reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "gi-combiner"

using namespace llvm;

// Option to allow testing of the combiner while no targets know about indexed
// addressing.
static cl::opt<bool>
    ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
                       cl::desc("Force all indexed operations to be "
                                "legal for the GlobalISel combiner"));


CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
                               MachineIRBuilder &B, GISelKnownBits *KB,
                               MachineDominatorTree *MDT)
    : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
      KB(KB), MDT(MDT) {
  (void)this->KB;
}

void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
                                    Register ToReg) const {
  Observer.changingAllUsesOfReg(MRI, FromReg);

  if (MRI.constrainRegAttrs(ToReg, FromReg))
    MRI.replaceRegWith(FromReg, ToReg);
  else
    Builder.buildCopy(ToReg, FromReg);

  Observer.finishedChangingAllUsesOfReg();
}

void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
                                      MachineOperand &FromRegOp,
                                      Register ToReg) const {
  assert(FromRegOp.getParent() && "Expected an operand in an MI");
  Observer.changingInstr(*FromRegOp.getParent());

  FromRegOp.setReg(ToReg);

  Observer.changedInstr(*FromRegOp.getParent());
}

bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
  if (matchCombineCopy(MI)) {
    applyCombineCopy(MI);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
  if (MI.getOpcode() != TargetOpcode::COPY)
    return false;
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  LLT SrcTy = MRI.getType(SrcReg);
  // Simple Copy Propagation.
  // a(sx) = COPY b(sx) -> Replace all uses of a with b.
  if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy)
    return true;
  return false;
}
void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  MI.eraseFromParent();
  replaceRegWith(MRI, DstReg, SrcReg);
}

bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
  bool IsUndef = false;
  SmallVector<Register, 4> Ops;
  if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
    applyCombineConcatVectors(MI, IsUndef, Ops);
    return true;
  }
  return false;
}

bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
                                               SmallVectorImpl<Register> &Ops) {
  assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
         "Invalid instruction");
  IsUndef = true;
  MachineInstr *Undef = nullptr;

  // Walk over all the operands of concat vectors and check if they are
  // build_vector themselves or undef.
  // Then collect their operands in Ops.
  for (const MachineOperand &MO : MI.operands()) {
    // Skip the instruction definition.
    if (MO.isDef())
      continue;
    Register Reg = MO.getReg();
    MachineInstr *Def = MRI.getVRegDef(Reg);
    assert(Def && "Operand not defined");
    switch (Def->getOpcode()) {
    case TargetOpcode::G_BUILD_VECTOR:
      IsUndef = false;
      // Remember the operands of the build_vector to fold
      // them into the yet-to-build flattened concat vectors.
      for (const MachineOperand &BuildVecMO : Def->operands()) {
        // Skip the definition.
        if (BuildVecMO.isDef())
          continue;
        Ops.push_back(BuildVecMO.getReg());
      }
      break;
    case TargetOpcode::G_IMPLICIT_DEF: {
      LLT OpType = MRI.getType(Reg);
      // Keep one undef value for all the undef operands.
      if (!Undef) {
        Builder.setInsertPt(*MI.getParent(), MI);
        Undef = Builder.buildUndef(OpType.getScalarType());
      }
      assert(MRI.getType(Undef->getOperand(0).getReg()) ==
                 OpType.getScalarType() &&
             "All undefs should have the same type");
      // Break the undef vector in as many scalar elements as needed
      // for the flattening.
      for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
           EltIdx != EltEnd; ++EltIdx)
        Ops.push_back(Undef->getOperand(0).getReg());
      break;
    }
    default:
      return false;
    }
  }
  return true;
}
void CombinerHelper::applyCombineConcatVectors(
    MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
  // We determined that the concat_vectors can be flatten.
  // Generate the flattened build_vector.
  Register DstReg = MI.getOperand(0).getReg();
  Builder.setInsertPt(*MI.getParent(), MI);
  Register NewDstReg = MRI.cloneVirtualRegister(DstReg);

  // Note: IsUndef is sort of redundant. We could have determine it by
  // checking that at all Ops are undef.  Alternatively, we could have
  // generate a build_vector of undefs and rely on another combine to
  // clean that up.  For now, given we already gather this information
  // in tryCombineConcatVectors, just save compile time and issue the
  // right thing.
  if (IsUndef)
    Builder.buildUndef(NewDstReg);
  else
    Builder.buildBuildVector(NewDstReg, Ops);
  MI.eraseFromParent();
  replaceRegWith(MRI, DstReg, NewDstReg);
}

bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
  SmallVector<Register, 4> Ops;
  if (matchCombineShuffleVector(MI, Ops)) {
    applyCombineShuffleVector(MI, Ops);
    return true;
  }
  return false;
}

bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
                                               SmallVectorImpl<Register> &Ops) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
         "Invalid instruction kind");
  LLT DstType = MRI.getType(MI.getOperand(0).getReg());
  Register Src1 = MI.getOperand(1).getReg();
  LLT SrcType = MRI.getType(Src1);
  unsigned DstNumElts = DstType.getNumElements();
  unsigned SrcNumElts = SrcType.getNumElements();

