references are dead.
  for (DenseMap<Value *, std::vector<Value *>>::iterator
       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
       I != E; ++I) {
    if (PHINode *PN = dyn_cast<PHINode>(I->first))
      PN->eraseFromParent();
    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
      LI->eraseFromParent();
  }

  // The old global is now dead, remove it.
  GV->eraseFromParent();

  ++NumHeapSRA;
  return cast<GlobalVariable>(FieldGlobals[0]);
}

/// This function is called when we see a pointer global variable with a single
/// value stored it that is a malloc or cast of malloc.
static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
                                               Type *AllocTy,
                                               AtomicOrdering Ordering,
                                               const DataLayout &DL,
                                               TargetLibraryInfo *TLI) {
  // If this is a malloc of an abstract type, don't touch it.
  if (!AllocTy->isSized())
    return false;

  // We can't optimize this global unless all uses of it are *known* to be
  // of the malloc value, not of the null initializer value (consider a use
  // that compares the global's value against zero to see if the malloc has
  // been reached).  To do this, we check to see if all uses of the global
  // would trap if the global were null: this proves that they must all
  // happen after the malloc.
  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
    return false;

  // We can't optimize this if the malloc itself is used in a complex way,
  // for example, being stored into multiple globals.  This allows the
  // malloc to be stored into the specified global, loaded icmp'd, and
  // GEP'd.  These are all things we could transform to using the global
  // for.
  SmallPtrSet<const PHINode*, 8> PHIs;
  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
    return false;

  // If we have a global that is only initialized with a fixed size malloc,
  // transform the program to use global memory instead of malloc'd memory.
  // This eliminates dynamic allocation, avoids an indirection accessing the
  // data, and exposes the resultant global to further GlobalOpt.
  // We cannot optimize the malloc if we cannot determine malloc array size.
  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
  if (!NElems)
    return false;

  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
    // Restrict this transformation to only working on small allocations
    // (2048 bytes currently), as we don't want to introduce a 16M global or
    // something.
    if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
      OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
      return true;
    }

  // If the allocation is an array of structures, consider transforming this
  // into multiple malloc'd arrays, one for each field.  This is basically
  // SRoA for malloc'd memory.

  if (Ordering != AtomicOrdering::NotAtomic)
    return false;

  // If this is an allocation of a fixed size array of structs, analyze as a
  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
      AllocTy = AT->getElementType();

  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
  if (!AllocSTy)
    return false;

  // This the structure has an unreasonable number of fields, leave it
  // alone.
  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {

    // If this is a fixed size array, transform the Malloc to be an alloc of
    // structs.  malloc [100 x struct],1 -> malloc struct, 100
    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
      Type *IntPtrTy = DL.getIntPtrType(CI->getType());
      unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
      SmallVector<OperandBundleDef, 1> OpBundles;
      CI->getOperandBundlesAsDefs(OpBundles);
      Instruction *Malloc =
          CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
                                 OpBundles, nullptr, CI->getName());
      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
      CI->replaceAllUsesWith(Cast);
      CI->eraseFromParent();
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
        CI = cast<CallInst>(BCI->getOperand(0));
      else
        CI = cast<CallInst>(Malloc);
    }

    PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
                         TLI);
    return true;
  }

  return false;
}

// Try to optimize globals based on the knowledge that only one value (besides
// its initializer) is ever stored to the global.
static bool
optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
                         AtomicOrdering Ordering, const DataLayout &DL,
                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  // Ignore no-op GEPs and bitcasts.
  StoredOnceVal = StoredOnceVal->stripPointerCasts();

  // If we are dealing with a pointer global that is initialized to null and
  // only has one (non-null) value stored into it, then we can optimize any
  // users of the loaded value (often calls and loads) that would trap if the
  // value was null.
  if (GV->getInitializer()->getType()->isPointerTy() &&
      GV->getInitializer()->isNullValue() &&
      !NullPointerIsDefined(
          nullptr /* F */,
          GV->getInitializer()->getType()->getPointerAddressSpace())) {
    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
      if (GV->getInitializer()->getType() != SOVC->getType())
        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());

      // Optimize away any trapping uses of the loaded value.
      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
        return true;
    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
      auto *TLI = &GetTLI(*CI->getFunction());
      Type *MallocType = getMallocAllocatedType(CI, TLI);
      if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
                                                           Ordering, DL, TLI))
        return true;
    }
  }

  return false;
}

/// At this point, we have learned that the only two values ever stored into GV
/// are its initializer and OtherVal.  See if we can shrink the global into a
/// boolean and select between the two values whenever it is used.  This exposes
/// the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
  Type *GVElType = GV->getValueType();

  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
  // an FP value, pointer or vector, don't do this optimization because a select
  // between them is very expensive and unlikely to lead to later
  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
  // where v1 and v2 both require constant pool loads, a big loss.
  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
      GVElType->isFloatingPointTy() ||
      GVElType->isPointerTy() || GVElType->isVectorTy())
    return false;

  // Walk the use list of the global seeing if all the uses are load or store.
  // If there is anything else, bail out.
  for (User *U : GV->users())
    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
      return false;

  LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");

  // Create the new global, initializing it to false.
  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
                                             false,
                                             GlobalValue::InternalLinkage,
                                        ConstantInt::getFalse(GV->getContext()),
                                             GV->getName()+".b",
                                             GV->getThreadLocalMode(),
                                             GV->getType()->getAddressSpace());
  NewGV->copyAttributesFrom(GV);
  GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);

  Constant *InitVal = GV->getInitializer();
  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
         "No reason to shrink to bool!");

