reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
//===-- ProcessMachCore.cpp ------------------------------------------*- C++
//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <errno.h>
#include <stdlib.h>

#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Threading.h"

#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/LocateSymbolFile.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"

#include "ProcessMachCore.h"
#include "Plugins/Process/Utility/StopInfoMachException.h"
#include "ThreadMachCore.h"

// Needed for the plug-in names for the dynamic loaders.
#include "lldb/Host/SafeMachO.h"

#include "Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.h"
#include "Plugins/DynamicLoader/MacOSX-DYLD/DynamicLoaderMacOSXDYLD.h"
#include "Plugins/ObjectFile/Mach-O/ObjectFileMachO.h"

#include <memory>
#include <mutex>

using namespace lldb;
using namespace lldb_private;

ConstString ProcessMachCore::GetPluginNameStatic() {
  static ConstString g_name("mach-o-core");
  return g_name;
}

const char *ProcessMachCore::GetPluginDescriptionStatic() {
  return "Mach-O core file debugging plug-in.";
}

void ProcessMachCore::Terminate() {
  PluginManager::UnregisterPlugin(ProcessMachCore::CreateInstance);
}

lldb::ProcessSP ProcessMachCore::CreateInstance(lldb::TargetSP target_sp,
                                                ListenerSP listener_sp,
                                                const FileSpec *crash_file) {
  lldb::ProcessSP process_sp;
  if (crash_file) {
    const size_t header_size = sizeof(llvm::MachO::mach_header);
    auto data_sp = FileSystem::Instance().CreateDataBuffer(
        crash_file->GetPath(), header_size, 0);
    if (data_sp && data_sp->GetByteSize() == header_size) {
      DataExtractor data(data_sp, lldb::eByteOrderLittle, 4);

      lldb::offset_t data_offset = 0;
      llvm::MachO::mach_header mach_header;
      if (ObjectFileMachO::ParseHeader(data, &data_offset, mach_header)) {
        if (mach_header.filetype == llvm::MachO::MH_CORE)
          process_sp = std::make_shared<ProcessMachCore>(target_sp, listener_sp,
                                                         *crash_file);
      }
    }
  }
  return process_sp;
}

bool ProcessMachCore::CanDebug(lldb::TargetSP target_sp,
                               bool plugin_specified_by_name) {
  if (plugin_specified_by_name)
    return true;

  // For now we are just making sure the file exists for a given module
  if (!m_core_module_sp && FileSystem::Instance().Exists(m_core_file)) {
    // Don't add the Target's architecture to the ModuleSpec - we may be
    // working with a core file that doesn't have the correct cpusubtype in the
    // header but we should still try to use it -
    // ModuleSpecList::FindMatchingModuleSpec enforces a strict arch mach.
    ModuleSpec core_module_spec(m_core_file);
    Status error(ModuleList::GetSharedModule(core_module_spec, m_core_module_sp,
                                             nullptr, nullptr, nullptr));

    if (m_core_module_sp) {
      ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
      if (core_objfile && core_objfile->GetType() == ObjectFile::eTypeCoreFile)
        return true;
    }
  }
  return false;
}

// ProcessMachCore constructor
ProcessMachCore::ProcessMachCore(lldb::TargetSP target_sp,
                                 ListenerSP listener_sp,
                                 const FileSpec &core_file)
    : Process(target_sp, listener_sp), m_core_aranges(), m_core_range_infos(),
      m_core_module_sp(), m_core_file(core_file),
      m_dyld_addr(LLDB_INVALID_ADDRESS),
      m_mach_kernel_addr(LLDB_INVALID_ADDRESS), m_dyld_plugin_name() {}

// Destructor
ProcessMachCore::~ProcessMachCore() {
  Clear();
  // We need to call finalize on the process before destroying ourselves to
  // make sure all of the broadcaster cleanup goes as planned. If we destruct
  // this class, then Process::~Process() might have problems trying to fully
  // destroy the broadcaster.
  Finalize();
}

