reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a register stacking pass.
///
/// This pass reorders instructions to put register uses and defs in an order
/// such that they form single-use expression trees. Registers fitting this form
/// are then marked as "stackified", meaning references to them are replaced by
/// "push" and "pop" from the value stack.
///
/// This is primarily a code size optimization, since temporary values on the
/// value stack don't need to be named.
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
#include "WebAssembly.h"
#include "WebAssemblyDebugValueManager.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "WebAssemblyUtilities.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "wasm-reg-stackify"

namespace {
class WebAssemblyRegStackify final : public MachineFunctionPass {
  StringRef getPassName() const override {
    return "WebAssembly Register Stackify";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<LiveIntervals>();
    AU.addPreserved<MachineBlockFrequencyInfo>();
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.addPreservedID(LiveVariablesID);
    AU.addPreserved<MachineDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

public:
  static char ID; // Pass identification, replacement for typeid
  WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace

char WebAssemblyRegStackify::ID = 0;
INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
                "Reorder instructions to use the WebAssembly value stack",
                false, false)

FunctionPass *llvm::createWebAssemblyRegStackify() {
  return new WebAssemblyRegStackify();
}

// Decorate the given instruction with implicit operands that enforce the
// expression stack ordering constraints for an instruction which is on
// the expression stack.
static void imposeStackOrdering(MachineInstr *MI) {
  // Write the opaque VALUE_STACK register.
  if (!MI->definesRegister(WebAssembly::VALUE_STACK))
    MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
                                             /*isDef=*/true,
                                             /*isImp=*/true));

  // Also read the opaque VALUE_STACK register.
  if (!MI->readsRegister(WebAssembly::VALUE_STACK))
    MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
                                             /*isDef=*/false,
                                             /*isImp=*/true));
}

// Convert an IMPLICIT_DEF instruction into an instruction which defines
// a constant zero value.
static void convertImplicitDefToConstZero(MachineInstr *MI,
                                          MachineRegisterInfo &MRI,
                                          const TargetInstrInfo *TII,
                                          MachineFunction &MF,
                                          LiveIntervals &LIS) {
  assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);

  const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
  if (RegClass == &WebAssembly::I32RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_I32));
    MI->addOperand(MachineOperand::CreateImm(0));
  } else if (RegClass == &WebAssembly::I64RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_I64));
    MI->addOperand(MachineOperand::CreateImm(0));
  } else if (RegClass == &WebAssembly::F32RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_F32));
    auto *Val = cast<ConstantFP>(Constant::getNullValue(
        Type::getFloatTy(MF.getFunction().getContext())));
    MI->addOperand(MachineOperand::CreateFPImm(Val));
  } else if (RegClass == &WebAssembly::F64RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_F64));
    auto *Val = cast<ConstantFP>(Constant::getNullValue(
        Type::getDoubleTy(MF.getFunction().getContext())));
    MI->addOperand(MachineOperand::CreateFPImm(Val));
  } else if (RegClass == &WebAssembly::V128RegClass) {
    Register TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
    MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32));
    MI->addOperand(MachineOperand::CreateReg(TempReg, false));
    MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
                                  TII->get(WebAssembly::CONST_I32), TempReg)
                              .addImm(0);
    LIS.InsertMachineInstrInMaps(*Const);
  } else {
    llvm_unreachable("Unexpected reg class");
  }
}

// Determine whether a call to the callee referenced by
// MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
// effects.
static void queryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
                        bool &Write, bool &Effects, bool &StackPointer) {
  // All calls can use the stack pointer.
  StackPointer = true;

  const MachineOperand &MO = MI.getOperand(CalleeOpNo);
  if (MO.isGlobal()) {
    const Constant *GV = MO.getGlobal();
    if (const auto *GA = dyn_cast<GlobalAlias>(GV))
      if (!GA->isInterposable())
        GV = GA->getAliasee();

    if (const auto *F = dyn_cast<Function>(GV)) {
      if (!F->doesNotThrow())
        Effects = true;
      if (F->doesNotAccessMemory())
        return;
      if (F->onlyReadsMemory()) {
        Read = true;
        return;
      }
    }
  }