  SmallVector<DIGlobalVariableExpression *, 1> GVs;
  GV->getDebugInfo(GVs);

  // If initialized to zero and storing one into the global, we can use a cast
  // instead of a select to synthesize the desired value.
  bool IsOneZero = false;
  bool EmitOneOrZero = true;
  auto *CI = dyn_cast<ConstantInt>(OtherVal);
  if (CI && CI->getValue().getActiveBits() <= 64) {
    IsOneZero = InitVal->isNullValue() && CI->isOne();

    auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
    if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
      uint64_t ValInit = CIInit->getZExtValue();
      uint64_t ValOther = CI->getZExtValue();
      uint64_t ValMinus = ValOther - ValInit;

      for(auto *GVe : GVs){
        DIGlobalVariable *DGV = GVe->getVariable();
        DIExpression *E = GVe->getExpression();
        const DataLayout &DL = GV->getParent()->getDataLayout();
        unsigned SizeInOctets =
          DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;

        // It is expected that the address of global optimized variable is on
        // top of the stack. After optimization, value of that variable will
        // be ether 0 for initial value or 1 for other value. The following
        // expression should return constant integer value depending on the
        // value at global object address:
        // val * (ValOther - ValInit) + ValInit:
        // DW_OP_deref DW_OP_constu <ValMinus>
        // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
        SmallVector<uint64_t, 12> Ops = {
            dwarf::DW_OP_deref_size, SizeInOctets,
            dwarf::DW_OP_constu, ValMinus,
            dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
            dwarf::DW_OP_plus};
        bool WithStackValue = true;
        E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
        DIGlobalVariableExpression *DGVE =
          DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
        NewGV->addDebugInfo(DGVE);
     }
     EmitOneOrZero = false;
    }
  }

  if (EmitOneOrZero) {
     // FIXME: This will only emit address for debugger on which will
     // be written only 0 or 1.
     for(auto *GV : GVs)
       NewGV->addDebugInfo(GV);
   }

  while (!GV->use_empty()) {
    Instruction *UI = cast<Instruction>(GV->user_back());
    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
      // Change the store into a boolean store.
      bool StoringOther = SI->getOperand(0) == OtherVal;
      // Only do this if we weren't storing a loaded value.
      Value *StoreVal;
      if (StoringOther || SI->getOperand(0) == InitVal) {
        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
                                    StoringOther);
      } else {
        // Otherwise, we are storing a previously loaded copy.  To do this,
        // change the copy from copying the original value to just copying the
        // bool.
        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));

        // If we've already replaced the input, StoredVal will be a cast or
        // select instruction.  If not, it will be a load of the original
        // global.
        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
          assert(LI->getOperand(0) == GV && "Not a copy!");
          // Insert a new load, to preserve the saved value.
          StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
                                  LI->getName() + ".b", false, None,
                                  LI->getOrdering(), LI->getSyncScopeID(), LI);
        } else {
          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
                 "This is not a form that we understand!");
          StoreVal = StoredVal->getOperand(0);
          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
        }
      }
      StoreInst *NSI =
          new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
                        SI->getSyncScopeID(), SI);
      NSI->setDebugLoc(SI->getDebugLoc());
    } else {
      // Change the load into a load of bool then a select.
      LoadInst *LI = cast<LoadInst>(UI);
      LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
                                   LI->getName() + ".b", false, None,
                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
      Instruction *NSI;
      if (IsOneZero)
        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
      else
        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
      NSI->takeName(LI);
      // Since LI is split into two instructions, NLI and NSI both inherit the
      // same DebugLoc
      NLI->setDebugLoc(LI->getDebugLoc());
      NSI->setDebugLoc(LI->getDebugLoc());
      LI->replaceAllUsesWith(NSI);
    }
    UI->eraseFromParent();
  }

  // Retain the name of the old global variable. People who are debugging their
  // programs may expect these variables to be named the same.
  NewGV->takeName(GV);
  GV->eraseFromParent();
  return true;
}

static bool deleteIfDead(
    GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
  GV.removeDeadConstantUsers();

  if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
    return false;

  if (const Comdat *C = GV.getComdat())
    if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
      return false;

  bool Dead;
  if (auto *F = dyn_cast<Function>(&GV))
    Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
  else
    Dead = GV.use_empty();
  if (!Dead)
    return false;

  LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
  GV.eraseFromParent();
  ++NumDeleted;
  return true;
}

static bool isPointerValueDeadOnEntryToFunction(
    const Function *F, GlobalValue *GV,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  // Find all uses of GV. We expect them all to be in F, and if we can't
  // identify any of the uses we bail out.
  //
  // On each of these uses, identify if the memory that GV points to is
  // used/required/live at the start of the function. If it is not, for example
  // if the first thing the function does is store to the GV, the GV can
  // possibly be demoted.
  //
  // We don't do an exhaustive search for memory operations - simply look
  // through bitcasts as they're quite common and benign.
  const DataLayout &DL = GV->getParent()->getDataLayout();
  SmallVector<LoadInst *, 4> Loads;
  SmallVector<StoreInst *, 4> Stores;
  for (auto *U : GV->users()) {
    if (Operator::getOpcode(U) == Instruction::BitCast) {
      for (auto *UU : U->users()) {
        if (auto *LI = dyn_cast<LoadInst>(UU))
          Loads.push_back(LI);
        else if (auto *SI = dyn_cast<StoreInst>(UU))
          Stores.push_back(SI);
        else
          return false;
      }
      continue;
    }