// PluginInterface
ConstString ProcessMachCore::GetPluginName() { return GetPluginNameStatic(); }

uint32_t ProcessMachCore::GetPluginVersion() { return 1; }

bool ProcessMachCore::GetDynamicLoaderAddress(lldb::addr_t addr) {
  Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER |
                                                  LIBLLDB_LOG_PROCESS));
  llvm::MachO::mach_header header;
  Status error;
  if (DoReadMemory(addr, &header, sizeof(header), error) != sizeof(header))
    return false;
  if (header.magic == llvm::MachO::MH_CIGAM ||
      header.magic == llvm::MachO::MH_CIGAM_64) {
    header.magic = llvm::ByteSwap_32(header.magic);
    header.cputype = llvm::ByteSwap_32(header.cputype);
    header.cpusubtype = llvm::ByteSwap_32(header.cpusubtype);
    header.filetype = llvm::ByteSwap_32(header.filetype);
    header.ncmds = llvm::ByteSwap_32(header.ncmds);
    header.sizeofcmds = llvm::ByteSwap_32(header.sizeofcmds);
    header.flags = llvm::ByteSwap_32(header.flags);
  }

  // TODO: swap header if needed...
  // printf("0x%16.16" PRIx64 ": magic = 0x%8.8x, file_type= %u\n", vaddr,
  // header.magic, header.filetype);
  if (header.magic == llvm::MachO::MH_MAGIC ||
      header.magic == llvm::MachO::MH_MAGIC_64) {
    // Check MH_EXECUTABLE to see if we can find the mach image that contains
    // the shared library list. The dynamic loader (dyld) is what contains the
    // list for user applications, and the mach kernel contains a global that
    // has the list of kexts to load
    switch (header.filetype) {
    case llvm::MachO::MH_DYLINKER:
      // printf("0x%16.16" PRIx64 ": file_type = MH_DYLINKER\n", vaddr);
      // Address of dyld "struct mach_header" in the core file
      LLDB_LOGF(log,
                "ProcessMachCore::GetDynamicLoaderAddress found a user "
                "process dyld binary image at 0x%" PRIx64,
                addr);
      m_dyld_addr = addr;
      return true;

    case llvm::MachO::MH_EXECUTE:
      // printf("0x%16.16" PRIx64 ": file_type = MH_EXECUTE\n", vaddr);
      // Check MH_EXECUTABLE file types to see if the dynamic link object flag
      // is NOT set. If it isn't, then we have a mach_kernel.
      if ((header.flags & llvm::MachO::MH_DYLDLINK) == 0) {
        LLDB_LOGF(log,
                  "ProcessMachCore::GetDynamicLoaderAddress found a mach "
                  "kernel binary image at 0x%" PRIx64,
                  addr);
        // Address of the mach kernel "struct mach_header" in the core file.
        m_mach_kernel_addr = addr;
        return true;
      }
      break;
    }
  }
  return false;
}

// Process Control
Status ProcessMachCore::DoLoadCore() {
  Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER |
                                                  LIBLLDB_LOG_PROCESS));
  Status error;
  if (!m_core_module_sp) {
    error.SetErrorString("invalid core module");
    return error;
  }

  ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
  if (core_objfile == nullptr) {
    error.SetErrorString("invalid core object file");
    return error;
  }

  if (core_objfile->GetNumThreadContexts() == 0) {
    error.SetErrorString("core file doesn't contain any LC_THREAD load "
                         "commands, or the LC_THREAD architecture is not "
                         "supported in this lldb");
    return error;
  }

  SectionList *section_list = core_objfile->GetSectionList();
  if (section_list == nullptr) {
    error.SetErrorString("core file has no sections");
    return error;
  }

  const uint32_t num_sections = section_list->GetNumSections(0);
  if (num_sections == 0) {
    error.SetErrorString("core file has no sections");
    return error;
  }