  // Assume the worst.
  Write = true;
  Read = true;
  Effects = true;
}

// Determine whether MI reads memory, writes memory, has side effects,
// and/or uses the stack pointer value.
static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
                  bool &Write, bool &Effects, bool &StackPointer) {
  assert(!MI.isTerminator());

  if (MI.isDebugInstr() || MI.isPosition())
    return;

  // Check for loads.
  if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
    Read = true;

  // Check for stores.
  if (MI.mayStore()) {
    Write = true;
  } else if (MI.hasOrderedMemoryRef()) {
    switch (MI.getOpcode()) {
    case WebAssembly::DIV_S_I32:
    case WebAssembly::DIV_S_I64:
    case WebAssembly::REM_S_I32:
    case WebAssembly::REM_S_I64:
    case WebAssembly::DIV_U_I32:
    case WebAssembly::DIV_U_I64:
    case WebAssembly::REM_U_I32:
    case WebAssembly::REM_U_I64:
    case WebAssembly::I32_TRUNC_S_F32:
    case WebAssembly::I64_TRUNC_S_F32:
    case WebAssembly::I32_TRUNC_S_F64:
    case WebAssembly::I64_TRUNC_S_F64:
    case WebAssembly::I32_TRUNC_U_F32:
    case WebAssembly::I64_TRUNC_U_F32:
    case WebAssembly::I32_TRUNC_U_F64:
    case WebAssembly::I64_TRUNC_U_F64:
      // These instruction have hasUnmodeledSideEffects() returning true
      // because they trap on overflow and invalid so they can't be arbitrarily
      // moved, however hasOrderedMemoryRef() interprets this plus their lack
      // of memoperands as having a potential unknown memory reference.
      break;
    default:
      // Record volatile accesses, unless it's a call, as calls are handled
      // specially below.
      if (!MI.isCall()) {
        Write = true;
        Effects = true;
      }
      break;
    }
  }

  // Check for side effects.
  if (MI.hasUnmodeledSideEffects()) {
    switch (MI.getOpcode()) {
    case WebAssembly::DIV_S_I32:
    case WebAssembly::DIV_S_I64:
    case WebAssembly::REM_S_I32:
    case WebAssembly::REM_S_I64:
    case WebAssembly::DIV_U_I32:
    case WebAssembly::DIV_U_I64:
    case WebAssembly::REM_U_I32:
    case WebAssembly::REM_U_I64:
    case WebAssembly::I32_TRUNC_S_F32:
    case WebAssembly::I64_TRUNC_S_F32:
    case WebAssembly::I32_TRUNC_S_F64:
    case WebAssembly::I64_TRUNC_S_F64:
    case WebAssembly::I32_TRUNC_U_F32:
    case WebAssembly::I64_TRUNC_U_F32:
    case WebAssembly::I32_TRUNC_U_F64:
    case WebAssembly::I64_TRUNC_U_F64:
      // These instructions have hasUnmodeledSideEffects() returning true
      // because they trap on overflow and invalid so they can't be arbitrarily
      // moved, however in the specific case of register stackifying, it is safe
      // to move them because overflow and invalid are Undefined Behavior.
      break;
    default:
      Effects = true;
      break;
    }
  }

  // Check for writes to __stack_pointer global.
  if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 &&
      strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
    StackPointer = true;

  // Analyze calls.
  if (MI.isCall()) {
    unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI.getOpcode());
    queryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer);
  }
}

// Test whether Def is safe and profitable to rematerialize.
static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
                                const WebAssemblyInstrInfo *TII) {
  return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
}

// Identify the definition for this register at this point. This is a
// generalization of MachineRegisterInfo::getUniqueVRegDef that uses
// LiveIntervals to handle complex cases.
static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
                                const MachineRegisterInfo &MRI,
                                const LiveIntervals &LIS) {
  // Most registers are in SSA form here so we try a quick MRI query first.
  if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
    return Def;

