reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
//===-- OperatingSystemPython.cpp --------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLDB_DISABLE_PYTHON

#include "OperatingSystemPython.h"

#include "Plugins/Process/Utility/DynamicRegisterInfo.h"
#include "Plugins/Process/Utility/RegisterContextDummy.h"
#include "Plugins/Process/Utility/RegisterContextMemory.h"
#include "Plugins/Process/Utility/ThreadMemory.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/StructuredData.h"

#include <memory>

using namespace lldb;
using namespace lldb_private;

void OperatingSystemPython::Initialize() {
  PluginManager::RegisterPlugin(GetPluginNameStatic(),
                                GetPluginDescriptionStatic(), CreateInstance,
                                nullptr);
}

void OperatingSystemPython::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

OperatingSystem *OperatingSystemPython::CreateInstance(Process *process,
                                                       bool force) {
  // Python OperatingSystem plug-ins must be requested by name, so force must
  // be true
  FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath());
  if (python_os_plugin_spec &&
      FileSystem::Instance().Exists(python_os_plugin_spec)) {
    std::unique_ptr<OperatingSystemPython> os_up(
        new OperatingSystemPython(process, python_os_plugin_spec));
    if (os_up.get() && os_up->IsValid())
      return os_up.release();
  }
  return nullptr;
}

ConstString OperatingSystemPython::GetPluginNameStatic() {
  static ConstString g_name("python");
  return g_name;
}

const char *OperatingSystemPython::GetPluginDescriptionStatic() {
  return "Operating system plug-in that gathers OS information from a python "
         "class that implements the necessary OperatingSystem functionality.";
}

OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process,
                                             const FileSpec &python_module_path)
    : OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(),
      m_interpreter(nullptr), m_python_object_sp() {
  if (!process)
    return;
  TargetSP target_sp = process->CalculateTarget();
  if (!target_sp)
    return;
  m_interpreter = target_sp->GetDebugger().GetScriptInterpreter();
  if (m_interpreter) {

    std::string os_plugin_class_name(
        python_module_path.GetFilename().AsCString(""));
    if (!os_plugin_class_name.empty()) {
      const bool init_session = false;
      const bool allow_reload = true;
      char python_module_path_cstr[PATH_MAX];
      python_module_path.GetPath(python_module_path_cstr,
                                 sizeof(python_module_path_cstr));
      Status error;
      if (m_interpreter->LoadScriptingModule(
              python_module_path_cstr, allow_reload, init_session, error)) {
        // Strip the ".py" extension if there is one
        size_t py_extension_pos = os_plugin_class_name.rfind(".py");
        if (py_extension_pos != std::string::npos)
          os_plugin_class_name.erase(py_extension_pos);
        // Add ".OperatingSystemPlugIn" to the module name to get a string like
        // "modulename.OperatingSystemPlugIn"
        os_plugin_class_name += ".OperatingSystemPlugIn";
        StructuredData::ObjectSP object_sp =
            m_interpreter->OSPlugin_CreatePluginObject(
                os_plugin_class_name.c_str(), process->CalculateProcess());
        if (object_sp && object_sp->IsValid())
          m_python_object_sp = object_sp;
      }
    }
  }
}

OperatingSystemPython::~OperatingSystemPython() {}

DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() {
  if (m_register_info_up == nullptr) {
    if (!m_interpreter || !m_python_object_sp)
      return nullptr;
    Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));

    LLDB_LOGF(log,
              "OperatingSystemPython::GetDynamicRegisterInfo() fetching "
              "thread register definitions from python for pid %" PRIu64,
              m_process->GetID());

    StructuredData::DictionarySP dictionary =
        m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp);
    if (!dictionary)
      return nullptr;

    m_register_info_up.reset(new DynamicRegisterInfo(
        *dictionary, m_process->GetTarget().GetArchitecture()));
    assert(m_register_info_up->GetNumRegisters() > 0);
    assert(m_register_info_up->GetNumRegisterSets() > 0);
  }
  return m_register_info_up.get();
}

// PluginInterface protocol
ConstString OperatingSystemPython::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t OperatingSystemPython::GetPluginVersion() { return 1; }

bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list,
                                             ThreadList &core_thread_list,
                                             ThreadList &new_thread_list) {
  if (!m_interpreter || !m_python_object_sp)
    return false;

  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));

