reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
//===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AArch64CallLowering.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>

#define DEBUG_TYPE "aarch64-call-lowering"

using namespace llvm;

AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
  : CallLowering(&TLI) {}

namespace {
struct IncomingArgHandler : public CallLowering::ValueHandler {
  IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     CCAssignFn *AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64));
    MIRBuilder.buildFrameIndex(AddrReg, FI);
    StackUsed = std::max(StackUsed, Size + Offset);
    return AddrReg;
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    markPhysRegUsed(PhysReg);
    switch (VA.getLocInfo()) {
    default:
      MIRBuilder.buildCopy(ValVReg, PhysReg);
      break;
    case CCValAssign::LocInfo::SExt:
    case CCValAssign::LocInfo::ZExt:
    case CCValAssign::LocInfo::AExt: {
      auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      break;
    }
    }
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    // FIXME: Get alignment
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
        1);
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;

  bool isIncomingArgumentHandler() const override { return true; }

  uint64_t StackUsed;
};

struct FormalArgHandler : public IncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                   CCAssignFn *AssignFn)
    : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMRI()->addLiveIn(PhysReg);
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

struct CallReturnHandler : public IncomingArgHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    MachineInstrBuilder MIB, CCAssignFn *AssignFn)
    : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

  MachineInstrBuilder MIB;
};

struct OutgoingArgHandler : public CallLowering::ValueHandler {
  OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     MachineInstrBuilder MIB, CCAssignFn *AssignFn,
                     CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
                     int FPDiff = 0)
      : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
        AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
        StackSize(0) {}

  bool isIncomingArgumentHandler() const override { return false; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    MachineFunction &MF = MIRBuilder.getMF();
    LLT p0 = LLT::pointer(0, 64);
    LLT s64 = LLT::scalar(64);

    if (IsTailCall) {
      Offset += FPDiff;
      int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
      Register FIReg = MRI.createGenericVirtualRegister(p0);
      MIRBuilder.buildFrameIndex(FIReg, FI);
      MPO = MachinePointerInfo::getFixedStack(MF, FI);
      return FIReg;
    }

    Register SPReg = MRI.createGenericVirtualRegister(p0);
    MIRBuilder.buildCopy(SPReg, Register(AArch64::SP));

    Register OffsetReg = MRI.createGenericVirtualRegister(s64);
    MIRBuilder.buildConstant(OffsetReg, Offset);

    Register AddrReg = MRI.createGenericVirtualRegister(p0);
    MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg);

    MPO = MachinePointerInfo::getStack(MF, Offset);
    return AddrReg;
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    MIB.addUse(PhysReg, RegState::Implicit);
    Register ExtReg = extendRegister(ValVReg, VA);
    MIRBuilder.buildCopy(PhysReg, ExtReg);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) {
      Size = VA.getLocVT().getSizeInBits() / 8;
      ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg)
                    ->getOperand(0)
                    .getReg();
    }
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOStore, Size, 1);
    MIRBuilder.buildStore(ValVReg, Addr, *MMO);
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info,
                 ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    bool Res;
    if (Info.IsFixed)
      Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
    else
      Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);

    StackSize = State.getNextStackOffset();
    return Res;
  }

  MachineInstrBuilder MIB;
  CCAssignFn *AssignFnVarArg;
  bool IsTailCall;

  /// For tail calls, the byte offset of the call's argument area from the
  /// callee's. Unused elsewhere.
  int FPDiff;
  uint64_t StackSize;
};
} // namespace

static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
  return CallConv == CallingConv::Fast && TailCallOpt;
}

void AArch64CallLowering::splitToValueTypes(
    const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
    const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  LLVMContext &Ctx = OrigArg.Ty->getContext();

  if (OrigArg.Ty->isVoidTy())
    return;

  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);

  if (SplitVTs.size() == 1) {
    // No splitting to do, but we want to replace the original type (e.g. [1 x
    // double] -> double).
    SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
                           OrigArg.Flags[0], OrigArg.IsFixed);
    return;
  }

  // Create one ArgInfo for each virtual register in the original ArgInfo.
  assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");

  bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
      OrigArg.Ty, CallConv, false);
  for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
    Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
    SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
                           OrigArg.IsFixed);
    if (NeedsRegBlock)
      SplitArgs.back().Flags[0].setInConsecutiveRegs();
  }

  SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
}

bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                      const Value *Val,
                                      ArrayRef<Register> VRegs,
                                      Register SwiftErrorVReg) const {
  auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
  assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
         "Return value without a vreg");

  bool Success = true;
  if (!VRegs.empty()) {
    MachineFunction &MF = MIRBuilder.getMF();
    const Function &F = MF.getFunction();