    Instruction *I = dyn_cast<Instruction>(U);
    if (!I)
      return false;
    assert(I->getParent()->getParent() == F);

    if (auto *LI = dyn_cast<LoadInst>(I))
      Loads.push_back(LI);
    else if (auto *SI = dyn_cast<StoreInst>(I))
      Stores.push_back(SI);
    else
      return false;
  }

  // We have identified all uses of GV into loads and stores. Now check if all
  // of them are known not to depend on the value of the global at the function
  // entry point. We do this by ensuring that every load is dominated by at
  // least one store.
  auto &DT = LookupDomTree(*const_cast<Function *>(F));

  // The below check is quadratic. Check we're not going to do too many tests.
  // FIXME: Even though this will always have worst-case quadratic time, we
  // could put effort into minimizing the average time by putting stores that
  // have been shown to dominate at least one load at the beginning of the
  // Stores array, making subsequent dominance checks more likely to succeed
  // early.
  //
  // The threshold here is fairly large because global->local demotion is a
  // very powerful optimization should it fire.
  const unsigned Threshold = 100;
  if (Loads.size() * Stores.size() > Threshold)
    return false;

  for (auto *L : Loads) {
    auto *LTy = L->getType();
    if (none_of(Stores, [&](const StoreInst *S) {
          auto *STy = S->getValueOperand()->getType();
          // The load is only dominated by the store if DomTree says so
          // and the number of bits loaded in L is less than or equal to
          // the number of bits stored in S.
          return DT.dominates(S, L) &&
                 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
        }))
      return false;
  }
  // All loads have known dependences inside F, so the global can be localized.
  return true;
}

/// C may have non-instruction users. Can all of those users be turned into
/// instructions?
static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
  // We don't do this exhaustively. The most common pattern that we really need
  // to care about is a constant GEP or constant bitcast - so just looking
  // through one single ConstantExpr.
  //
  // The set of constants that this function returns true for must be able to be
  // handled by makeAllConstantUsesInstructions.
  for (auto *U : C->users()) {
    if (isa<Instruction>(U))
      continue;
    if (!isa<ConstantExpr>(U))
      // Non instruction, non-constantexpr user; cannot convert this.
      return false;
    for (auto *UU : U->users())
      if (!isa<Instruction>(UU))
        // A constantexpr used by another constant. We don't try and recurse any
        // further but just bail out at this point.
        return false;
  }

  return true;
}

/// C may have non-instruction users, and
/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
/// non-instruction users to instructions.
static void makeAllConstantUsesInstructions(Constant *C) {
  SmallVector<ConstantExpr*,4> Users;
  for (auto *U : C->users()) {
    if (isa<ConstantExpr>(U))
      Users.push_back(cast<ConstantExpr>(U));
    else
      // We should never get here; allNonInstructionUsersCanBeMadeInstructions
      // should not have returned true for C.
      assert(
          isa<Instruction>(U) &&
          "Can't transform non-constantexpr non-instruction to instruction!");
  }

  SmallVector<Value*,4> UUsers;
  for (auto *U : Users) {
    UUsers.clear();
    for (auto *UU : U->users())
      UUsers.push_back(UU);
    for (auto *UU : UUsers) {
      Instruction *UI = cast<Instruction>(UU);
      Instruction *NewU = U->getAsInstruction();
      NewU->insertBefore(UI);
      UI->replaceUsesOfWith(U, NewU);
    }
    // We've replaced all the uses, so destroy the constant. (destroyConstant
    // will update value handles and metadata.)
    U->destroyConstant();
  }
}

/// Analyze the specified global variable and optimize
/// it if possible.  If we make a change, return true.
static bool
processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
                      function_ref<TargetLibraryInfo &(Function &)> GetTLI,
                      function_ref<DominatorTree &(Function &)> LookupDomTree) {
  auto &DL = GV->getParent()->getDataLayout();
  // If this is a first class global and has only one accessing function and
  // this function is non-recursive, we replace the global with a local alloca
  // in this function.
  //
  // NOTE: It doesn't make sense to promote non-single-value types since we
  // are just replacing static memory to stack memory.
  //
  // If the global is in different address space, don't bring it to stack.
  if (!GS.HasMultipleAccessingFunctions &&
      GS.AccessingFunction &&
      GV->getValueType()->isSingleValueType() &&
      GV->getType()->getAddressSpace() == 0 &&
      !GV->isExternallyInitialized() &&
      allNonInstructionUsersCanBeMadeInstructions(GV) &&
      GS.AccessingFunction->doesNotRecurse() &&
      isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
                                          LookupDomTree)) {
    const DataLayout &DL = GV->getParent()->getDataLayout();

    LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
                                                   ->getEntryBlock().begin());
    Type *ElemTy = GV->getValueType();
    // FIXME: Pass Global's alignment when globals have alignment
    AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
                                        GV->getName(), &FirstI);
    if (!isa<UndefValue>(GV->getInitializer()))
      new StoreInst(GV->getInitializer(), Alloca, &FirstI);

    makeAllConstantUsesInstructions(GV);

    GV->replaceAllUsesWith(Alloca);
    GV->eraseFromParent();
    ++NumLocalized;
    return true;
  }

  // If the global is never loaded (but may be stored to), it is dead.
  // Delete it now.
  if (!GS.IsLoaded) {
    LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");

    bool Changed;
    if (isLeakCheckerRoot(GV)) {
      // Delete any constant stores to the global.
      Changed = CleanupPointerRootUsers(GV, GetTLI);
    } else {
      // Delete any stores we can find to the global.  We may not be able to
      // make it completely dead though.
      Changed =
          CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
    }