  // MRI doesn't know what the Def is. Try asking LIS.
  if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
          LIS.getInstructionIndex(*Insert)))
    return LIS.getInstructionFromIndex(ValNo->def);

  return nullptr;
}

// Test whether Reg, as defined at Def, has exactly one use. This is a
// generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
// to handle complex cases.
static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
                      MachineDominatorTree &MDT, LiveIntervals &LIS) {
  // Most registers are in SSA form here so we try a quick MRI query first.
  if (MRI.hasOneUse(Reg))
    return true;

  bool HasOne = false;
  const LiveInterval &LI = LIS.getInterval(Reg);
  const VNInfo *DefVNI =
      LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
  assert(DefVNI);
  for (auto &I : MRI.use_nodbg_operands(Reg)) {
    const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
    if (Result.valueIn() == DefVNI) {
      if (!Result.isKill())
        return false;
      if (HasOne)
        return false;
      HasOne = true;
    }
  }
  return HasOne;
}

// Test whether it's safe to move Def to just before Insert.
// TODO: Compute memory dependencies in a way that doesn't require always
// walking the block.
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool isSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
                         AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
  assert(Def->getParent() == Insert->getParent());

  // 'catch' and 'extract_exception' should be the first instruction of a BB and
  // cannot move.
  if (Def->getOpcode() == WebAssembly::CATCH ||
      Def->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32) {
    const MachineBasicBlock *MBB = Def->getParent();
    auto NextI = std::next(MachineBasicBlock::const_iterator(Def));
    for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
      ;
    if (NextI != Insert)
      return false;
  }

  // Check for register dependencies.
  SmallVector<unsigned, 4> MutableRegisters;
  for (const MachineOperand &MO : Def->operands()) {
    if (!MO.isReg() || MO.isUndef())
      continue;
    Register Reg = MO.getReg();

    // If the register is dead here and at Insert, ignore it.
    if (MO.isDead() && Insert->definesRegister(Reg) &&
        !Insert->readsRegister(Reg))
      continue;

    if (Register::isPhysicalRegister(Reg)) {
      // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
      // from moving down, and we've already checked for that.
      if (Reg == WebAssembly::ARGUMENTS)
        continue;
      // If the physical register is never modified, ignore it.
      if (!MRI.isPhysRegModified(Reg))
        continue;
      // Otherwise, it's a physical register with unknown liveness.
      return false;
    }

    // If one of the operands isn't in SSA form, it has different values at
    // different times, and we need to make sure we don't move our use across
    // a different def.
    if (!MO.isDef() && !MRI.hasOneDef(Reg))
      MutableRegisters.push_back(Reg);
  }

  bool Read = false, Write = false, Effects = false, StackPointer = false;
  query(*Def, AA, Read, Write, Effects, StackPointer);

  // If the instruction does not access memory and has no side effects, it has
  // no additional dependencies.
  bool HasMutableRegisters = !MutableRegisters.empty();
  if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
    return true;

  // Scan through the intervening instructions between Def and Insert.
  MachineBasicBlock::const_iterator D(Def), I(Insert);
  for (--I; I != D; --I) {
    bool InterveningRead = false;
    bool InterveningWrite = false;
    bool InterveningEffects = false;
    bool InterveningStackPointer = false;
    query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
          InterveningStackPointer);
    if (Effects && InterveningEffects)
      return false;
    if (Read && InterveningWrite)
      return false;
    if (Write && (InterveningRead || InterveningWrite))
      return false;
    if (StackPointer && InterveningStackPointer)
      return false;

    for (unsigned Reg : MutableRegisters)
      for (const MachineOperand &MO : I->operands())
        if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
          return false;
  }

  return true;
}

/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
                                     const MachineBasicBlock &MBB,
                                     const MachineRegisterInfo &MRI,
                                     const MachineDominatorTree &MDT,
                                     LiveIntervals &LIS,
                                     WebAssemblyFunctionInfo &MFI) {
  const LiveInterval &LI = LIS.getInterval(Reg);

  const MachineInstr *OneUseInst = OneUse.getParent();
  VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));

  for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
    if (&Use == &OneUse)
      continue;

    const MachineInstr *UseInst = Use.getParent();
    VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));

    if (UseVNI != OneUseVNI)
      continue;