    MachineRegisterInfo &MRI = MF.getRegInfo();
    const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
    CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
    auto &DL = F.getParent()->getDataLayout();
    LLVMContext &Ctx = Val->getType()->getContext();

    SmallVector<EVT, 4> SplitEVTs;
    ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
    assert(VRegs.size() == SplitEVTs.size() &&
           "For each split Type there should be exactly one VReg.");

    SmallVector<ArgInfo, 8> SplitArgs;
    CallingConv::ID CC = F.getCallingConv();

    for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
      if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
        LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
        return false;
      }

      Register CurVReg = VRegs[i];
      ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
      setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);

      // i1 is a special case because SDAG i1 true is naturally zero extended
      // when widened using ANYEXT. We need to do it explicitly here.
      if (MRI.getType(CurVReg).getSizeInBits() == 1) {
        CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
      } else {
        // Some types will need extending as specified by the CC.
        MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
        if (EVT(NewVT) != SplitEVTs[i]) {
          unsigned ExtendOp = TargetOpcode::G_ANYEXT;
          if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                             Attribute::SExt))
            ExtendOp = TargetOpcode::G_SEXT;
          else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                                  Attribute::ZExt))
            ExtendOp = TargetOpcode::G_ZEXT;

          LLT NewLLT(NewVT);
          LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
          CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
          // Instead of an extend, we might have a vector type which needs
          // padding with more elements, e.g. <2 x half> -> <4 x half>.
          if (NewVT.isVector()) {
            if (OldLLT.isVector()) {
              if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
                // We don't handle VA types which are not exactly twice the
                // size, but can easily be done in future.
                if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
                  LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
                  return false;
                }
                auto Undef = MIRBuilder.buildUndef({OldLLT});
                CurVReg =
                    MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
                        .getReg(0);
              } else {
                // Just do a vector extend.
                CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
                              .getReg(0);
              }
            } else if (NewLLT.getNumElements() == 2) {
              // We need to pad a <1 x S> type to <2 x S>. Since we don't have
              // <1 x S> vector types in GISel we use a build_vector instead
              // of a vector merge/concat.
              auto Undef = MIRBuilder.buildUndef({OldLLT});
              CurVReg =
                  MIRBuilder
                      .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
                      .getReg(0);
            } else {
              LLVM_DEBUG(dbgs() << "Could not handle ret ty");
              return false;
            }
          } else {
            // A scalar extend.
            CurVReg =
                MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
          }
        }
      }
      if (CurVReg != CurArgInfo.Regs[0]) {
        CurArgInfo.Regs[0] = CurVReg;
        // Reset the arg flags after modifying CurVReg.
        setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
      }
     splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
    }

    OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
    Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
  }

  if (SwiftErrorVReg) {
    MIB.addUse(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
  }

  MIRBuilder.insertInstr(MIB);
  return Success;
}

/// Helper function to compute forwarded registers for musttail calls. Computes
/// the forwarded registers, sets MBB liveness, and emits COPY instructions that
/// can be used to save + restore registers later.
static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
                                             CCAssignFn *AssignFn) {
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineFunction &MF = MIRBuilder.getMF();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  if (!MFI.hasMustTailInVarArgFunc())
    return;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  const Function &F = MF.getFunction();
  assert(F.isVarArg() && "Expected F to be vararg?");

  // Compute the set of forwarded registers. The rest are scratch.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
                 F.getContext());
  SmallVector<MVT, 2> RegParmTypes;
  RegParmTypes.push_back(MVT::i64);
  RegParmTypes.push_back(MVT::f128);

  // Later on, we can use this vector to restore the registers if necessary.
  SmallVectorImpl<ForwardedRegister> &Forwards =
      FuncInfo->getForwardedMustTailRegParms();
  CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);

  // Conservatively forward X8, since it might be used for an aggregate
  // return.
  if (!CCInfo.isAllocated(AArch64::X8)) {
    unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
    Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
  }

  // Add the forwards to the MachineBasicBlock and MachineFunction.
  for (const auto &F : Forwards) {
    MBB.addLiveIn(F.PReg);
    MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
  }
}

bool AArch64CallLowering::lowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();

  SmallVector<ArgInfo, 8> SplitArgs;
  unsigned i = 0;
  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()) == 0)
      continue;

    ArgInfo OrigArg{VRegs[i], Arg.getType()};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);

    splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
    ++i;
  }

  if (!MBB.empty())
    MIRBuilder.setInstr(*MBB.begin());

  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *AssignFn =
      TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);

  FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
  if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
    return false;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  uint64_t StackOffset = Handler.StackUsed;
  if (F.isVarArg()) {
    auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
    if (!Subtarget.isTargetDarwin()) {
        // FIXME: we need to reimplement saveVarArgsRegisters from
      // AArch64ISelLowering.
      return false;
    }

    // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
    StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);

    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
  }

  if (doesCalleeRestoreStack(F.getCallingConv(),
                             MF.getTarget().Options.GuaranteedTailCallOpt)) {
    // We have a non-standard ABI, so why not make full use of the stack that
    // we're going to pop? It must be aligned to 16 B in any case.
    StackOffset = alignTo(StackOffset, 16);

    // If we're expected to restore the stack (e.g. fastcc), then we'll be
    // adding a multiple of 16.
    FuncInfo->setArgumentStackToRestore(StackOffset);

    // Our own callers will guarantee that the space is free by giving an
    // aligned value to CALLSEQ_START.
  }

  // When we tail call, we need to check if the callee's arguments
  // will fit on the caller's stack. So, whenever we lower formal arguments,
  // we should keep track of this information, since we might lower a tail call
  // in this function later.
  FuncInfo->setBytesInStackArgArea(StackOffset);

  auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  if (Subtarget.hasCustomCallingConv())
    Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);

  handleMustTailForwardedRegisters(MIRBuilder, AssignFn);

  // Move back to the end of the basic block.
  MIRBuilder.setMBB(MBB);

  return true;
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
  return CC == CallingConv::Fast;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
  case CallingConv::PreserveMost:
  case CallingConv::Swift:
    return true;
  default:
    return canGuaranteeTCO(CC);
  }
}

/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
  return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}

bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &InArgs) const {
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  // If the calling conventions match, then everything must be the same.
  if (CalleeCC == CallerCC)
    return true;

  // Check if the caller and callee will handle arguments in the same way.
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *CalleeAssignFnFixed;
  CCAssignFn *CalleeAssignFnVarArg;
  std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
      getAssignFnsForCC(CalleeCC, TLI);

  CCAssignFn *CallerAssignFnFixed;
  CCAssignFn *CallerAssignFnVarArg;
  std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
      getAssignFnsForCC(CallerCC, TLI);

  if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
                         *CalleeAssignFnVarArg, *CallerAssignFnFixed,
                         *CallerAssignFnVarArg))
    return false;

  // Make sure that the caller and callee preserve all of the same registers.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
    TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
    TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
  }

  return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
}

bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  // If there are no outgoing arguments, then we are done.
  if (OutArgs.empty())
    return true;

  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();

  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  // We have outgoing arguments. Make sure that we can tail call with them.
  SmallVector<CCValAssign, 16> OutLocs;
  CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());

  if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
    LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
    return false;
  }

  // Make sure that they can fit on the caller's stack.
  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
    LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
    return false;
  }

  // Verify that the parameters in callee-saved registers match.
  // TODO: Port this over to CallLowering as general code once swiftself is
  // supported.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
  MachineRegisterInfo &MRI = MF.getRegInfo();

  for (unsigned i = 0; i < OutLocs.size(); ++i) {
    auto &ArgLoc = OutLocs[i];
    // If it's not a register, it's fine.
    if (!ArgLoc.isRegLoc()) {
      if (Info.IsVarArg) {
        // Be conservative and disallow variadic memory operands to match SDAG's
        // behaviour.
        // FIXME: If the caller's calling convention is C, then we can
        // potentially use its argument area. However, for cases like fastcc,
        // we can't do anything.
        LLVM_DEBUG(
            dbgs()
            << "... Cannot tail call vararg function with stack arguments\n");
        return false;
      }
      continue;
    }

    Register Reg = ArgLoc.getLocReg();

    // Only look at callee-saved registers.
    if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
      continue;

    LLVM_DEBUG(
        dbgs()
        << "... Call has an argument passed in a callee-saved register.\n");

    // Check if it was copied from.
    ArgInfo &OutInfo = OutArgs[i];

    if (OutInfo.Regs.size() > 1) {
      LLVM_DEBUG(
          dbgs() << "... Cannot handle arguments in multiple registers.\n");
      return false;
    }

    // Check if we copy the register, walking through copies from virtual
    // registers. Note that getDefIgnoringCopies does not ignore copies from
    // physical registers.
    MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
    if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
      LLVM_DEBUG(
          dbgs()
          << "... Parameter was not copied into a VReg, cannot tail call.\n");
      return false;
    }