    // If the global is dead now, delete it.
    if (GV->use_empty()) {
      GV->eraseFromParent();
      ++NumDeleted;
      Changed = true;
    }
    return Changed;

  }
  if (GS.StoredType <= GlobalStatus::InitializerStored) {
    LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");

    // Don't actually mark a global constant if it's atomic because atomic loads
    // are implemented by a trivial cmpxchg in some edge-cases and that usually
    // requires write access to the variable even if it's not actually changed.
    if (GS.Ordering == AtomicOrdering::NotAtomic)
      GV->setConstant(true);

    // Clean up any obviously simplifiable users now.
    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);

    // If the global is dead now, just nuke it.
    if (GV->use_empty()) {
      LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
                        << "all users and delete global!\n");
      GV->eraseFromParent();
      ++NumDeleted;
      return true;
    }

    // Fall through to the next check; see if we can optimize further.
    ++NumMarked;
  }
  if (!GV->getInitializer()->getType()->isSingleValueType()) {
    const DataLayout &DL = GV->getParent()->getDataLayout();
    if (SRAGlobal(GV, DL))
      return true;
  }
  if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
    // If the initial value for the global was an undef value, and if only
    // one other value was stored into it, we can just change the
    // initializer to be the stored value, then delete all stores to the
    // global.  This allows us to mark it constant.
    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
      if (isa<UndefValue>(GV->getInitializer())) {
        // Change the initial value here.
        GV->setInitializer(SOVConstant);

        // Clean up any obviously simplifiable users now.
        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);

        if (GV->use_empty()) {
          LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
                            << "simplify all users and delete global!\n");
          GV->eraseFromParent();
          ++NumDeleted;
        }
        ++NumSubstitute;
        return true;
      }

    // Try to optimize globals based on the knowledge that only one value
    // (besides its initializer) is ever stored to the global.
    if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
                                 GetTLI))
      return true;

    // Otherwise, if the global was not a boolean, we can shrink it to be a
    // boolean.
    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
      if (GS.Ordering == AtomicOrdering::NotAtomic) {
        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
          ++NumShrunkToBool;
          return true;
        }
      }
    }
  }

  return false;
}

/// Analyze the specified global variable and optimize it if possible.  If we
/// make a change, return true.
static bool
processGlobal(GlobalValue &GV,
              function_ref<TargetLibraryInfo &(Function &)> GetTLI,
              function_ref<DominatorTree &(Function &)> LookupDomTree) {
  if (GV.getName().startswith("llvm."))
    return false;

  GlobalStatus GS;

  if (GlobalStatus::analyzeGlobal(&GV, GS))
    return false;

  bool Changed = false;
  if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
    auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
                                               : GlobalValue::UnnamedAddr::Local;
    if (NewUnnamedAddr != GV.getUnnamedAddr()) {
      GV.setUnnamedAddr(NewUnnamedAddr);
      NumUnnamed++;
      Changed = true;
    }
  }

  // Do more involved optimizations if the global is internal.
  if (!GV.hasLocalLinkage())
    return Changed;

  auto *GVar = dyn_cast<GlobalVariable>(&GV);
  if (!GVar)
    return Changed;

  if (GVar->isConstant() || !GVar->hasInitializer())
    return Changed;

  return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
}

/// Walk all of the direct calls of the specified function, changing them to
/// FastCC.
static void ChangeCalleesToFastCall(Function *F) {
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallSite CS(cast<Instruction>(U));
    CS.setCallingConv(CallingConv::Fast);
  }
}

static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
                               Attribute::AttrKind A) {
  unsigned AttrIndex;
  if (Attrs.hasAttrSomewhere(A, &AttrIndex))
    return Attrs.removeAttribute(C, AttrIndex, A);
  return Attrs;
}

static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
  F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallSite CS(cast<Instruction>(U));
    CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
  }
}

/// Return true if this is a calling convention that we'd like to change.  The
/// idea here is that we don't want to mess with the convention if the user
/// explicitly requested something with performance implications like coldcc,
/// GHC, or anyregcc.
static bool hasChangeableCC(Function *F) {
  CallingConv::ID CC = F->getCallingConv();

  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
  if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
    return false;

  // FIXME: Change CC for the whole chain of musttail calls when possible.
  //
  // Can't change CC of the function that either has musttail calls, or is a
  // musttail callee itself
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallInst* CI = dyn_cast<CallInst>(U);
    if (!CI)
      continue;

    if (CI->isMustTailCall())
      return false;
  }

  for (BasicBlock &BB : *F)
    if (BB.getTerminatingMustTailCall())
      return false;

  return true;
}

/// Return true if the block containing the call site has a BlockFrequency of
/// less than ColdCCRelFreq% of the entry block.
static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
  const BranchProbability ColdProb(ColdCCRelFreq, 100);
  auto CallSiteBB = CS.getInstruction()->getParent();
  auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
  auto CallerEntryFreq =
      CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
  return CallSiteFreq < CallerEntryFreq * ColdProb;
}

// This function checks if the input function F is cold at all call sites. It
// also looks each call site's containing function, returning false if the
// caller function contains other non cold calls. The input vector AllCallsCold
// contains a list of functions that only have call sites in cold blocks.
static bool
isValidCandidateForColdCC(Function &F,
                          function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
                          const std::vector<Function *> &AllCallsCold) {

  if (F.user_empty())
    return false;

  for (User *U : F.users()) {
    if (isa<BlockAddress>(U))
      continue;