  SetCanJIT(false);

  llvm::MachO::mach_header header;
  DataExtractor data(&header, sizeof(header),
                     m_core_module_sp->GetArchitecture().GetByteOrder(),
                     m_core_module_sp->GetArchitecture().GetAddressByteSize());

  bool ranges_are_sorted = true;
  addr_t vm_addr = 0;
  for (uint32_t i = 0; i < num_sections; ++i) {
    Section *section = section_list->GetSectionAtIndex(i).get();
    if (section) {
      lldb::addr_t section_vm_addr = section->GetFileAddress();
      FileRange file_range(section->GetFileOffset(), section->GetFileSize());
      VMRangeToFileOffset::Entry range_entry(
          section_vm_addr, section->GetByteSize(), file_range);

      if (vm_addr > section_vm_addr)
        ranges_are_sorted = false;
      vm_addr = section->GetFileAddress();
      VMRangeToFileOffset::Entry *last_entry = m_core_aranges.Back();
      //            printf ("LC_SEGMENT[%u] arange=[0x%16.16" PRIx64 " -
      //            0x%16.16" PRIx64 "), frange=[0x%8.8x - 0x%8.8x)\n",
      //                    i,
      //                    range_entry.GetRangeBase(),
      //                    range_entry.GetRangeEnd(),
      //                    range_entry.data.GetRangeBase(),
      //                    range_entry.data.GetRangeEnd());

      if (last_entry &&
          last_entry->GetRangeEnd() == range_entry.GetRangeBase() &&
          last_entry->data.GetRangeEnd() == range_entry.data.GetRangeBase()) {
        last_entry->SetRangeEnd(range_entry.GetRangeEnd());
        last_entry->data.SetRangeEnd(range_entry.data.GetRangeEnd());
        // puts("combine");
      } else {
        m_core_aranges.Append(range_entry);
      }
      // Some core files don't fill in the permissions correctly. If that is
      // the case assume read + execute so clients don't think the memory is
      // not readable, or executable. The memory isn't writable since this
      // plug-in doesn't implement DoWriteMemory.
      uint32_t permissions = section->GetPermissions();
      if (permissions == 0)
        permissions = lldb::ePermissionsReadable | lldb::ePermissionsExecutable;
      m_core_range_infos.Append(VMRangeToPermissions::Entry(
          section_vm_addr, section->GetByteSize(), permissions));
    }
  }
  if (!ranges_are_sorted) {
    m_core_aranges.Sort();
    m_core_range_infos.Sort();
  }


  bool found_main_binary_definitively = false;

  addr_t objfile_binary_addr;
  UUID objfile_binary_uuid;
  if (core_objfile->GetCorefileMainBinaryInfo (objfile_binary_addr, objfile_binary_uuid))
  {
    if (objfile_binary_addr != LLDB_INVALID_ADDRESS)
    {
        m_mach_kernel_addr = objfile_binary_addr;
        found_main_binary_definitively = true;
        LLDB_LOGF(log,
                  "ProcessMachCore::DoLoadCore: using kernel address 0x%" PRIx64
                  " from LC_NOTE 'main bin spec' load command.",
                  m_mach_kernel_addr);
    }
  }
  