    if (UseInst == OneUseInst) {
      // Another use in the same instruction. We need to ensure that the one
      // selected use happens "before" it.
      if (&OneUse > &Use)
        return false;
    } else {
      // Test that the use is dominated by the one selected use.
      while (!MDT.dominates(OneUseInst, UseInst)) {
        // Actually, dominating is over-conservative. Test that the use would
        // happen after the one selected use in the stack evaluation order.
        //
        // This is needed as a consequence of using implicit local.gets for
        // uses and implicit local.sets for defs.
        if (UseInst->getDesc().getNumDefs() == 0)
          return false;
        const MachineOperand &MO = UseInst->getOperand(0);
        if (!MO.isReg())
          return false;
        Register DefReg = MO.getReg();
        if (!Register::isVirtualRegister(DefReg) ||
            !MFI.isVRegStackified(DefReg))
          return false;
        assert(MRI.hasOneNonDBGUse(DefReg));
        const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
        const MachineInstr *NewUseInst = NewUse.getParent();
        if (NewUseInst == OneUseInst) {
          if (&OneUse > &NewUse)
            return false;
          break;
        }
        UseInst = NewUseInst;
      }
    }
  }
  return true;
}

/// Get the appropriate tee opcode for the given register class.
static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
  if (RC == &WebAssembly::I32RegClass)
    return WebAssembly::TEE_I32;
  if (RC == &WebAssembly::I64RegClass)
    return WebAssembly::TEE_I64;
  if (RC == &WebAssembly::F32RegClass)
    return WebAssembly::TEE_F32;
  if (RC == &WebAssembly::F64RegClass)
    return WebAssembly::TEE_F64;
  if (RC == &WebAssembly::V128RegClass)
    return WebAssembly::TEE_V128;
  llvm_unreachable("Unexpected register class");
}

// Shrink LI to its uses, cleaning up LI.
static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
  if (LIS.shrinkToUses(&LI)) {
    SmallVector<LiveInterval *, 4> SplitLIs;
    LIS.splitSeparateComponents(LI, SplitLIs);
  }
}

/// A single-use def in the same block with no intervening memory or register
/// dependencies; move the def down and nest it with the current instruction.
static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
                                      MachineInstr *Def, MachineBasicBlock &MBB,
                                      MachineInstr *Insert, LiveIntervals &LIS,
                                      WebAssemblyFunctionInfo &MFI,
                                      MachineRegisterInfo &MRI) {
  LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());

  WebAssemblyDebugValueManager DefDIs(Def);
  MBB.splice(Insert, &MBB, Def);
  DefDIs.move(Insert);
  LIS.handleMove(*Def);

  if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
    // No one else is using this register for anything so we can just stackify
    // it in place.
    MFI.stackifyVReg(Reg);
  } else {
    // The register may have unrelated uses or defs; create a new register for
    // just our one def and use so that we can stackify it.
    Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
    Def->getOperand(0).setReg(NewReg);
    Op.setReg(NewReg);

    // Tell LiveIntervals about the new register.
    LIS.createAndComputeVirtRegInterval(NewReg);

    // Tell LiveIntervals about the changes to the old register.
    LiveInterval &LI = LIS.getInterval(Reg);
    LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
                     LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
                     /*RemoveDeadValNo=*/true);

    MFI.stackifyVReg(NewReg);

    DefDIs.updateReg(NewReg);

    LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
  }

  imposeStackOrdering(Def);
  return Def;
}

/// A trivially cloneable instruction; clone it and nest the new copy with the
/// current instruction.
static MachineInstr *rematerializeCheapDef(
    unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
    MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
    WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
    const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
  LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
  LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());

  WebAssemblyDebugValueManager DefDIs(&Def);

  Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
  TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
  Op.setReg(NewReg);
  MachineInstr *Clone = &*std::prev(Insert);
  LIS.InsertMachineInstrInMaps(*Clone);
  LIS.createAndComputeVirtRegInterval(NewReg);
  MFI.stackifyVReg(NewReg);
  imposeStackOrdering(Clone);

  LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());