    CallSite CS(cast<Instruction>(U));
    Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
    BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
    if (!isColdCallSite(CS, CallerBFI))
      return false;
    auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
    if (It == AllCallsCold.end())
      return false;
  }
  return true;
}

static void changeCallSitesToColdCC(Function *F) {
  for (User *U : F->users()) {
    if (isa<BlockAddress>(U))
      continue;
    CallSite CS(cast<Instruction>(U));
    CS.setCallingConv(CallingConv::Cold);
  }
}

// This function iterates over all the call instructions in the input Function
// and checks that all call sites are in cold blocks and are allowed to use the
// coldcc calling convention.
static bool
hasOnlyColdCalls(Function &F,
                 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
  for (BasicBlock &BB : F) {
    for (Instruction &I : BB) {
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
        CallSite CS(cast<Instruction>(CI));
        // Skip over isline asm instructions since they aren't function calls.
        if (CI->isInlineAsm())
          continue;
        Function *CalledFn = CI->getCalledFunction();
        if (!CalledFn)
          return false;
        if (!CalledFn->hasLocalLinkage())
          return false;
        // Skip over instrinsics since they won't remain as function calls.
        if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
          continue;
        // Check if it's valid to use coldcc calling convention.
        if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
            CalledFn->hasAddressTaken())
          return false;
        BlockFrequencyInfo &CallerBFI = GetBFI(F);
        if (!isColdCallSite(CS, CallerBFI))
          return false;
      }
    }
  }
  return true;
}

static bool
OptimizeFunctions(Module &M,
                  function_ref<TargetLibraryInfo &(Function &)> GetTLI,
                  function_ref<TargetTransformInfo &(Function &)> GetTTI,
                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
                  function_ref<DominatorTree &(Function &)> LookupDomTree,
                  SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {

  bool Changed = false;

  std::vector<Function *> AllCallsCold;
  for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
    Function *F = &*FI++;
    if (hasOnlyColdCalls(*F, GetBFI))
      AllCallsCold.push_back(F);
  }

  // Optimize functions.
  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
    Function *F = &*FI++;

    // Don't perform global opt pass on naked functions; we don't want fast
    // calling conventions for naked functions.
    if (F->hasFnAttribute(Attribute::Naked))
      continue;

    // Functions without names cannot be referenced outside this module.
    if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
      F->setLinkage(GlobalValue::InternalLinkage);

    if (deleteIfDead(*F, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    // LLVM's definition of dominance allows instructions that are cyclic
    // in unreachable blocks, e.g.:
    // %pat = select i1 %condition, @global, i16* %pat
    // because any instruction dominates an instruction in a block that's
    // not reachable from entry.
    // So, remove unreachable blocks from the function, because a) there's
    // no point in analyzing them and b) GlobalOpt should otherwise grow
    // some more complicated logic to break these cycles.
    if (!F->isDeclaration()) {
      auto &DT = LookupDomTree(*F);
      DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
      Changed |= removeUnreachableBlocks(*F, &DTU);
    }

    Changed |= processGlobal(*F, GetTLI, LookupDomTree);

    if (!F->hasLocalLinkage())
      continue;

    // If we have an inalloca parameter that we can safely remove the
    // inalloca attribute from, do so. This unlocks optimizations that
    // wouldn't be safe in the presence of inalloca.
    // FIXME: We should also hoist alloca affected by this to the entry
    // block if possible.
    if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
        !F->hasAddressTaken()) {
      RemoveAttribute(F, Attribute::InAlloca);
      Changed = true;
    }

    if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
      NumInternalFunc++;
      TargetTransformInfo &TTI = GetTTI(*F);
      // Change the calling convention to coldcc if either stress testing is
      // enabled or the target would like to use coldcc on functions which are
      // cold at all call sites and the callers contain no other non coldcc
      // calls.
      if (EnableColdCCStressTest ||
          (TTI.useColdCCForColdCall(*F) &&
           isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
        F->setCallingConv(CallingConv::Cold);
        changeCallSitesToColdCC(F);
        Changed = true;
        NumColdCC++;
      }
    }

    if (hasChangeableCC(F) && !F->isVarArg() &&
        !F->hasAddressTaken()) {
      // If this function has a calling convention worth changing, is not a
      // varargs function, and is only called directly, promote it to use the
      // Fast calling convention.
      F->setCallingConv(CallingConv::Fast);
      ChangeCalleesToFastCall(F);
      ++NumFastCallFns;
      Changed = true;
    }

    if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
        !F->hasAddressTaken()) {
      // The function is not used by a trampoline intrinsic, so it is safe
      // to remove the 'nest' attribute.
      RemoveAttribute(F, Attribute::Nest);
      ++NumNestRemoved;
      Changed = true;
    }
  }
  return Changed;
}

static bool
OptimizeGlobalVars(Module &M,
                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
                   function_ref<DominatorTree &(Function &)> LookupDomTree,
                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
  bool Changed = false;

  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
       GVI != E; ) {
    GlobalVariable *GV = &*GVI++;
    // Global variables without names cannot be referenced outside this module.
    if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
      GV->setLinkage(GlobalValue::InternalLinkage);
    // Simplify the initializer.
    if (GV->hasInitializer())
      if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
        auto &DL = M.getDataLayout();
        // TLI is not used in the case of a Constant, so use default nullptr
        // for that optional parameter, since we don't have a Function to
        // provide GetTLI anyway.
        Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
        if (New && New != C)
          GV->setInitializer(New);
      }

    if (deleteIfDead(*GV, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
  }
  return Changed;
}