  // If the resulting vector is smaller than the size of the source
  // vectors being concatenated, we won't be able to replace the
  // shuffle vector into a concat_vectors.
  //
  // Note: We may still be able to produce a concat_vectors fed by
  //       extract_vector_elt and so on. It is less clear that would
  //       be better though, so don't bother for now.
  if (DstNumElts < 2 * SrcNumElts)
    return false;

  // Check that the shuffle mask can be broken evenly between the
  // different sources.
  if (DstNumElts % SrcNumElts != 0)
    return false;

  // Mask length is a multiple of the source vector length.
  // Check if the shuffle is some kind of concatenation of the input
  // vectors.
  unsigned NumConcat = DstNumElts / SrcNumElts;
  SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
  SmallVector<int, 8> Mask;
  ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask);
  for (unsigned i = 0; i != DstNumElts; ++i) {
    int Idx = Mask[i];
    // Undef value.
    if (Idx < 0)
      continue;
    // Ensure the indices in each SrcType sized piece are sequential and that
    // the same source is used for the whole piece.
    if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
        (ConcatSrcs[i / SrcNumElts] >= 0 &&
         ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
      return false;
    // Remember which source this index came from.
    ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
  }

  // The shuffle is concatenating multiple vectors together.
  // Collect the different operands for that.
  Register UndefReg;
  Register Src2 = MI.getOperand(2).getReg();
  for (auto Src : ConcatSrcs) {
    if (Src < 0) {
      if (!UndefReg) {
        Builder.setInsertPt(*MI.getParent(), MI);
        UndefReg = Builder.buildUndef(SrcType).getReg(0);
      }
      Ops.push_back(UndefReg);
    } else if (Src == 0)
      Ops.push_back(Src1);
    else
      Ops.push_back(Src2);
  }
  return true;
}

void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
                                               const ArrayRef<Register> Ops) {
  Register DstReg = MI.getOperand(0).getReg();
  Builder.setInsertPt(*MI.getParent(), MI);
  Register NewDstReg = MRI.cloneVirtualRegister(DstReg);

  Builder.buildConcatVectors(NewDstReg, Ops);

  MI.eraseFromParent();
  replaceRegWith(MRI, DstReg, NewDstReg);
}

namespace {

/// Select a preference between two uses. CurrentUse is the current preference
/// while *ForCandidate is attributes of the candidate under consideration.
PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
                                  const LLT &TyForCandidate,
                                  unsigned OpcodeForCandidate,
                                  MachineInstr *MIForCandidate) {
  if (!CurrentUse.Ty.isValid()) {
    if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
        CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
      return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
    return CurrentUse;
  }

  // We permit the extend to hoist through basic blocks but this is only
  // sensible if the target has extending loads. If you end up lowering back
  // into a load and extend during the legalizer then the end result is
  // hoisting the extend up to the load.

  // Prefer defined extensions to undefined extensions as these are more
  // likely to reduce the number of instructions.
  if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
      CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
    return CurrentUse;
  else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
           OpcodeForCandidate != TargetOpcode::G_ANYEXT)
    return {TyForCandidate, OpcodeForCandidate, MIForCandidate};

  // Prefer sign extensions to zero extensions as sign-extensions tend to be
  // more expensive.
  if (CurrentUse.Ty == TyForCandidate) {
    if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
        OpcodeForCandidate == TargetOpcode::G_ZEXT)
      return CurrentUse;
    else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
             OpcodeForCandidate == TargetOpcode::G_SEXT)
      return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
  }

  // This is potentially target specific. We've chosen the largest type
  // because G_TRUNC is usually free. One potential catch with this is that
  // some targets have a reduced number of larger registers than smaller
  // registers and this choice potentially increases the live-range for the
  // larger value.
  if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
    return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
  }
  return CurrentUse;
}

/// Find a suitable place to insert some instructions and insert them. This
/// function accounts for special cases like inserting before a PHI node.
/// The current strategy for inserting before PHI's is to duplicate the
/// instructions for each predecessor. However, while that's ok for G_TRUNC
/// on most targets since it generally requires no code, other targets/cases may
/// want to try harder to find a dominating block.
static void InsertInsnsWithoutSideEffectsBeforeUse(
    MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
    std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
                       MachineOperand &UseMO)>
        Inserter) {
  MachineInstr &UseMI = *UseMO.getParent();

  MachineBasicBlock *InsertBB = UseMI.getParent();

  // If the use is a PHI then we want the predecessor block instead.
  if (UseMI.isPHI()) {
    MachineOperand *PredBB = std::next(&UseMO);
    InsertBB = PredBB->getMBB();
  }