    // Got a copy. Verify that it's the same as the register we want.
    Register CopyRHS = RegDef->getOperand(1).getReg();
    if (CopyRHS != Reg) {
      LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
                           "VReg, cannot tail call.\n");
      return false;
    }
  }

  return true;
}

bool AArch64CallLowering::isEligibleForTailCallOptimization(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &InArgs,
    SmallVectorImpl<ArgInfo> &OutArgs) const {

  // Must pass all target-independent checks in order to tail call optimize.
  if (!Info.IsTailCall)
    return false;

  CallingConv::ID CalleeCC = Info.CallConv;
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &CallerF = MF.getFunction();

  LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");

  if (Info.SwiftErrorVReg) {
    // TODO: We should handle this.
    // Note that this is also handled by the check for no outgoing arguments.
    // Proactively disabling this though, because the swifterror handling in
    // lowerCall inserts a COPY *after* the location of the call.
    LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
    return false;
  }

  if (!mayTailCallThisCC(CalleeCC)) {
    LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
    return false;
  }

  // Byval parameters hand the function a pointer directly into the stack area
  // we want to reuse during a tail call. Working around this *is* possible (see
  // X86).
  //
  // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
  // it?
  //
  // On Windows, "inreg" attributes signify non-aggregate indirect returns.
  // In this case, it is necessary to save/restore X0 in the callee. Tail
  // call opt interferes with this. So we disable tail call opt when the
  // caller has an argument with "inreg" attribute.
  //
  // FIXME: Check whether the callee also has an "inreg" argument.
  //
  // When the caller has a swifterror argument, we don't want to tail call
  // because would have to move into the swifterror register before the
  // tail call.
  if (any_of(CallerF.args(), [](const Argument &A) {
        return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
      })) {
    LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
                         "inreg, or swifterror arguments\n");
    return false;
  }

  // Externally-defined functions with weak linkage should not be
  // tail-called on AArch64 when the OS does not support dynamic
  // pre-emption of symbols, as the AAELF spec requires normal calls
  // to undefined weak functions to be replaced with a NOP or jump to the
  // next instruction. The behaviour of branch instructions in this
  // situation (as used for tail calls) is implementation-defined, so we
  // cannot rely on the linker replacing the tail call with a return.
  if (Info.Callee.isGlobal()) {
    const GlobalValue *GV = Info.Callee.getGlobal();
    const Triple &TT = MF.getTarget().getTargetTriple();
    if (GV->hasExternalWeakLinkage() &&
        (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
         TT.isOSBinFormatMachO())) {
      LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
                           "with weak linkage for this OS.\n");
      return false;
    }
  }

  // If we have -tailcallopt, then we're done.
  if (MF.getTarget().Options.GuaranteedTailCallOpt)
    return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();

  // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
  // Try to find cases where we can do that.

  // I want anyone implementing a new calling convention to think long and hard
  // about this assert.
  assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
         "Unexpected variadic calling convention");

  // Verify that the incoming and outgoing arguments from the callee are
  // safe to tail call.
  if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
    LLVM_DEBUG(
        dbgs()
        << "... Caller and callee have incompatible calling conventions.\n");
    return false;
  }

  if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
    return false;

  LLVM_DEBUG(
      dbgs() << "... Call is eligible for tail call optimization.\n");
  return true;
}

static unsigned getCallOpcode(const Function &CallerF, bool IsIndirect,
                              bool IsTailCall) {
  if (!IsTailCall)
    return IsIndirect ? AArch64::BLR : AArch64::BL;

  if (!IsIndirect)
    return AArch64::TCRETURNdi;

  // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
  // x16 or x17.
  if (CallerF.hasFnAttribute("branch-target-enforcement"))
    return AArch64::TCRETURNriBTI;

  return AArch64::TCRETURNri;
}

bool AArch64CallLowering::lowerTailCall(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  // True when we're tail calling, but without -tailcallopt.
  bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;

  // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
  // register class. Until we can do that, we should fall back here.
  if (F.hasFnAttribute("branch-target-enforcement")) {
    LLVM_DEBUG(
        dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
    return false;
  }

  // Find out which ABI gets to decide where things go.
  CallingConv::ID CalleeCC = Info.CallConv;
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  MachineInstrBuilder CallSeqStart;
  if (!IsSibCall)
    CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), true);
  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.add(Info.Callee);

  // Byte offset for the tail call. When we are sibcalling, this will always
  // be 0.
  MIB.addImm(0);

  // Tell the call which registers are clobbered.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0.
  int FPDiff = 0;