/// Evaluate a piece of a constantexpr store into a global initializer.  This
/// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
/// GEP operands of Addr [0, OpNo) have been stepped into.
static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
                                   ConstantExpr *Addr, unsigned OpNo) {
  // Base case of the recursion.
  if (OpNo == Addr->getNumOperands()) {
    assert(Val->getType() == Init->getType() && "Type mismatch!");
    return Val;
  }

  SmallVector<Constant*, 32> Elts;
  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
    // Break up the constant into its elements.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      Elts.push_back(Init->getAggregateElement(i));

    // Replace the element that we are supposed to.
    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
    unsigned Idx = CU->getZExtValue();
    assert(Idx < STy->getNumElements() && "Struct index out of range!");
    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);

    // Return the modified struct.
    return ConstantStruct::get(STy, Elts);
  }

  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
  SequentialType *InitTy = cast<SequentialType>(Init->getType());
  uint64_t NumElts = InitTy->getNumElements();

  // Break up the array into elements.
  for (uint64_t i = 0, e = NumElts; i != e; ++i)
    Elts.push_back(Init->getAggregateElement(i));

  assert(CI->getZExtValue() < NumElts);
  Elts[CI->getZExtValue()] =
    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);

  if (Init->getType()->isArrayTy())
    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
  return ConstantVector::get(Elts);
}

/// We have decided that Addr (which satisfies the predicate
/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
static void CommitValueTo(Constant *Val, Constant *Addr) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    assert(GV->hasInitializer());
    GV->setInitializer(Val);
    return;
  }

  ConstantExpr *CE = cast<ConstantExpr>(Addr);
  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
}

/// Given a map of address -> value, where addresses are expected to be some form
/// of either a global or a constant GEP, set the initializer for the address to
/// be the value. This performs mostly the same function as CommitValueTo()
/// and EvaluateStoreInto() but is optimized to be more efficient for the common
/// case where the set of addresses are GEPs sharing the same underlying global,
/// processing the GEPs in batches rather than individually.
///
/// To give an example, consider the following C++ code adapted from the clang
/// regression tests:
/// struct S {
///  int n = 10;
///  int m = 2 * n;
///  S(int a) : n(a) {}
/// };
///
/// template<typename T>
/// struct U {
///  T *r = &q;
///  T q = 42;
///  U *p = this;
/// };
///
/// U<S> e;
///
/// The global static constructor for 'e' will need to initialize 'r' and 'p' of
/// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
/// members. This batch algorithm will simply use general CommitValueTo() method
/// to handle the complex nested S struct initialization of 'q', before
/// processing the outermost members in a single batch. Using CommitValueTo() to
/// handle member in the outer struct is inefficient when the struct/array is
/// very large as we end up creating and destroy constant arrays for each
/// initialization.
/// For the above case, we expect the following IR to be generated:
///
/// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
/// %struct.S = type { i32, i32 }
/// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
///                                                  i64 0, i32 1),
///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
/// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
/// constant expression, while the other two elements of @e are "simple".
static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
  SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
  SimpleCEs.reserve(Mem.size());

  for (const auto &I : Mem) {
    if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
      GVs.push_back(std::make_pair(GV, I.second));
    } else {
      ConstantExpr *GEP = cast<ConstantExpr>(I.first);
      // We don't handle the deeply recursive case using the batch method.
      if (GEP->getNumOperands() > 3)
        ComplexCEs.push_back(std::make_pair(GEP, I.second));
      else
        SimpleCEs.push_back(std::make_pair(GEP, I.second));
    }
  }

  // The algorithm below doesn't handle cases like nested structs, so use the
  // slower fully general method if we have to.
  for (auto ComplexCE : ComplexCEs)
    CommitValueTo(ComplexCE.second, ComplexCE.first);

  for (auto GVPair : GVs) {
    assert(GVPair.first->hasInitializer());
    GVPair.first->setInitializer(GVPair.second);
  }

  if (SimpleCEs.empty())
    return;

  // We cache a single global's initializer elements in the case where the
  // subsequent address/val pair uses the same one. This avoids throwing away and
  // rebuilding the constant struct/vector/array just because one element is
  // modified at a time.
  SmallVector<Constant *, 32> Elts;
  Elts.reserve(SimpleCEs.size());
  GlobalVariable *CurrentGV = nullptr;

  auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
    Constant *Init = GV->getInitializer();
    Type *Ty = Init->getType();
    if (Update) {
      if (CurrentGV) {
        assert(CurrentGV && "Expected a GV to commit to!");
        Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
        // We have a valid cache that needs to be committed.
        if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
          CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
        else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
          CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
        else
          CurrentGV->setInitializer(ConstantVector::get(Elts));
      }
      if (CurrentGV == GV)
        return;
      // Need to clear and set up cache for new initializer.
      CurrentGV = GV;
      Elts.clear();
      unsigned NumElts;
      if (auto *STy = dyn_cast<StructType>(Ty))
        NumElts = STy->getNumElements();
      else
        NumElts = cast<SequentialType>(Ty)->getNumElements();
      for (unsigned i = 0, e = NumElts; i != e; ++i)
        Elts.push_back(Init->getAggregateElement(i));
    }
  };

  for (auto CEPair : SimpleCEs) {
    ConstantExpr *GEP = CEPair.first;
    Constant *Val = CEPair.second;

    GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
    commitAndSetupCache(GV, GV != CurrentGV);
    ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
    Elts[CI->getZExtValue()] = Val;
  }
  // The last initializer in the list needs to be committed, others
  // will be committed on a new initializer being processed.
  commitAndSetupCache(CurrentGV, true);
}