  // If the block is the same block as the def then we want to insert just after
  // the def instead of at the start of the block.
  if (InsertBB == DefMI.getParent()) {
    MachineBasicBlock::iterator InsertPt = &DefMI;
    Inserter(InsertBB, std::next(InsertPt), UseMO);
    return;
  }

  // Otherwise we want the start of the BB
  Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
}
} // end anonymous namespace

bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
  PreferredTuple Preferred;
  if (matchCombineExtendingLoads(MI, Preferred)) {
    applyCombineExtendingLoads(MI, Preferred);
    return true;
  }
  return false;
}

bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
                                                PreferredTuple &Preferred) {
  // We match the loads and follow the uses to the extend instead of matching
  // the extends and following the def to the load. This is because the load
  // must remain in the same position for correctness (unless we also add code
  // to find a safe place to sink it) whereas the extend is freely movable.
  // It also prevents us from duplicating the load for the volatile case or just
  // for performance.

  if (MI.getOpcode() != TargetOpcode::G_LOAD &&
      MI.getOpcode() != TargetOpcode::G_SEXTLOAD &&
      MI.getOpcode() != TargetOpcode::G_ZEXTLOAD)
    return false;

  auto &LoadValue = MI.getOperand(0);
  assert(LoadValue.isReg() && "Result wasn't a register?");

  LLT LoadValueTy = MRI.getType(LoadValue.getReg());
  if (!LoadValueTy.isScalar())
    return false;

  // Most architectures are going to legalize <s8 loads into at least a 1 byte
  // load, and the MMOs can only describe memory accesses in multiples of bytes.
  // If we try to perform extload combining on those, we can end up with
  // %a(s8) = extload %ptr (load 1 byte from %ptr)
  // ... which is an illegal extload instruction.
  if (LoadValueTy.getSizeInBits() < 8)
    return false;

  // For non power-of-2 types, they will very likely be legalized into multiple
  // loads. Don't bother trying to match them into extending loads.
  if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
    return false;

  // Find the preferred type aside from the any-extends (unless it's the only
  // one) and non-extending ops. We'll emit an extending load to that type and
  // and emit a variant of (extend (trunc X)) for the others according to the
  // relative type sizes. At the same time, pick an extend to use based on the
  // extend involved in the chosen type.
  unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD
                                 ? TargetOpcode::G_ANYEXT
                                 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD
                                       ? TargetOpcode::G_SEXT
                                       : TargetOpcode::G_ZEXT;
  Preferred = {LLT(), PreferredOpcode, nullptr};
  for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) {
    if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
        UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
        UseMI.getOpcode() == TargetOpcode::G_ANYEXT) {
      Preferred = ChoosePreferredUse(Preferred,
                                     MRI.getType(UseMI.getOperand(0).getReg()),
                                     UseMI.getOpcode(), &UseMI);
    }
  }

  // There were no extends
  if (!Preferred.MI)
    return false;
  // It should be impossible to chose an extend without selecting a different
  // type since by definition the result of an extend is larger.
  assert(Preferred.Ty != LoadValueTy && "Extending to same type?");

  LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
  return true;
}

void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
                                                PreferredTuple &Preferred) {
  // Rewrite the load to the chosen extending load.
  Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();

  // Inserter to insert a truncate back to the original type at a given point
  // with some basic CSE to limit truncate duplication to one per BB.
  DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
  auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
                           MachineBasicBlock::iterator InsertBefore,
                           MachineOperand &UseMO) {
    MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
    if (PreviouslyEmitted) {
      Observer.changingInstr(*UseMO.getParent());
      UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
      Observer.changedInstr(*UseMO.getParent());
      return;
    }

    Builder.setInsertPt(*InsertIntoBB, InsertBefore);
    Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
    MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
    EmittedInsns[InsertIntoBB] = NewMI;
    replaceRegOpWith(MRI, UseMO, NewDstReg);
  };

  Observer.changingInstr(MI);
  MI.setDesc(
      Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
                               ? TargetOpcode::G_SEXTLOAD
                               : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
                                     ? TargetOpcode::G_ZEXTLOAD
                                     : TargetOpcode::G_LOAD));

  // Rewrite all the uses to fix up the types.
  auto &LoadValue = MI.getOperand(0);
  SmallVector<MachineOperand *, 4> Uses;
  for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
    Uses.push_back(&UseMO);

  for (auto *UseMO : Uses) {
    MachineInstr *UseMI = UseMO->getParent();