  // This will be 0 for sibcalls, potentially nonzero for tail calls produced
  // by -tailcallopt. For sibcalls, the memory operands for the call are
  // already available in the caller's incoming argument space.
  unsigned NumBytes = 0;
  if (!IsSibCall) {
    // We aren't sibcalling, so we need to compute FPDiff. We need to do this
    // before handling assignments, because FPDiff must be known for memory
    // arguments.
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
    SmallVector<CCValAssign, 16> OutLocs;
    CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
    analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);

    // The callee will pop the argument stack as a tail call. Thus, we must
    // keep it 16-byte aligned.
    NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
  }

  const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();

  // Do the actual argument marshalling.
  SmallVector<unsigned, 8> PhysRegs;
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
                             AssignFnVarArg, true, FPDiff);
  if (!handleAssignments(MIRBuilder, OutArgs, Handler))
    return false;

  if (Info.IsVarArg && Info.IsMustTailCall) {
    // Now we know what's being passed to the function. Add uses to the call for
    // the forwarded registers that we *aren't* passing as parameters. This will
    // preserve the copies we build earlier.
    for (const auto &F : Forwards) {
      Register ForwardedReg = F.PReg;
      // If the register is already passed, or aliases a register which is
      // already being passed, then skip it.
      if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
            if (!Use.isReg())
              return false;
            return TRI->regsOverlap(Use.getReg(), ForwardedReg);
          }))
        continue;

      // We aren't passing it already, so we should add it to the call.
      MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
      MIB.addReg(ForwardedReg, RegState::Implicit);
    }
  }

  // If we have -tailcallopt, we need to adjust the stack. We'll do the call
  // sequence start and end here.
  if (!IsSibCall) {
    MIB->getOperand(1).setImm(FPDiff);
    CallSeqStart.addImm(NumBytes).addImm(0);
    // End the call sequence *before* emitting the call. Normally, we would
    // tidy the frame up after the call. However, here, we've laid out the
    // parameters so that when SP is reset, they will be in the correct
    // location.
    MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
  }

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific instruction,
  // it must have a register class matching the constraint of that instruction.
  if (Info.Callee.isReg())
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
        *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
        0));

  MF.getFrameInfo().setHasTailCall();
  Info.LoweredTailCall = true;
  return true;
}

bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                    CallLoweringInfo &Info) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();

  SmallVector<ArgInfo, 8> OutArgs;
  for (auto &OrigArg : Info.OrigArgs) {
    splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
    // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
    if (OrigArg.Ty->isIntegerTy(1))
      OutArgs.back().Flags[0].setZExt();
  }

  SmallVector<ArgInfo, 8> InArgs;
  if (!Info.OrigRet.Ty->isVoidTy())
    splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());

  // If we can lower as a tail call, do that instead.
  bool CanTailCallOpt =
      isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);

  // We must emit a tail call if we have musttail.
  if (Info.IsMustTailCall && !CanTailCallOpt) {
    // There are types of incoming/outgoing arguments we can't handle yet, so
    // it doesn't make sense to actually die here like in ISelLowering. Instead,
    // fall back to SelectionDAG and let it try to handle this.
    LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
    return false;
  }

  if (CanTailCallOpt)
    return lowerTailCall(MIRBuilder, Info, OutArgs);

  // Find out which ABI gets to decide where things go.
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) =
      getAssignFnsForCC(Info.CallConv, TLI);

  MachineInstrBuilder CallSeqStart;
  CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  // Create a temporarily-floating call instruction so we can add the implicit
  // uses of arg registers.
  unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), false);

  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.add(Info.Callee);

  // Tell the call which registers are clobbered.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // Do the actual argument marshalling.
  SmallVector<unsigned, 8> PhysRegs;
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
                             AssignFnVarArg, false);
  if (!handleAssignments(MIRBuilder, OutArgs, Handler))
    return false;

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.
  if (Info.Callee.isReg())
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
        *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
        0));

  // Finally we can copy the returned value back into its virtual-register. In
  // symmetry with the arugments, the physical register must be an
  // implicit-define of the call instruction.
  if (!Info.OrigRet.Ty->isVoidTy()) {
    CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
    CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
    if (!handleAssignments(MIRBuilder, InArgs, Handler))
      return false;
  }

  if (Info.SwiftErrorVReg) {
    MIB.addDef(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
  }

  uint64_t CalleePopBytes =
      doesCalleeRestoreStack(Info.CallConv,
                             MF.getTarget().Options.GuaranteedTailCallOpt)
          ? alignTo(Handler.StackSize, 16)
          : 0;

  CallSeqStart.addImm(Handler.StackSize).addImm(0);
  MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
      .addImm(Handler.StackSize)
      .addImm(CalleePopBytes);

  return true;
}