  // Shrink the interval.
  bool IsDead = MRI.use_empty(Reg);
  if (!IsDead) {
    LiveInterval &LI = LIS.getInterval(Reg);
    shrinkToUses(LI, LIS);
    IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
  }

  // If that was the last use of the original, delete the original.
  // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
  if (IsDead) {
    LLVM_DEBUG(dbgs() << " - Deleting original\n");
    SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
    LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
    LIS.removeInterval(Reg);
    LIS.RemoveMachineInstrFromMaps(Def);
    Def.eraseFromParent();

    DefDIs.move(&*Insert);
    DefDIs.updateReg(NewReg);
  } else {
    DefDIs.clone(&*Insert, NewReg);
  }

  return Clone;
}

/// A multiple-use def in the same block with no intervening memory or register
/// dependencies; move the def down, nest it with the current instruction, and
/// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
/// this:
///
///    Reg = INST ...        // Def
///    INST ..., Reg, ...    // Insert
///    INST ..., Reg, ...
///    INST ..., Reg, ...
///
/// to this:
///
///    DefReg = INST ...     // Def (to become the new Insert)
///    TeeReg, Reg = TEE_... DefReg
///    INST ..., TeeReg, ... // Insert
///    INST ..., Reg, ...
///    INST ..., Reg, ...
///
/// with DefReg and TeeReg stackified. This eliminates a local.get from the
/// resulting code.
static MachineInstr *moveAndTeeForMultiUse(
    unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
    MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
    MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
  LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());

  WebAssemblyDebugValueManager DefDIs(Def);

  // Move Def into place.
  MBB.splice(Insert, &MBB, Def);
  LIS.handleMove(*Def);

  // Create the Tee and attach the registers.
  const auto *RegClass = MRI.getRegClass(Reg);
  Register TeeReg = MRI.createVirtualRegister(RegClass);
  Register DefReg = MRI.createVirtualRegister(RegClass);
  MachineOperand &DefMO = Def->getOperand(0);
  MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
                              TII->get(getTeeOpcode(RegClass)), TeeReg)
                          .addReg(Reg, RegState::Define)
                          .addReg(DefReg, getUndefRegState(DefMO.isDead()));
  Op.setReg(TeeReg);
  DefMO.setReg(DefReg);
  SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
  SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();

  DefDIs.move(Insert);

  // Tell LiveIntervals we moved the original vreg def from Def to Tee.
  LiveInterval &LI = LIS.getInterval(Reg);
  LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
  VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
  I->start = TeeIdx;
  ValNo->def = TeeIdx;
  shrinkToUses(LI, LIS);

  // Finish stackifying the new regs.
  LIS.createAndComputeVirtRegInterval(TeeReg);
  LIS.createAndComputeVirtRegInterval(DefReg);
  MFI.stackifyVReg(DefReg);
  MFI.stackifyVReg(TeeReg);
  imposeStackOrdering(Def);
  imposeStackOrdering(Tee);

  DefDIs.clone(Tee, DefReg);
  DefDIs.clone(Insert, TeeReg);

  LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
  LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
  return Def;
}

namespace {
/// A stack for walking the tree of instructions being built, visiting the
/// MachineOperands in DFS order.
class TreeWalkerState {
  using mop_iterator = MachineInstr::mop_iterator;
  using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
  using RangeTy = iterator_range<mop_reverse_iterator>;
  SmallVector<RangeTy, 4> Worklist;

public:
  explicit TreeWalkerState(MachineInstr *Insert) {
    const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
    if (Range.begin() != Range.end())
      Worklist.push_back(reverse(Range));
  }

  bool done() const { return Worklist.empty(); }

  MachineOperand &pop() {
    RangeTy &Range = Worklist.back();
    MachineOperand &Op = *Range.begin();
    Range = drop_begin(Range, 1);
    if (Range.begin() == Range.end())
      Worklist.pop_back();
    assert((Worklist.empty() ||
            Worklist.back().begin() != Worklist.back().end()) &&
           "Empty ranges shouldn't remain in the worklist");
    return Op;
  }

  /// Push Instr's operands onto the stack to be visited.
  void pushOperands(MachineInstr *Instr) {
    const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
    if (Range.begin() != Range.end())
      Worklist.push_back(reverse(Range));
  }