    // If the extend is compatible with the preferred extend then we should fix
    // up the type and extend so that it uses the preferred use.
    if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
        UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
      Register UseDstReg = UseMI->getOperand(0).getReg();
      MachineOperand &UseSrcMO = UseMI->getOperand(1);
      const LLT &UseDstTy = MRI.getType(UseDstReg);
      if (UseDstReg != ChosenDstReg) {
        if (Preferred.Ty == UseDstTy) {
          // If the use has the same type as the preferred use, then merge
          // the vregs and erase the extend. For example:
          //    %1:_(s8) = G_LOAD ...
          //    %2:_(s32) = G_SEXT %1(s8)
          //    %3:_(s32) = G_ANYEXT %1(s8)
          //    ... = ... %3(s32)
          // rewrites to:
          //    %2:_(s32) = G_SEXTLOAD ...
          //    ... = ... %2(s32)
          replaceRegWith(MRI, UseDstReg, ChosenDstReg);
          Observer.erasingInstr(*UseMO->getParent());
          UseMO->getParent()->eraseFromParent();
        } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
          // If the preferred size is smaller, then keep the extend but extend
          // from the result of the extending load. For example:
          //    %1:_(s8) = G_LOAD ...
          //    %2:_(s32) = G_SEXT %1(s8)
          //    %3:_(s64) = G_ANYEXT %1(s8)
          //    ... = ... %3(s64)
          /// rewrites to:
          //    %2:_(s32) = G_SEXTLOAD ...
          //    %3:_(s64) = G_ANYEXT %2:_(s32)
          //    ... = ... %3(s64)
          replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
        } else {
          // If the preferred size is large, then insert a truncate. For
          // example:
          //    %1:_(s8) = G_LOAD ...
          //    %2:_(s64) = G_SEXT %1(s8)
          //    %3:_(s32) = G_ZEXT %1(s8)
          //    ... = ... %3(s32)
          /// rewrites to:
          //    %2:_(s64) = G_SEXTLOAD ...
          //    %4:_(s8) = G_TRUNC %2:_(s32)
          //    %3:_(s64) = G_ZEXT %2:_(s8)
          //    ... = ... %3(s64)
          InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
                                                 InsertTruncAt);
        }
        continue;
      }
      // The use is (one of) the uses of the preferred use we chose earlier.
      // We're going to update the load to def this value later so just erase
      // the old extend.
      Observer.erasingInstr(*UseMO->getParent());
      UseMO->getParent()->eraseFromParent();
      continue;
    }

    // The use isn't an extend. Truncate back to the type we originally loaded.
    // This is free on many targets.
    InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
  }

  MI.getOperand(0).setReg(ChosenDstReg);
  Observer.changedInstr(MI);
}

bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) {
  assert(DefMI.getParent() == UseMI.getParent());
  if (&DefMI == &UseMI)
    return false;

  // Loop through the basic block until we find one of the instructions.
  MachineBasicBlock::const_iterator I = DefMI.getParent()->begin();
  for (; &*I != &DefMI && &*I != &UseMI; ++I)
    return &*I == &DefMI;

  llvm_unreachable("Block must contain instructions");
}

bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) {
  if (MDT)
    return MDT->dominates(&DefMI, &UseMI);
  else if (DefMI.getParent() != UseMI.getParent())
    return false;

  return isPredecessor(DefMI, UseMI);
}

bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
                                            Register &Base, Register &Offset) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();

#ifndef NDEBUG
  unsigned Opcode = MI.getOpcode();
  assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
         Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif

  Base = MI.getOperand(1).getReg();
  MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
  if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
    return false;

  LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);

  for (auto &Use : MRI.use_instructions(Base)) {
    if (Use.getOpcode() != TargetOpcode::G_GEP)
      continue;

    Offset = Use.getOperand(2).getReg();
    if (!ForceLegalIndexing &&
        !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
      LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
                        << Use);
      continue;
    }

    // Make sure the offset calculation is before the potentially indexed op.
    // FIXME: we really care about dependency here. The offset calculation might
    // be movable.
    MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
    if (!OffsetDef || !dominates(*OffsetDef, MI)) {
      LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
                        << Use);
      continue;
    }

    // FIXME: check whether all uses of Base are load/store with foldable
    // addressing modes. If so, using the normal addr-modes is better than
    // forming an indexed one.

    bool MemOpDominatesAddrUses = true;
    for (auto &GEPUse : MRI.use_instructions(Use.getOperand(0).getReg())) {
      if (!dominates(MI, GEPUse)) {
        MemOpDominatesAddrUses = false;
        break;
      }
    }

    if (!MemOpDominatesAddrUses) {
      LLVM_DEBUG(
          dbgs() << "    Ignoring candidate as memop does not dominate uses: "
                 << Use);
      continue;
    }

    LLVM_DEBUG(dbgs() << "    Found match: " << Use);
    Addr = Use.getOperand(0).getReg();
    return true;
  }

  return false;
}

bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
                                           Register &Base, Register &Offset) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();

#ifndef NDEBUG
  unsigned Opcode = MI.getOpcode();
  assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
         Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif

  Addr = MI.getOperand(1).getReg();
  MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_GEP, Addr, MRI);
  if (!AddrDef || MRI.hasOneUse(Addr))
    return false;

  Base = AddrDef->getOperand(1).getReg();
  Offset = AddrDef->getOperand(2).getReg();

  LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);

  if (!ForceLegalIndexing &&
      !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
    LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
    return false;
  }

  MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
  if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
    LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
    return false;
  }

  if (MI.getOpcode() == TargetOpcode::G_STORE) {
    // Would require a copy.
    if (Base == MI.getOperand(0).getReg()) {
      LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
      return false;
    }

    // We're expecting one use of Addr in MI, but it could also be the
    // value stored, which isn't actually dominated by the instruction.
    if (MI.getOperand(0).getReg() == Addr) {
      LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
      return false;
    }
  }

  // FIXME: check whether all uses of the base pointer are constant GEPs. That
  // might allow us to end base's liveness here by adjusting the constant.

  for (auto &UseMI : MRI.use_instructions(Addr)) {
    if (!dominates(MI, UseMI)) {
      LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
      return false;
    }
  }

  return true;
}

bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
      Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
    return false;

  bool IsStore = Opcode == TargetOpcode::G_STORE;
  Register Addr, Base, Offset;
  bool IsPre = findPreIndexCandidate(MI, Addr, Base, Offset);
  if (!IsPre && !findPostIndexCandidate(MI, Addr, Base, Offset))
    return false;


  unsigned NewOpcode;
  switch (Opcode) {
  case TargetOpcode::G_LOAD:
    NewOpcode = TargetOpcode::G_INDEXED_LOAD;
    break;
  case TargetOpcode::G_SEXTLOAD:
    NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
    break;
  case TargetOpcode::G_ZEXTLOAD:
    NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
    break;
  case TargetOpcode::G_STORE:
    NewOpcode = TargetOpcode::G_INDEXED_STORE;
    break;
  default:
    llvm_unreachable("Unknown load/store opcode");
  }

  MachineInstr &AddrDef = *MRI.getUniqueVRegDef(Addr);
  MachineIRBuilder MIRBuilder(MI);
  auto MIB = MIRBuilder.buildInstr(NewOpcode);
  if (IsStore) {
    MIB.addDef(Addr);
    MIB.addUse(MI.getOperand(0).getReg());
  } else {
    MIB.addDef(MI.getOperand(0).getReg());
    MIB.addDef(Addr);
  }

  MIB.addUse(Base);
  MIB.addUse(Offset);
  MIB.addImm(IsPre);
  MI.eraseFromParent();
  AddrDef.eraseFromParent();

  LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
  return true;
}

bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) {
  if (MI.getOpcode() != TargetOpcode::G_BR)
    return false;

  // Try to match the following:
  // bb1:
  //   %c(s32) = G_ICMP pred, %a, %b
  //   %c1(s1) = G_TRUNC %c(s32)
  //   G_BRCOND %c1, %bb2
  //   G_BR %bb3
  // bb2:
  // ...
  // bb3:

  // The above pattern does not have a fall through to the successor bb2, always
  // resulting in a branch no matter which path is taken. Here we try to find
  // and replace that pattern with conditional branch to bb3 and otherwise
  // fallthrough to bb2.

  MachineBasicBlock *MBB = MI.getParent();
  MachineBasicBlock::iterator BrIt(MI);
  if (BrIt == MBB->begin())
    return false;
  assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");

  MachineInstr *BrCond = &*std::prev(BrIt);
  if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
    return false;

  // Check that the next block is the conditional branch target.
  if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB()))
    return false;

  MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg());
  if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP ||
      !MRI.hasOneUse(CmpMI->getOperand(0).getReg()))
    return false;
  return true;
}

bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) {
  if (!matchElideBrByInvertingCond(MI))
    return false;
  applyElideBrByInvertingCond(MI);
  return true;
}

void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) {
  MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
  MachineBasicBlock::iterator BrIt(MI);
  MachineInstr *BrCond = &*std::prev(BrIt);
  MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg());

  CmpInst::Predicate InversePred = CmpInst::getInversePredicate(
      (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate());

  // Invert the G_ICMP condition.
  Observer.changingInstr(*CmpMI);
  CmpMI->getOperand(1).setPredicate(InversePred);
  Observer.changedInstr(*CmpMI);

  // Change the conditional branch target.
  Observer.changingInstr(*BrCond);
  BrCond->getOperand(1).setMBB(BrTarget);
  Observer.changedInstr(*BrCond);
  MI.eraseFromParent();
}

static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
  // On Darwin, -Os means optimize for size without hurting performance, so
  // only really optimize for size when -Oz (MinSize) is used.
  if (MF.getTarget().getTargetTriple().isOSDarwin())
    return MF.getFunction().hasMinSize();
  return MF.getFunction().hasOptSize();
}

