reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
//===- BitTracker.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
#define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <queue>
#include <set>
#include <utility>

namespace llvm {

class BitVector;
class ConstantInt;
class MachineRegisterInfo;
class MachineBasicBlock;
class MachineFunction;
class raw_ostream;
class TargetRegisterClass;
class TargetRegisterInfo;

struct BitTracker {
  struct BitRef;
  struct RegisterRef;
  struct BitValue;
  struct BitMask;
  struct RegisterCell;
  struct MachineEvaluator;

  using BranchTargetList = SetVector<const MachineBasicBlock *>;
  using CellMapType = std::map<unsigned, RegisterCell>;

  BitTracker(const MachineEvaluator &E, MachineFunction &F);
  ~BitTracker();

  void run();
  void trace(bool On = false) { Trace = On; }
  bool has(unsigned Reg) const;
  const RegisterCell &lookup(unsigned Reg) const;
  RegisterCell get(RegisterRef RR) const;
  void put(RegisterRef RR, const RegisterCell &RC);
  void subst(RegisterRef OldRR, RegisterRef NewRR);
  bool reached(const MachineBasicBlock *B) const;
  void visit(const MachineInstr &MI);

  void print_cells(raw_ostream &OS) const;

private:
  void visitPHI(const MachineInstr &PI);
  void visitNonBranch(const MachineInstr &MI);
  void visitBranchesFrom(const MachineInstr &BI);
  void visitUsesOf(unsigned Reg);

  using CFGEdge = std::pair<int, int>;
  using EdgeSetType = std::set<CFGEdge>;
  using InstrSetType = std::set<const MachineInstr *>;
  using EdgeQueueType = std::queue<CFGEdge>;

  // Priority queue of instructions using modified registers, ordered by
  // their relative position in a basic block.
  struct UseQueueType {
    UseQueueType() : Uses(Dist) {}

    unsigned size() const {
      return Uses.size();
    }
    bool empty() const {
      return size() == 0;
    }
    MachineInstr *front() const {
      return Uses.top();
    }
    void push(MachineInstr *MI) {
      if (Set.insert(MI).second)
        Uses.push(MI);
    }
    void pop() {
      Set.erase(front());
      Uses.pop();
    }
    void reset() {
      Dist.clear();
    }
  private:
    struct Cmp {
      Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
      bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
      DenseMap<const MachineInstr*,unsigned> &Dist;
    };
    std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
    DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
    DenseMap<const MachineInstr*,unsigned> Dist;
  };

  void reset();
  void runEdgeQueue(BitVector &BlockScanned);
  void runUseQueue();

  const MachineEvaluator &ME;
  MachineFunction &MF;
  MachineRegisterInfo &MRI;
  CellMapType &Map;

  EdgeSetType EdgeExec;         // Executable flow graph edges.
  InstrSetType InstrExec;       // Executable instructions.
  UseQueueType UseQ;            // Work queue of register uses.
  EdgeQueueType FlowQ;          // Work queue of CFG edges.
  DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
  bool Trace;                   // Enable tracing for debugging.
};

// Abstraction of a reference to bit at position Pos from a register Reg.
struct BitTracker::BitRef {
  BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}

  bool operator== (const BitRef &BR) const {
    // If Reg is 0, disregard Pos.
    return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
  }

  unsigned Reg;
  uint16_t Pos;
};

// Abstraction of a register reference in MachineOperand.  It contains the
// register number and the subregister index.
struct BitTracker::RegisterRef {
  RegisterRef(unsigned R = 0, unsigned S = 0)
    : Reg(R), Sub(S) {}
  RegisterRef(const MachineOperand &MO)
      : Reg(MO.getReg()), Sub(MO.getSubReg()) {}

  unsigned Reg, Sub;
};

// Value that a single bit can take.  This is outside of the context of
// any register, it is more of an abstraction of the two-element set of
// possible bit values.  One extension here is the "Ref" type, which
// indicates that this bit takes the same value as the bit described by
// RefInfo.
struct BitTracker::BitValue {
  enum ValueType {
    Top,    // Bit not yet defined.
    Zero,   // Bit = 0.
    One,    // Bit = 1.
    Ref     // Bit value same as the one described in RefI.
    // Conceptually, there is no explicit "bottom" value: the lattice's
    // bottom will be expressed as a "ref to itself", which, in the context
    // of registers, could be read as "this value of this bit is defined by
    // this bit".
    // The ordering is:
    //   x <= Top,
    //   Self <= x, where "Self" is "ref to itself".
    // This makes the value lattice different for each virtual register
    // (even for each bit in the same virtual register), since the "bottom"
    // for one register will be a simple "ref" for another register.
    // Since we do not store the "Self" bit and register number, the meet
    // operation will need to take it as a parameter.
    //
    // In practice there is a special case for values that are not associa-
    // ted with any specific virtual register. An example would be a value
    // corresponding to a bit of a physical register, or an intermediate
    // value obtained in some computation (such as instruction evaluation).
    // Such cases are identical to the usual Ref type, but the register
    // number is 0. In such case the Pos field of the reference is ignored.
    //
    // What is worthy of notice is that in value V (that is a "ref"), as long
    // as the RefI.Reg is not 0, it may actually be the same register as the
    // one in which V will be contained.  If the RefI.Pos refers to the posi-
    // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
    // otherwise V is taken to be identical to the referenced bit of the
    // same register.
    // If RefI.Reg is 0, however, such a reference to the same register is
    // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
    // is treated as "bottom".
  };
  ValueType Type;
  BitRef RefI;