/// Evaluate static constructors in the function, if we can.  Return true if we
/// can, false otherwise.
static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
                                      TargetLibraryInfo *TLI) {
  // Call the function.
  Evaluator Eval(DL, TLI);
  Constant *RetValDummy;
  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
                                           SmallVector<Constant*, 0>());

  if (EvalSuccess) {
    ++NumCtorsEvaluated;

    // We succeeded at evaluation: commit the result.
    LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
                      << F->getName() << "' to "
                      << Eval.getMutatedMemory().size() << " stores.\n");
    BatchCommitValueTo(Eval.getMutatedMemory());
    for (GlobalVariable *GV : Eval.getInvariants())
      GV->setConstant(true);
  }

  return EvalSuccess;
}

static int compareNames(Constant *const *A, Constant *const *B) {
  Value *AStripped = (*A)->stripPointerCasts();
  Value *BStripped = (*B)->stripPointerCasts();
  return AStripped->getName().compare(BStripped->getName());
}

static void setUsedInitializer(GlobalVariable &V,
                               const SmallPtrSetImpl<GlobalValue *> &Init) {
  if (Init.empty()) {
    V.eraseFromParent();
    return;
  }

  // Type of pointer to the array of pointers.
  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);

  SmallVector<Constant *, 8> UsedArray;
  for (GlobalValue *GV : Init) {
    Constant *Cast
      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
    UsedArray.push_back(Cast);
  }
  // Sort to get deterministic order.
  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());

  Module *M = V.getParent();
  V.removeFromParent();
  GlobalVariable *NV =
      new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
                         ConstantArray::get(ATy, UsedArray), "");
  NV->takeName(&V);
  NV->setSection("llvm.metadata");
  delete &V;
}

namespace {

/// An easy to access representation of llvm.used and llvm.compiler.used.
class LLVMUsed {
  SmallPtrSet<GlobalValue *, 8> Used;
  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
  GlobalVariable *UsedV;
  GlobalVariable *CompilerUsedV;

public:
  LLVMUsed(Module &M) {
    UsedV = collectUsedGlobalVariables(M, Used, false);
    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
  }

  using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
  using used_iterator_range = iterator_range<iterator>;

  iterator usedBegin() { return Used.begin(); }
  iterator usedEnd() { return Used.end(); }

  used_iterator_range used() {
    return used_iterator_range(usedBegin(), usedEnd());
  }

  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
  iterator compilerUsedEnd() { return CompilerUsed.end(); }

  used_iterator_range compilerUsed() {
    return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
  }

  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }

  bool compilerUsedCount(GlobalValue *GV) const {
    return CompilerUsed.count(GV);
  }

  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
  bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }

  bool compilerUsedInsert(GlobalValue *GV) {
    return CompilerUsed.insert(GV).second;
  }

  void syncVariablesAndSets() {
    if (UsedV)
      setUsedInitializer(*UsedV, Used);
    if (CompilerUsedV)
      setUsedInitializer(*CompilerUsedV, CompilerUsed);
  }
};

} // end anonymous namespace

static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
  if (GA.use_empty()) // No use at all.
    return false;

  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
         "We should have removed the duplicated "
         "element from llvm.compiler.used");
  if (!GA.hasOneUse())
    // Strictly more than one use. So at least one is not in llvm.used and
    // llvm.compiler.used.
    return true;

  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
}

static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
                                               const LLVMUsed &U) {
  unsigned N = 2;
  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
         "We should have removed the duplicated "
         "element from llvm.compiler.used");
  if (U.usedCount(&V) || U.compilerUsedCount(&V))
    ++N;
  return V.hasNUsesOrMore(N);
}

static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
  if (!GA.hasLocalLinkage())
    return true;

  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
}

static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
                             bool &RenameTarget) {
  RenameTarget = false;
  bool Ret = false;
  if (hasUseOtherThanLLVMUsed(GA, U))
    Ret = true;

  // If the alias is externally visible, we may still be able to simplify it.
  if (!mayHaveOtherReferences(GA, U))
    return Ret;

  // If the aliasee has internal linkage, give it the name and linkage
  // of the alias, and delete the alias.  This turns:
  //   define internal ... @f(...)
  //   @a = alias ... @f
  // into:
  //   define ... @a(...)
  Constant *Aliasee = GA.getAliasee();
  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
  if (!Target->hasLocalLinkage())
    return Ret;

  // Do not perform the transform if multiple aliases potentially target the
  // aliasee. This check also ensures that it is safe to replace the section
  // and other attributes of the aliasee with those of the alias.
  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
    return Ret;

  RenameTarget = true;
  return true;
}

static bool
OptimizeGlobalAliases(Module &M,
                      SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
  bool Changed = false;
  LLVMUsed Used(M);

  for (GlobalValue *GV : Used.used())
    Used.compilerUsedErase(GV);

  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
       I != E;) {
    GlobalAlias *J = &*I++;

    // Aliases without names cannot be referenced outside this module.
    if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
      J->setLinkage(GlobalValue::InternalLinkage);

    if (deleteIfDead(*J, NotDiscardableComdats)) {
      Changed = true;
      continue;
    }

    // If the alias can change at link time, nothing can be done - bail out.
    if (J->isInterposable())
      continue;

    Constant *Aliasee = J->getAliasee();
    GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
    // We can't trivially replace the alias with the aliasee if the aliasee is
    // non-trivial in some way.
    // TODO: Try to handle non-zero GEPs of local aliasees.
    if (!Target)
      continue;
    Target->removeDeadConstantUsers();

    // Make all users of the alias use the aliasee instead.
    bool RenameTarget;
    if (!hasUsesToReplace(*J, Used, RenameTarget))
      continue;