// Returns a list of types to use for memory op lowering in MemOps. A partial
// port of findOptimalMemOpLowering in TargetLowering.
static bool findGISelOptimalMemOpLowering(
    std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign,
    unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    bool AllowOverlap, unsigned DstAS, unsigned SrcAS,
    const AttributeList &FuncAttributes, const TargetLowering &TLI) {
  // If 'SrcAlign' is zero, that means the memory operation does not need to
  // load the value, i.e. memset or memcpy from constant string. Otherwise,
  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
  // is the specified alignment of the memory operation. If it is zero, that
  // means it's possible to change the alignment of the destination.
  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
  // not need to be loaded.
  if (SrcAlign != 0 && SrcAlign < DstAlign)
    return false;

  LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset,
                                  ZeroMemset, MemcpyStrSrc, FuncAttributes);

  if (Ty == LLT()) {
    // Use the largest scalar type whose alignment constraints are satisfied.
    // We only need to check DstAlign here as SrcAlign is always greater or
    // equal to DstAlign (or zero).
    Ty = LLT::scalar(64);
    while (DstAlign && DstAlign < Ty.getSizeInBytes() &&
           !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign))
      Ty = LLT::scalar(Ty.getSizeInBytes());
    assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
    // FIXME: check for the largest legal type we can load/store to.
  }

  unsigned NumMemOps = 0;
  while (Size != 0) {
    unsigned TySize = Ty.getSizeInBytes();
    while (TySize > Size) {
      // For now, only use non-vector load / store's for the left-over pieces.
      LLT NewTy = Ty;
      // FIXME: check for mem op safety and legality of the types. Not all of
      // SDAGisms map cleanly to GISel concepts.
      if (NewTy.isVector())
        NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
      NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
      unsigned NewTySize = NewTy.getSizeInBytes();
      assert(NewTySize > 0 && "Could not find appropriate type");

      // If the new LLT cannot cover all of the remaining bits, then consider
      // issuing a (or a pair of) unaligned and overlapping load / store.
      bool Fast;
      // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
      MVT VT = getMVTForLLT(Ty);
      if (NumMemOps && AllowOverlap && NewTySize < Size &&
          TLI.allowsMisalignedMemoryAccesses(
              VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) &&
          Fast)
        TySize = Size;
      else {
        Ty = NewTy;
        TySize = NewTySize;
      }
    }

    if (++NumMemOps > Limit)
      return false;

    MemOps.push_back(Ty);
    Size -= TySize;
  }

  return true;
}

static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
  if (Ty.isVector())
    return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
                           Ty.getNumElements());
  return IntegerType::get(C, Ty.getSizeInBits());
}

// Get a vectorized representation of the memset value operand, GISel edition.
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
  MachineRegisterInfo &MRI = *MIB.getMRI();
  unsigned NumBits = Ty.getScalarSizeInBits();
  auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
  if (!Ty.isVector() && ValVRegAndVal) {
    unsigned KnownVal = ValVRegAndVal->Value;
    APInt Scalar = APInt(8, KnownVal);
    APInt SplatVal = APInt::getSplat(NumBits, Scalar);
    return MIB.buildConstant(Ty, SplatVal).getReg(0);
  }
  // FIXME: for vector types create a G_BUILD_VECTOR.
  if (Ty.isVector())
    return Register();

  // Extend the byte value to the larger type, and then multiply by a magic
  // value 0x010101... in order to replicate it across every byte.
  LLT ExtType = Ty.getScalarType();
  auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
  if (NumBits > 8) {
    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
    auto MagicMI = MIB.buildConstant(ExtType, Magic);
    Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
  }

  assert(ExtType == Ty && "Vector memset value type not supported yet");
  return Val;
}

bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val,
                                    unsigned KnownLen, unsigned Align,
                                    bool IsVolatile) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
  auto &DL = MF.getDataLayout();
  LLVMContext &C = MF.getFunction().getContext();

  assert(KnownLen != 0 && "Have a zero length memset length!");

  bool DstAlignCanChange = false;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool OptSize = shouldLowerMemFuncForSize(MF);

  MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
  if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
    DstAlignCanChange = true;

  unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
  std::vector<LLT> MemOps;

  const auto &DstMMO = **MI.memoperands_begin();
  MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();

  auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
  bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;

  if (!findGISelOptimalMemOpLowering(
          MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0,
          /*IsMemset=*/true,
          /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
          /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u,
          MF.getFunction().getAttributes(), TLI))
    return false;

  if (DstAlignCanChange) {
    // Get an estimate of the type from the LLT.
    Type *IRTy = getTypeForLLT(MemOps[0], C);
    unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
    if (NewAlign > Align) {
      Align = NewAlign;
      unsigned FI = FIDef->getOperand(1).getIndex();
      // Give the stack frame object a larger alignment if needed.
      if (MFI.getObjectAlignment(FI) < Align)
        MFI.setObjectAlignment(FI, Align);
    }
  }

  MachineIRBuilder MIB(MI);
  // Find the largest store and generate the bit pattern for it.
  LLT LargestTy = MemOps[0];
  for (unsigned i = 1; i < MemOps.size(); i++)
    if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
      LargestTy = MemOps[i];