  // This checks for the presence of an LC_IDENT string in a core file;
  // LC_IDENT is very obsolete and should not be used in new code, but if the
  // load command is present, let's use the contents.
  std::string corefile_identifier = core_objfile->GetIdentifierString();
  if (!found_main_binary_definitively &&
      corefile_identifier.find("Darwin Kernel") != std::string::npos) {
    UUID uuid;
    addr_t addr = LLDB_INVALID_ADDRESS;
    if (corefile_identifier.find("UUID=") != std::string::npos) {
      size_t p = corefile_identifier.find("UUID=") + strlen("UUID=");
      std::string uuid_str = corefile_identifier.substr(p, 36);
      uuid.SetFromStringRef(uuid_str);
    }
    if (corefile_identifier.find("stext=") != std::string::npos) {
      size_t p = corefile_identifier.find("stext=") + strlen("stext=");
      if (corefile_identifier[p] == '0' && corefile_identifier[p + 1] == 'x') {
        errno = 0;
        addr = ::strtoul(corefile_identifier.c_str() + p, nullptr, 16);
        if (errno != 0 || addr == 0)
          addr = LLDB_INVALID_ADDRESS;
      }
    }
    if (uuid.IsValid() && addr != LLDB_INVALID_ADDRESS) {
      m_mach_kernel_addr = addr;
      found_main_binary_definitively = true;
      LLDB_LOGF(
          log,
          "ProcessMachCore::DoLoadCore: Using the kernel address 0x%" PRIx64
          " from LC_IDENT/LC_NOTE 'kern ver str' string: '%s'",
          addr, corefile_identifier.c_str());
    }
  }
  if (found_main_binary_definitively == false 
      && corefile_identifier.find("EFI ") != std::string::npos) {
      UUID uuid;
      if (corefile_identifier.find("UUID=") != std::string::npos) {
          size_t p = corefile_identifier.find("UUID=") + strlen("UUID=");
          std::string uuid_str = corefile_identifier.substr(p, 36);
          uuid.SetFromStringRef(uuid_str);
      }
      if (uuid.IsValid()) {
        LLDB_LOGF(log,
                  "ProcessMachCore::DoLoadCore: Using the EFI "
                  "from LC_IDENT/LC_NOTE 'kern ver str' string: '%s'",
                  corefile_identifier.c_str());

        // We're only given a UUID here, not a load address.
        // But there are python scripts in the EFI binary's dSYM which
        // know how to relocate the binary to the correct load address.
        // lldb only needs to locate & load the binary + dSYM.
        ModuleSpec module_spec;
        module_spec.GetUUID() = uuid;
        module_spec.GetArchitecture() = GetTarget().GetArchitecture();

        // Lookup UUID locally, before attempting dsymForUUID like action
        FileSpecList search_paths = Target::GetDefaultDebugFileSearchPaths();
        module_spec.GetSymbolFileSpec() =
            Symbols::LocateExecutableSymbolFile(module_spec, search_paths);
        if (module_spec.GetSymbolFileSpec()) {
          ModuleSpec executable_module_spec =
              Symbols::LocateExecutableObjectFile(module_spec);
          if (FileSystem::Instance().Exists(
                  executable_module_spec.GetFileSpec())) {
            module_spec.GetFileSpec() = executable_module_spec.GetFileSpec();
          }
        }

        // Force a a dsymForUUID lookup, if that tool is available.
        if (!module_spec.GetSymbolFileSpec())
          Symbols::DownloadObjectAndSymbolFile(module_spec, true);

        if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
          ModuleSP module_sp(new Module(module_spec));
          if (module_sp.get() && module_sp->GetObjectFile()) {
            // Get the current target executable
            ModuleSP exe_module_sp(GetTarget().GetExecutableModule());

            // Make sure you don't already have the right module loaded
            // and they will be uniqued
            if (exe_module_sp.get() != module_sp.get())
              GetTarget().SetExecutableModule(module_sp, eLoadDependentsNo);
          }
        }
      }
  }

  if (!found_main_binary_definitively &&
      (m_dyld_addr == LLDB_INVALID_ADDRESS ||
       m_mach_kernel_addr == LLDB_INVALID_ADDRESS)) {
    // We need to locate the main executable in the memory ranges we have in
    // the core file.  We need to search for both a user-process dyld binary
    // and a kernel binary in memory; we must look at all the pages in the
    // binary so we don't miss one or the other.  Step through all memory
    // segments searching for a kernel binary and for a user process dyld --
    // we'll decide which to prefer later if both are present.