  BitValue(ValueType T = Top) : Type(T) {}
  BitValue(bool B) : Type(B ? One : Zero) {}
  BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}

  bool operator== (const BitValue &V) const {
    if (Type != V.Type)
      return false;
    if (Type == Ref && !(RefI == V.RefI))
      return false;
    return true;
  }
  bool operator!= (const BitValue &V) const {
    return !operator==(V);
  }

  bool is(unsigned T) const {
    assert(T == 0 || T == 1);
    return T == 0 ? Type == Zero
                  : (T == 1 ? Type == One : false);
  }

  // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
  // (1)  x.x = x
  // (2)  x.y = y.x
  // (3)  x.(y.z) = (x.y).z
  // (4)  x.T = x  (i.e. T = "top")
  // (5)  x.B = B  (i.e. B = "bottom")
  //
  // This "meet" function will update the value of the "*this" object with
  // the newly calculated one, and return "true" if the value of *this has
  // changed, and "false" otherwise.
  // To prove that it satisfies the conditions (1)-(5), it is sufficient
  // to show that a relation
  //   x <= y  <=>  x.y = x
  // defines a partial order (i.e. that "meet" is same as "infimum").
  bool meet(const BitValue &V, const BitRef &Self) {
    // First, check the cases where there is nothing to be done.
    if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
      return false;
    if (V.Type == Top)                  // This.meet(Top) = This
      return false;
    if (*this == V)                     // This.meet(This) = This
      return false;

    // At this point, we know that the value of "this" will change.
    // If it is Top, it will become the same as V, otherwise it will
    // become "bottom" (i.e. Self).
    if (Type == Top) {
      Type = V.Type;
      RefI = V.RefI;  // This may be irrelevant, but copy anyway.
      return true;
    }
    // Become "bottom".
    Type = Ref;
    RefI = Self;
    return true;
  }

  // Create a reference to the bit value V.
  static BitValue ref(const BitValue &V);
  // Create a "self".
  static BitValue self(const BitRef &Self = BitRef());

  bool num() const {
    return Type == Zero || Type == One;
  }

  operator bool() const {
    assert(Type == Zero || Type == One);
    return Type == One;
  }

  friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
};

// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
inline BitTracker::BitValue
BitTracker::BitValue::ref(const BitValue &V) {
  if (V.Type != Ref)
    return BitValue(V.Type);
  if (V.RefI.Reg != 0)
    return BitValue(V.RefI.Reg, V.RefI.Pos);
  return self();
}

inline BitTracker::BitValue
BitTracker::BitValue::self(const BitRef &Self) {
  return BitValue(Self.Reg, Self.Pos);
}

// A sequence of bits starting from index B up to and including index E.
// If E < B, the mask represents two sections: [0..E] and [B..W) where
// W is the width of the register.
struct BitTracker::BitMask {
  BitMask() = default;
  BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}

  uint16_t first() const { return B; }
  uint16_t last() const { return E; }

private:
  uint16_t B = 0;
  uint16_t E = 0;
};

// Representation of a register: a list of BitValues.
struct BitTracker::RegisterCell {
  RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}

  uint16_t width() const {
    return Bits.size();
  }

  const BitValue &operator[](uint16_t BitN) const {
    assert(BitN < Bits.size());
    return Bits[BitN];
  }
  BitValue &operator[](uint16_t BitN) {
    assert(BitN < Bits.size());
    return Bits[BitN];
  }

  bool meet(const RegisterCell &RC, unsigned SelfR);
  RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
  RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
  RegisterCell &rol(uint16_t Sh);    // Rotate left.
  RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
  RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
  uint16_t cl(bool B) const;
  uint16_t ct(bool B) const;

  bool operator== (const RegisterCell &RC) const;
  bool operator!= (const RegisterCell &RC) const {
    return !operator==(RC);
  }

  // Replace the ref-to-reg-0 bit values with the given register.
  RegisterCell &regify(unsigned R);