  // The memset stored value is always defined as an s8, so in order to make it
  // work with larger store types we need to repeat the bit pattern across the
  // wider type.
  Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);

  if (!MemSetValue)
    return false;

  // Generate the stores. For each store type in the list, we generate the
  // matching store of that type to the destination address.
  LLT PtrTy = MRI.getType(Dst);
  unsigned DstOff = 0;
  unsigned Size = KnownLen;
  for (unsigned I = 0; I < MemOps.size(); I++) {
    LLT Ty = MemOps[I];
    unsigned TySize = Ty.getSizeInBytes();
    if (TySize > Size) {
      // Issuing an unaligned load / store pair that overlaps with the previous
      // pair. Adjust the offset accordingly.
      assert(I == MemOps.size() - 1 && I != 0);
      DstOff -= TySize - Size;
    }

    // If this store is smaller than the largest store see whether we can get
    // the smaller value for free with a truncate.
    Register Value = MemSetValue;
    if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
      MVT VT = getMVTForLLT(Ty);
      MVT LargestVT = getMVTForLLT(LargestTy);
      if (!LargestTy.isVector() && !Ty.isVector() &&
          TLI.isTruncateFree(LargestVT, VT))
        Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
      else
        Value = getMemsetValue(Val, Ty, MIB);
      if (!Value)
        return false;
    }

    auto *StoreMMO =
        MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes());

    Register Ptr = Dst;
    if (DstOff != 0) {
      auto Offset =
          MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
      Ptr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
    }

    MIB.buildStore(Value, Ptr, *StoreMMO);
    DstOff += Ty.getSizeInBytes();
    Size -= TySize;
  }

  MI.eraseFromParent();
  return true;
}


bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
                                    Register Src, unsigned KnownLen,
                                    unsigned DstAlign, unsigned SrcAlign,
                                    bool IsVolatile) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
  auto &DL = MF.getDataLayout();
  LLVMContext &C = MF.getFunction().getContext();

  assert(KnownLen != 0 && "Have a zero length memcpy length!");

  bool DstAlignCanChange = false;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool OptSize = shouldLowerMemFuncForSize(MF);
  unsigned Alignment = MinAlign(DstAlign, SrcAlign);

  MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
  if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
    DstAlignCanChange = true;

  // FIXME: infer better src pointer alignment like SelectionDAG does here.
  // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
  // if the memcpy is in a tail call position.

  unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize);
  std::vector<LLT> MemOps;

  const auto &DstMMO = **MI.memoperands_begin();
  const auto &SrcMMO = **std::next(MI.memoperands_begin());
  MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
  MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();

  if (!findGISelOptimalMemOpLowering(
          MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment),
          SrcAlign,
          /*IsMemset=*/false,
          /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
          /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(),
          SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI))
    return false;

  if (DstAlignCanChange) {
    // Get an estimate of the type from the LLT.
    Type *IRTy = getTypeForLLT(MemOps[0], C);
    unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);

    // Don't promote to an alignment that would require dynamic stack
    // realignment.
    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    if (!TRI->needsStackRealignment(MF))
      while (NewAlign > Alignment &&
             DL.exceedsNaturalStackAlignment(Align(NewAlign)))
        NewAlign /= 2;

    if (NewAlign > Alignment) {
      Alignment = NewAlign;
      unsigned FI = FIDef->getOperand(1).getIndex();
      // Give the stack frame object a larger alignment if needed.
      if (MFI.getObjectAlignment(FI) < Alignment)
        MFI.setObjectAlignment(FI, Alignment);
    }
  }

  LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");

  MachineIRBuilder MIB(MI);
  // Now we need to emit a pair of load and stores for each of the types we've
  // collected. I.e. for each type, generate a load from the source pointer of
  // that type width, and then generate a corresponding store to the dest buffer
  // of that value loaded. This can result in a sequence of loads and stores
  // mixed types, depending on what the target specifies as good types to use.
  unsigned CurrOffset = 0;
  LLT PtrTy = MRI.getType(Src);
  unsigned Size = KnownLen;
  for (auto CopyTy : MemOps) {
    // Issuing an unaligned load / store pair  that overlaps with the previous
    // pair. Adjust the offset accordingly.
    if (CopyTy.getSizeInBytes() > Size)
      CurrOffset -= CopyTy.getSizeInBytes() - Size;

    // Construct MMOs for the accesses.
    auto *LoadMMO =
        MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
    auto *StoreMMO = 
        MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());

    // Create the load.
    Register LoadPtr = Src;
    Register Offset;
    if (CurrOffset != 0) {
      Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
                   .getReg(0);
      LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0);
    }
    auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);

    // Create the store.
    Register StorePtr =
        CurrOffset == 0 ? Dst : MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
    MIB.buildStore(LdVal, StorePtr, *StoreMMO);
    CurrOffset += CopyTy.getSizeInBytes();
    Size -= CopyTy.getSizeInBytes();
  }