    const size_t num_core_aranges = m_core_aranges.GetSize();
    for (size_t i = 0; i < num_core_aranges; ++i) {
      const VMRangeToFileOffset::Entry *entry =
          m_core_aranges.GetEntryAtIndex(i);
      lldb::addr_t section_vm_addr_start = entry->GetRangeBase();
      lldb::addr_t section_vm_addr_end = entry->GetRangeEnd();
      for (lldb::addr_t section_vm_addr = section_vm_addr_start;
           section_vm_addr < section_vm_addr_end; section_vm_addr += 0x1000) {
        GetDynamicLoaderAddress(section_vm_addr);
      }
    }
  }

  if (!found_main_binary_definitively &&
      m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
    // In the case of multiple kernel images found in the core file via
    // exhaustive search, we may not pick the correct one.  See if the
    // DynamicLoaderDarwinKernel's search heuristics might identify the correct
    // one. Most of the time, I expect the address from SearchForDarwinKernel()
    // will be the same as the address we found via exhaustive search.

    if (!GetTarget().GetArchitecture().IsValid() && m_core_module_sp.get()) {
      GetTarget().SetArchitecture(m_core_module_sp->GetArchitecture());
    }

    // SearchForDarwinKernel will end up calling back into this this class in
    // the GetImageInfoAddress method which will give it the
    // m_mach_kernel_addr/m_dyld_addr it already has.  Save that aside and set
    // m_mach_kernel_addr/m_dyld_addr to an invalid address temporarily so
    // DynamicLoaderDarwinKernel does a real search for the kernel using its
    // own heuristics.

    addr_t saved_mach_kernel_addr = m_mach_kernel_addr;
    addr_t saved_user_dyld_addr = m_dyld_addr;
    m_mach_kernel_addr = LLDB_INVALID_ADDRESS;
    m_dyld_addr = LLDB_INVALID_ADDRESS;

    addr_t better_kernel_address =
        DynamicLoaderDarwinKernel::SearchForDarwinKernel(this);

    m_mach_kernel_addr = saved_mach_kernel_addr;
    m_dyld_addr = saved_user_dyld_addr;

    if (better_kernel_address != LLDB_INVALID_ADDRESS) {
      LLDB_LOGF(log, "ProcessMachCore::DoLoadCore: Using the kernel address "
                     "from DynamicLoaderDarwinKernel");
      m_mach_kernel_addr = better_kernel_address;
    }
  }

  // If we found both a user-process dyld and a kernel binary, we need to
  // decide which to prefer.
  if (GetCorefilePreference() == eKernelCorefile) {
    if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
      LLDB_LOGF(log,
                "ProcessMachCore::DoLoadCore: Using kernel corefile image "
                "at 0x%" PRIx64,
                m_mach_kernel_addr);
      m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
    } else if (m_dyld_addr != LLDB_INVALID_ADDRESS) {
      LLDB_LOGF(log,
                "ProcessMachCore::DoLoadCore: Using user process dyld "
                "image at 0x%" PRIx64,
                m_dyld_addr);
      m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
    }
  } else {
    if (m_dyld_addr != LLDB_INVALID_ADDRESS) {
      LLDB_LOGF(log,
                "ProcessMachCore::DoLoadCore: Using user process dyld "
                "image at 0x%" PRIx64,
                m_dyld_addr);
      m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
    } else if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
      LLDB_LOGF(log,
                "ProcessMachCore::DoLoadCore: Using kernel corefile image "
                "at 0x%" PRIx64,
                m_mach_kernel_addr);
      m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
    }
  }

  if (m_dyld_plugin_name != DynamicLoaderMacOSXDYLD::GetPluginNameStatic()) {
    // For non-user process core files, the permissions on the core file
    // segments are usually meaningless, they may be just "read", because we're
    // dealing with kernel coredumps or early startup coredumps and the dumper
    // is grabbing pages of memory without knowing what they are.  If they
    // aren't marked as "exeuctable", that can break the unwinder which will
    // check a pc value to see if it is in an executable segment and stop the
    // backtrace early if it is not ("executable" and "unknown" would both be
    // fine, but "not executable" will break the unwinder).
    size_t core_range_infos_size = m_core_range_infos.GetSize();
    for (size_t i = 0; i < core_range_infos_size; i++) {
      VMRangeToPermissions::Entry *ent =
          m_core_range_infos.GetMutableEntryAtIndex(i);
      ent->data = lldb::ePermissionsReadable | lldb::ePermissionsExecutable;
    }
  }