  /// Some of Instr's operands are on the top of the stack; remove them and
  /// re-insert them starting from the beginning (because we've commuted them).
  void resetTopOperands(MachineInstr *Instr) {
    assert(hasRemainingOperands(Instr) &&
           "Reseting operands should only be done when the instruction has "
           "an operand still on the stack");
    Worklist.back() = reverse(Instr->explicit_uses());
  }

  /// Test whether Instr has operands remaining to be visited at the top of
  /// the stack.
  bool hasRemainingOperands(const MachineInstr *Instr) const {
    if (Worklist.empty())
      return false;
    const RangeTy &Range = Worklist.back();
    return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
  }

  /// Test whether the given register is present on the stack, indicating an
  /// operand in the tree that we haven't visited yet. Moving a definition of
  /// Reg to a point in the tree after that would change its value.
  ///
  /// This is needed as a consequence of using implicit local.gets for
  /// uses and implicit local.sets for defs.
  bool isOnStack(unsigned Reg) const {
    for (const RangeTy &Range : Worklist)
      for (const MachineOperand &MO : Range)
        if (MO.isReg() && MO.getReg() == Reg)
          return true;
    return false;
  }
};

/// State to keep track of whether commuting is in flight or whether it's been
/// tried for the current instruction and didn't work.
class CommutingState {
  /// There are effectively three states: the initial state where we haven't
  /// started commuting anything and we don't know anything yet, the tentative
  /// state where we've commuted the operands of the current instruction and are
  /// revisiting it, and the declined state where we've reverted the operands
  /// back to their original order and will no longer commute it further.
  bool TentativelyCommuting = false;
  bool Declined = false;

  /// During the tentative state, these hold the operand indices of the commuted
  /// operands.
  unsigned Operand0, Operand1;

public:
  /// Stackification for an operand was not successful due to ordering
  /// constraints. If possible, and if we haven't already tried it and declined
  /// it, commute Insert's operands and prepare to revisit it.
  void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
                    const WebAssemblyInstrInfo *TII) {
    if (TentativelyCommuting) {
      assert(!Declined &&
             "Don't decline commuting until you've finished trying it");
      // Commuting didn't help. Revert it.
      TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
      TentativelyCommuting = false;
      Declined = true;
    } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
      Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
      Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
      if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
        // Tentatively commute the operands and try again.
        TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
        TreeWalker.resetTopOperands(Insert);
        TentativelyCommuting = true;
        Declined = false;
      }
    }
  }

  /// Stackification for some operand was successful. Reset to the default
  /// state.
  void reset() {
    TentativelyCommuting = false;
    Declined = false;
  }
};
} // end anonymous namespace

bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
                       "********** Function: "
                    << MF.getName() << '\n');

  bool Changed = false;
  MachineRegisterInfo &MRI = MF.getRegInfo();
  WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
  const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
  AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &MDT = getAnalysis<MachineDominatorTree>();
  auto &LIS = getAnalysis<LiveIntervals>();

  // Walk the instructions from the bottom up. Currently we don't look past
  // block boundaries, and the blocks aren't ordered so the block visitation
  // order isn't significant, but we may want to change this in the future.
  for (MachineBasicBlock &MBB : MF) {
    // Don't use a range-based for loop, because we modify the list as we're
    // iterating over it and the end iterator may change.
    for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
      MachineInstr *Insert = &*MII;
      // Don't nest anything inside an inline asm, because we don't have
      // constraints for $push inputs.
      if (Insert->isInlineAsm())
        continue;

      // Ignore debugging intrinsics.
      if (Insert->isDebugValue())
        continue;

      // Iterate through the inputs in reverse order, since we'll be pulling
      // operands off the stack in LIFO order.
      CommutingState Commuting;
      TreeWalkerState TreeWalker(Insert);
      while (!TreeWalker.done()) {
        MachineOperand &Op = TreeWalker.pop();

        // We're only interested in explicit virtual register operands.
        if (!Op.isReg())
          continue;