  MI.eraseFromParent();
  return true;
}

bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
                                    Register Src, unsigned KnownLen,
                                    unsigned DstAlign, unsigned SrcAlign,
                                    bool IsVolatile) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
  auto &DL = MF.getDataLayout();
  LLVMContext &C = MF.getFunction().getContext();

  assert(KnownLen != 0 && "Have a zero length memmove length!");

  bool DstAlignCanChange = false;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool OptSize = shouldLowerMemFuncForSize(MF);
  unsigned Alignment = MinAlign(DstAlign, SrcAlign);

  MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
  if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
    DstAlignCanChange = true;

  unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
  std::vector<LLT> MemOps;

  const auto &DstMMO = **MI.memoperands_begin();
  const auto &SrcMMO = **std::next(MI.memoperands_begin());
  MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
  MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();

  // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
  // to a bug in it's findOptimalMemOpLowering implementation. For now do the
  // same thing here.
  if (!findGISelOptimalMemOpLowering(
          MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment),
          SrcAlign,
          /*IsMemset=*/false,
          /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
          /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(),
          SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI))
    return false;

  if (DstAlignCanChange) {
    // Get an estimate of the type from the LLT.
    Type *IRTy = getTypeForLLT(MemOps[0], C);
    unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);

    // Don't promote to an alignment that would require dynamic stack
    // realignment.
    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    if (!TRI->needsStackRealignment(MF))
      while (NewAlign > Alignment &&
             DL.exceedsNaturalStackAlignment(Align(NewAlign)))
        NewAlign /= 2;

    if (NewAlign > Alignment) {
      Alignment = NewAlign;
      unsigned FI = FIDef->getOperand(1).getIndex();
      // Give the stack frame object a larger alignment if needed.
      if (MFI.getObjectAlignment(FI) < Alignment)
        MFI.setObjectAlignment(FI, Alignment);
    }
  }

  LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");

  MachineIRBuilder MIB(MI);
  // Memmove requires that we perform the loads first before issuing the stores.
  // Apart from that, this loop is pretty much doing the same thing as the
  // memcpy codegen function.
  unsigned CurrOffset = 0;
  LLT PtrTy = MRI.getType(Src);
  SmallVector<Register, 16> LoadVals;
  for (auto CopyTy : MemOps) {
    // Construct MMO for the load.
    auto *LoadMMO =
        MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());

    // Create the load.
    Register LoadPtr = Src;
    if (CurrOffset != 0) {
      auto Offset =
          MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
      LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0);
    }
    LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
    CurrOffset += CopyTy.getSizeInBytes();
  }

  CurrOffset = 0;
  for (unsigned I = 0; I < MemOps.size(); ++I) {
    LLT CopyTy = MemOps[I];
    // Now store the values loaded.
    auto *StoreMMO =
        MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());

    Register StorePtr = Dst;
    if (CurrOffset != 0) {
      auto Offset =
          MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
      StorePtr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
    }
    MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
    CurrOffset += CopyTy.getSizeInBytes();
  }
  MI.eraseFromParent();
  return true;
}

bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
  // This combine is fairly complex so it's not written with a separate
  // matcher function.
  assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
  Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID();
  assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove ||
          ID == Intrinsic::memset) &&
         "Expected a memcpy like intrinsic");

  auto MMOIt = MI.memoperands_begin();
  const MachineMemOperand *MemOp = *MMOIt;
  bool IsVolatile = MemOp->isVolatile();
  // Don't try to optimize volatile.
  if (IsVolatile)
    return false;

  unsigned DstAlign = MemOp->getBaseAlignment();
  unsigned SrcAlign = 0;
  Register Dst = MI.getOperand(1).getReg();
  Register Src = MI.getOperand(2).getReg();
  Register Len = MI.getOperand(3).getReg();

  if (ID != Intrinsic::memset) {
    assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
    MemOp = *(++MMOIt);
    SrcAlign = MemOp->getBaseAlignment();
  }

  // See if this is a constant length copy
  auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
  if (!LenVRegAndVal)
    return false; // Leave it to the legalizer to lower it to a libcall.
  unsigned KnownLen = LenVRegAndVal->Value;

  if (KnownLen == 0) {
    MI.eraseFromParent();
    return true;
  }

  if (MaxLen && KnownLen > MaxLen)
    return false;

  if (ID == Intrinsic::memcpy)
    return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
  if (ID == Intrinsic::memmove)
    return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
  if (ID == Intrinsic::memset)
    return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
  return false;
}

bool CombinerHelper::tryCombine(MachineInstr &MI) {
  if (tryCombineCopy(MI))
    return true;
  if (tryCombineExtendingLoads(MI))
    return true;
  if (tryCombineIndexedLoadStore(MI))
    return true;
  return false;
}