  // Even if the architecture is set in the target, we need to override it to
  // match the core file which is always single arch.
  ArchSpec arch(m_core_module_sp->GetArchitecture());
  if (arch.GetCore() == ArchSpec::eCore_x86_32_i486) {
    arch = Platform::GetAugmentedArchSpec(GetTarget().GetPlatform().get(), "i386");
  }
  if (arch.IsValid())
    GetTarget().SetArchitecture(arch);

  return error;
}

lldb_private::DynamicLoader *ProcessMachCore::GetDynamicLoader() {
  if (m_dyld_up.get() == nullptr)
    m_dyld_up.reset(DynamicLoader::FindPlugin(
        this, m_dyld_plugin_name.IsEmpty() ? nullptr
                                           : m_dyld_plugin_name.GetCString()));
  return m_dyld_up.get();
}

bool ProcessMachCore::UpdateThreadList(ThreadList &old_thread_list,
                                       ThreadList &new_thread_list) {
  if (old_thread_list.GetSize(false) == 0) {
    // Make up the thread the first time this is called so we can setup our one
    // and only core thread state.
    ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();

    if (core_objfile) {
      const uint32_t num_threads = core_objfile->GetNumThreadContexts();
      for (lldb::tid_t tid = 0; tid < num_threads; ++tid) {
        ThreadSP thread_sp(new ThreadMachCore(*this, tid));
        new_thread_list.AddThread(thread_sp);
      }
    }
  } else {
    const uint32_t num_threads = old_thread_list.GetSize(false);
    for (uint32_t i = 0; i < num_threads; ++i)
      new_thread_list.AddThread(old_thread_list.GetThreadAtIndex(i, false));
  }
  return new_thread_list.GetSize(false) > 0;
}

void ProcessMachCore::RefreshStateAfterStop() {
  // Let all threads recover from stopping and do any clean up based on the
  // previous thread state (if any).
  m_thread_list.RefreshStateAfterStop();
  // SetThreadStopInfo (m_last_stop_packet);
}

Status ProcessMachCore::DoDestroy() { return Status(); }

// Process Queries

bool ProcessMachCore::IsAlive() { return true; }

bool ProcessMachCore::WarnBeforeDetach() const { return false; }

// Process Memory
size_t ProcessMachCore::ReadMemory(addr_t addr, void *buf, size_t size,
                                   Status &error) {
  // Don't allow the caching that lldb_private::Process::ReadMemory does since
  // in core files we have it all cached our our core file anyway.
  return DoReadMemory(addr, buf, size, error);
}

size_t ProcessMachCore::DoReadMemory(addr_t addr, void *buf, size_t size,
                                     Status &error) {
  ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
  size_t bytes_read = 0;

  if (core_objfile) {
    // Segments are not always contiguous in mach-o core files. We have core
    // files that have segments like:
    //            Address    Size       File off   File size
    //            ---------- ---------- ---------- ----------
    // LC_SEGMENT 0x000f6000 0x00001000 0x1d509ee8 0x00001000 --- ---   0
    // 0x00000000 __TEXT LC_SEGMENT 0x0f600000 0x00100000 0x1d50aee8 0x00100000
    // --- ---   0 0x00000000 __TEXT LC_SEGMENT 0x000f7000 0x00001000
    // 0x1d60aee8 0x00001000 --- ---   0 0x00000000 __TEXT
    //
    // Any if the user executes the following command:
    //
    // (lldb) mem read 0xf6ff0
    //
    // We would attempt to read 32 bytes from 0xf6ff0 but would only get 16
    // unless we loop through consecutive memory ranges that are contiguous in
    // the address space, but not in the file data.
    while (bytes_read < size) {
      const addr_t curr_addr = addr + bytes_read;
      const VMRangeToFileOffset::Entry *core_memory_entry =
          m_core_aranges.FindEntryThatContains(curr_addr);