  // Generate a "ref" cell for the corresponding register. In the resulting
  // cell each bit will be described as being the same as the corresponding
  // bit in register Reg (i.e. the cell is "defined" by register Reg).
  static RegisterCell self(unsigned Reg, uint16_t Width);
  // Generate a "top" cell of given size.
  static RegisterCell top(uint16_t Width);
  // Generate a cell that is a "ref" to another cell.
  static RegisterCell ref(const RegisterCell &C);

private:
  // The DefaultBitN is here only to avoid frequent reallocation of the
  // memory in the vector.
  static const unsigned DefaultBitN = 32;
  using BitValueList = SmallVector<BitValue, DefaultBitN>;
  BitValueList Bits;

  friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
};

inline bool BitTracker::has(unsigned Reg) const {
  return Map.find(Reg) != Map.end();
}

inline const BitTracker::RegisterCell&
BitTracker::lookup(unsigned Reg) const {
  CellMapType::const_iterator F = Map.find(Reg);
  assert(F != Map.end());
  return F->second;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
  RegisterCell RC(Width);
  for (uint16_t i = 0; i < Width; ++i)
    RC.Bits[i] = BitValue::self(BitRef(Reg, i));
  return RC;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::top(uint16_t Width) {
  RegisterCell RC(Width);
  for (uint16_t i = 0; i < Width; ++i)
    RC.Bits[i] = BitValue(BitValue::Top);
  return RC;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::ref(const RegisterCell &C) {
  uint16_t W = C.width();
  RegisterCell RC(W);
  for (unsigned i = 0; i < W; ++i)
    RC[i] = BitValue::ref(C[i]);
  return RC;
}

// A class to evaluate target's instructions and update the cell maps.
// This is used internally by the bit tracker.  A target that wants to
// utilize this should implement the evaluation functions (noted below)
// in a subclass of this class.
struct BitTracker::MachineEvaluator {
  MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
      : TRI(T), MRI(M) {}
  virtual ~MachineEvaluator() = default;

  uint16_t getRegBitWidth(const RegisterRef &RR) const;

  RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
  void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;

  // A result of any operation should use refs to the source cells, not
  // the cells directly. This function is a convenience wrapper to quickly
  // generate a ref for a cell corresponding to a register reference.
  RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
    RegisterCell RC = getCell(RR, M);
    return RegisterCell::ref(RC);
  }

  // Helper functions.
  // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
  bool isInt(const RegisterCell &A) const;
  // Convert cell to an immediate value.
  uint64_t toInt(const RegisterCell &A) const;

  // Generate cell from an immediate value.
  RegisterCell eIMM(int64_t V, uint16_t W) const;
  RegisterCell eIMM(const ConstantInt *CI) const;

  // Arithmetic.
  RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;

  // Shifts.
  RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
  RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
  RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;

  // Logical.
  RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eNOT(const RegisterCell &A1) const;

  // Set bit, clear bit.
  RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
  RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;

  // Count leading/trailing bits (zeros/ones).
  RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
  RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;

  // Sign/zero extension.
  RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
  RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;

  // Extract/insert
  // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
  // INS R,S,b:  take R and replace bits starting from b with S.
  RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
  RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
                    uint16_t AtN) const;

  // User-provided functions for individual targets:

  // Return a sub-register mask that indicates which bits in Reg belong
  // to the subregister Sub. These bits are assumed to be contiguous in
  // the super-register, and have the same ordering in the sub-register
  // as in the super-register. It is valid to call this function with
  // Sub == 0, in this case, the function should return a mask that spans
  // the entire register Reg (which is what the default implementation
  // does).
  virtual BitMask mask(unsigned Reg, unsigned Sub) const;
  // Indicate whether a given register class should be tracked.
  virtual bool track(const TargetRegisterClass *RC) const { return true; }
  // Evaluate a non-branching machine instruction, given the cell map with
  // the input values. Place the results in the Outputs map. Return "true"
  // if evaluation succeeded, "false" otherwise.
  virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
                        CellMapType &Outputs) const;
  // Evaluate a branch, given the cell map with the input values. Fill out
  // a list of all possible branch targets and indicate (through a flag)
  // whether the branch could fall-through. Return "true" if this information
  // has been successfully computed, "false" otherwise.
  virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
                        BranchTargetList &Targets, bool &FallsThru) const = 0;
  // Given a register class RC, return a register class that should be assumed
  // when a register from class RC is used with a subregister of index Idx.
  virtual const TargetRegisterClass&
  composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
    if (Idx == 0)
      return RC;
    llvm_unreachable("Unimplemented composeWithSubRegIndex");
  }
  // Return the size in bits of the physical register Reg.
  virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;

  const TargetRegisterInfo &TRI;
  MachineRegisterInfo &MRI;
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H