    J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
    ++NumAliasesResolved;
    Changed = true;

    if (RenameTarget) {
      // Give the aliasee the name, linkage and other attributes of the alias.
      Target->takeName(&*J);
      Target->setLinkage(J->getLinkage());
      Target->setDSOLocal(J->isDSOLocal());
      Target->setVisibility(J->getVisibility());
      Target->setDLLStorageClass(J->getDLLStorageClass());

      if (Used.usedErase(&*J))
        Used.usedInsert(Target);

      if (Used.compilerUsedErase(&*J))
        Used.compilerUsedInsert(Target);
    } else if (mayHaveOtherReferences(*J, Used))
      continue;

    // Delete the alias.
    M.getAliasList().erase(J);
    ++NumAliasesRemoved;
    Changed = true;
  }

  Used.syncVariablesAndSets();

  return Changed;
}

static Function *
FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  // Hack to get a default TLI before we have actual Function.
  auto FuncIter = M.begin();
  if (FuncIter == M.end())
    return nullptr;
  auto *TLI = &GetTLI(*FuncIter);

  LibFunc F = LibFunc_cxa_atexit;
  if (!TLI->has(F))
    return nullptr;

  Function *Fn = M.getFunction(TLI->getName(F));
  if (!Fn)
    return nullptr;

  // Now get the actual TLI for Fn.
  TLI = &GetTLI(*Fn);

  // Make sure that the function has the correct prototype.
  if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
    return nullptr;

  return Fn;
}

/// Returns whether the given function is an empty C++ destructor and can
/// therefore be eliminated.
/// Note that we assume that other optimization passes have already simplified
/// the code so we simply check for 'ret'.
static bool cxxDtorIsEmpty(const Function &Fn) {
  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
  // nounwind, but that doesn't seem worth doing.
  if (Fn.isDeclaration())
    return false;

  for (auto &I : Fn.getEntryBlock()) {
    if (isa<DbgInfoIntrinsic>(I))
      continue;
    if (isa<ReturnInst>(I))
      return true;
    break;
  }
  return false;
}

static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
  /// Itanium C++ ABI p3.3.5:
  ///
  ///   After constructing a global (or local static) object, that will require
  ///   destruction on exit, a termination function is registered as follows:
  ///
  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
  ///
  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
  ///   call f(p) when DSO d is unloaded, before all such termination calls
  ///   registered before this one. It returns zero if registration is
  ///   successful, nonzero on failure.

  // This pass will look for calls to __cxa_atexit where the function is trivial
  // and remove them.
  bool Changed = false;

  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
       I != E;) {
    // We're only interested in calls. Theoretically, we could handle invoke
    // instructions as well, but neither llvm-gcc nor clang generate invokes
    // to __cxa_atexit.
    CallInst *CI = dyn_cast<CallInst>(*I++);
    if (!CI)
      continue;

    Function *DtorFn =
      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
    if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
      continue;

    // Just remove the call.
    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
    CI->eraseFromParent();

    ++NumCXXDtorsRemoved;

    Changed |= true;
  }

  return Changed;
}

static bool optimizeGlobalsInModule(
    Module &M, const DataLayout &DL,
    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<TargetTransformInfo &(Function &)> GetTTI,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
  bool Changed = false;
  bool LocalChange = true;
  while (LocalChange) {
    LocalChange = false;

    NotDiscardableComdats.clear();
    for (const GlobalVariable &GV : M.globals())
      if (const Comdat *C = GV.getComdat())
        if (!GV.isDiscardableIfUnused() || !GV.use_empty())
          NotDiscardableComdats.insert(C);
    for (Function &F : M)
      if (const Comdat *C = F.getComdat())
        if (!F.isDefTriviallyDead())
          NotDiscardableComdats.insert(C);
    for (GlobalAlias &GA : M.aliases())
      if (const Comdat *C = GA.getComdat())
        if (!GA.isDiscardableIfUnused() || !GA.use_empty())
          NotDiscardableComdats.insert(C);

    // Delete functions that are trivially dead, ccc -> fastcc
    LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
                                     NotDiscardableComdats);

    // Optimize global_ctors list.
    LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
      return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
    });

    // Optimize non-address-taken globals.
    LocalChange |=
        OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);

    // Resolve aliases, when possible.
    LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);

    // Try to remove trivial global destructors if they are not removed
    // already.
    Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
    if (CXAAtExitFn)
      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);

    Changed |= LocalChange;
  }

  // TODO: Move all global ctors functions to the end of the module for code
  // layout.

  return Changed;
}

PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
    auto &DL = M.getDataLayout();
    auto &FAM =
        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
    auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
      return FAM.getResult<DominatorTreeAnalysis>(F);
    };
    auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
      return FAM.getResult<TargetLibraryAnalysis>(F);
    };
    auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
      return FAM.getResult<TargetIRAnalysis>(F);
    };

    auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
      return FAM.getResult<BlockFrequencyAnalysis>(F);
    };

    if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
      return PreservedAnalyses::all();
    return PreservedAnalyses::none();
}

namespace {

struct GlobalOptLegacyPass : public ModulePass {
  static char ID; // Pass identification, replacement for typeid

  GlobalOptLegacyPass() : ModulePass(ID) {
    initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    auto &DL = M.getDataLayout();
    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
    };
    auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
      return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    };
    auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
      return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    };

    auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
      return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
    };

    return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
                                   LookupDomTree);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
  }
};

} // end anonymous namespace

char GlobalOptLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
                      "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
                    "Global Variable Optimizer", false, false)

ModulePass *llvm::createGlobalOptimizerPass() {
  return new GlobalOptLegacyPass();
}