      if (core_memory_entry) {
        const addr_t offset = curr_addr - core_memory_entry->GetRangeBase();
        const addr_t bytes_left = core_memory_entry->GetRangeEnd() - curr_addr;
        const size_t bytes_to_read =
            std::min(size - bytes_read, (size_t)bytes_left);
        const size_t curr_bytes_read = core_objfile->CopyData(
            core_memory_entry->data.GetRangeBase() + offset, bytes_to_read,
            (char *)buf + bytes_read);
        if (curr_bytes_read == 0)
          break;
        bytes_read += curr_bytes_read;
      } else {
        // Only set the error if we didn't read any bytes
        if (bytes_read == 0)
          error.SetErrorStringWithFormat(
              "core file does not contain 0x%" PRIx64, curr_addr);
        break;
      }
    }
  }

  return bytes_read;
}

Status ProcessMachCore::GetMemoryRegionInfo(addr_t load_addr,
                                            MemoryRegionInfo &region_info) {
  region_info.Clear();
  const VMRangeToPermissions::Entry *permission_entry =
      m_core_range_infos.FindEntryThatContainsOrFollows(load_addr);
  if (permission_entry) {
    if (permission_entry->Contains(load_addr)) {
      region_info.GetRange().SetRangeBase(permission_entry->GetRangeBase());
      region_info.GetRange().SetRangeEnd(permission_entry->GetRangeEnd());
      const Flags permissions(permission_entry->data);
      region_info.SetReadable(permissions.Test(ePermissionsReadable)
                                  ? MemoryRegionInfo::eYes
                                  : MemoryRegionInfo::eNo);
      region_info.SetWritable(permissions.Test(ePermissionsWritable)
                                  ? MemoryRegionInfo::eYes
                                  : MemoryRegionInfo::eNo);
      region_info.SetExecutable(permissions.Test(ePermissionsExecutable)
                                    ? MemoryRegionInfo::eYes
                                    : MemoryRegionInfo::eNo);
      region_info.SetMapped(MemoryRegionInfo::eYes);
    } else if (load_addr < permission_entry->GetRangeBase()) {
      region_info.GetRange().SetRangeBase(load_addr);
      region_info.GetRange().SetRangeEnd(permission_entry->GetRangeBase());
      region_info.SetReadable(MemoryRegionInfo::eNo);
      region_info.SetWritable(MemoryRegionInfo::eNo);
      region_info.SetExecutable(MemoryRegionInfo::eNo);
      region_info.SetMapped(MemoryRegionInfo::eNo);
    }
    return Status();
  }

  region_info.GetRange().SetRangeBase(load_addr);
  region_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
  region_info.SetReadable(MemoryRegionInfo::eNo);
  region_info.SetWritable(MemoryRegionInfo::eNo);
  region_info.SetExecutable(MemoryRegionInfo::eNo);
  region_info.SetMapped(MemoryRegionInfo::eNo);
  return Status();
}

void ProcessMachCore::Clear() { m_thread_list.Clear(); }

void ProcessMachCore::Initialize() {
  static llvm::once_flag g_once_flag;

  llvm::call_once(g_once_flag, []() {
    PluginManager::RegisterPlugin(GetPluginNameStatic(),
                                  GetPluginDescriptionStatic(), CreateInstance);
  });
}

addr_t ProcessMachCore::GetImageInfoAddress() {
  // If we found both a user-process dyld and a kernel binary, we need to
  // decide which to prefer.
  if (GetCorefilePreference() == eKernelCorefile) {
    if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
      return m_mach_kernel_addr;
    }
    return m_dyld_addr;
  } else {
    if (m_dyld_addr != LLDB_INVALID_ADDRESS) {
      return m_dyld_addr;
    }
    return m_mach_kernel_addr;
  }
}

lldb_private::ObjectFile *ProcessMachCore::GetCoreObjectFile() {
  return m_core_module_sp->GetObjectFile();
}