        Register Reg = Op.getReg();
        assert(Op.isUse() && "explicit_uses() should only iterate over uses");
        assert(!Op.isImplicit() &&
               "explicit_uses() should only iterate over explicit operands");
        if (Register::isPhysicalRegister(Reg))
          continue;

        // Identify the definition for this register at this point.
        MachineInstr *Def = getVRegDef(Reg, Insert, MRI, LIS);
        if (!Def)
          continue;

        // Don't nest an INLINE_ASM def into anything, because we don't have
        // constraints for $pop outputs.
        if (Def->isInlineAsm())
          continue;

        // Argument instructions represent live-in registers and not real
        // instructions.
        if (WebAssembly::isArgument(Def->getOpcode()))
          continue;

        // Currently catch's return value register cannot be stackified, because
        // the wasm LLVM backend currently does not support live-in values
        // entering blocks, which is a part of multi-value proposal.
        //
        // Once we support live-in values of wasm blocks, this can be:
        // catch                           ; push exnref value onto stack
        // block exnref -> i32
        // br_on_exn $__cpp_exception      ; pop the exnref value
        // end_block
        //
        // But because we don't support it yet, the catch instruction's dst
        // register should be assigned to a local to be propagated across
        // 'block' boundary now.
        //
        // TODO Fix this once we support the multi-value proposal.
        if (Def->getOpcode() == WebAssembly::CATCH)
          continue;

        // Decide which strategy to take. Prefer to move a single-use value
        // over cloning it, and prefer cloning over introducing a tee.
        // For moving, we require the def to be in the same block as the use;
        // this makes things simpler (LiveIntervals' handleMove function only
        // supports intra-block moves) and it's MachineSink's job to catch all
        // the sinking opportunities anyway.
        bool SameBlock = Def->getParent() == &MBB;
        bool CanMove = SameBlock && isSafeToMove(Def, Insert, AA, MRI) &&
                       !TreeWalker.isOnStack(Reg);
        if (CanMove && hasOneUse(Reg, Def, MRI, MDT, LIS)) {
          Insert = moveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
        } else if (shouldRematerialize(*Def, AA, TII)) {
          Insert =
              rematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
                                    LIS, MFI, MRI, TII, TRI);
        } else if (CanMove &&
                   oneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
          Insert = moveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
                                         MRI, TII);
        } else {
          // We failed to stackify the operand. If the problem was ordering
          // constraints, Commuting may be able to help.
          if (!CanMove && SameBlock)
            Commuting.maybeCommute(Insert, TreeWalker, TII);
          // Proceed to the next operand.
          continue;
        }

        // If the instruction we just stackified is an IMPLICIT_DEF, convert it
        // to a constant 0 so that the def is explicit, and the push/pop
        // correspondence is maintained.
        if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
          convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);

        // We stackified an operand. Add the defining instruction's operands to
        // the worklist stack now to continue to build an ever deeper tree.
        Commuting.reset();
        TreeWalker.pushOperands(Insert);
      }

      // If we stackified any operands, skip over the tree to start looking for
      // the next instruction we can build a tree on.
      if (Insert != &*MII) {
        imposeStackOrdering(&*MII);
        MII = MachineBasicBlock::iterator(Insert).getReverse();
        Changed = true;
      }
    }
  }

  // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
  // that it never looks like a use-before-def.
  if (Changed) {
    MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
    for (MachineBasicBlock &MBB : MF)
      MBB.addLiveIn(WebAssembly::VALUE_STACK);
  }

#ifndef NDEBUG
  // Verify that pushes and pops are performed in LIFO order.
  SmallVector<unsigned, 0> Stack;
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (MI.isDebugInstr())
        continue;
      for (MachineOperand &MO : reverse(MI.explicit_operands())) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();

        if (MFI.isVRegStackified(Reg)) {
          if (MO.isDef())
            Stack.push_back(Reg);
          else
            assert(Stack.pop_back_val() == Reg &&
                   "Register stack pop should be paired with a push");
        }
      }
    }
    // TODO: Generalize this code to support keeping values on the stack across
    // basic block boundaries.
    assert(Stack.empty() &&
           "Register stack pushes and pops should be balanced");
  }
#endif

  return Changed;
}