  // First thing we have to do is to try to get the API lock, and the
  // interpreter lock. We're going to change the thread content of the process,
  // and we're going to use python, which requires the API lock to do it. We
  // need the interpreter lock to make sure thread_info_dict stays alive.
  //
  // If someone already has the API lock, that is ok, we just want to avoid
  // external code from making new API calls while this call is happening.
  //
  // This is a recursive lock so we can grant it to any Python code called on
  // the stack below us.
  Target &target = m_process->GetTarget();
  std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
                                                  std::defer_lock);
  api_lock.try_lock();
  auto interpreter_lock = m_interpreter->AcquireInterpreterLock();

  LLDB_LOGF(log,
            "OperatingSystemPython::UpdateThreadList() fetching thread "
            "data from python for pid %" PRIu64,
            m_process->GetID());

  // The threads that are in "core_thread_list" upon entry are the threads from
  // the lldb_private::Process subclass, no memory threads will be in this
  // list.
  StructuredData::ArraySP threads_list =
      m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp);

  const uint32_t num_cores = core_thread_list.GetSize(false);

  // Make a map so we can keep track of which cores were used from the
  // core_thread list. Any real threads/cores that weren't used should later be
  // put back into the "new_thread_list".
  std::vector<bool> core_used_map(num_cores, false);
  if (threads_list) {
    if (log) {
      StreamString strm;
      threads_list->Dump(strm);
      LLDB_LOGF(log, "threads_list = %s", strm.GetData());
    }

    const uint32_t num_threads = threads_list->GetSize();
    for (uint32_t i = 0; i < num_threads; ++i) {
      StructuredData::ObjectSP thread_dict_obj =
          threads_list->GetItemAtIndex(i);
      if (auto thread_dict = thread_dict_obj->GetAsDictionary()) {
        ThreadSP thread_sp(CreateThreadFromThreadInfo(
            *thread_dict, core_thread_list, old_thread_list, core_used_map,
            nullptr));
        if (thread_sp)
          new_thread_list.AddThread(thread_sp);
      }
    }
  }

  // Any real core threads that didn't end up backing a memory thread should
  // still be in the main thread list, and they should be inserted at the
  // beginning of the list
  uint32_t insert_idx = 0;
  for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) {
    if (!core_used_map[core_idx]) {
      new_thread_list.InsertThread(
          core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx);
      ++insert_idx;
    }
  }

  return new_thread_list.GetSize(false) > 0;
}

ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo(
    StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list,
    ThreadList &old_thread_list, std::vector<bool> &core_used_map,
    bool *did_create_ptr) {
  ThreadSP thread_sp;
  tid_t tid = LLDB_INVALID_THREAD_ID;
  if (!thread_dict.GetValueForKeyAsInteger("tid", tid))
    return ThreadSP();

  uint32_t core_number;
  addr_t reg_data_addr;
  llvm::StringRef name;
  llvm::StringRef queue;

  thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX);
  thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr,
                                      LLDB_INVALID_ADDRESS);
  thread_dict.GetValueForKeyAsString("name", name);
  thread_dict.GetValueForKeyAsString("queue", queue);

  // See if a thread already exists for "tid"
  thread_sp = old_thread_list.FindThreadByID(tid, false);
  if (thread_sp) {
    // A thread already does exist for "tid", make sure it was an operating
    // system
    // plug-in generated thread.
    if (!IsOperatingSystemPluginThread(thread_sp)) {
      // We have thread ID overlap between the protocol threads and the
      // operating system threads, clear the thread so we create an operating
      // system thread for this.
      thread_sp.reset();
    }
  }

  if (!thread_sp) {
    if (did_create_ptr)
      *did_create_ptr = true;
    thread_sp = std::make_shared<ThreadMemory>(*m_process, tid, name, queue,
                                               reg_data_addr);
  }

  if (core_number < core_thread_list.GetSize(false)) {
    ThreadSP core_thread_sp(
        core_thread_list.GetThreadAtIndex(core_number, false));
    if (core_thread_sp) {
      // Keep track of which cores were set as the backing thread for memory
      // threads...
      if (core_number < core_used_map.size())
        core_used_map[core_number] = true;

      ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread());
      if (backing_core_thread_sp) {
        thread_sp->SetBackingThread(backing_core_thread_sp);
      } else {
        thread_sp->SetBackingThread(core_thread_sp);
      }
    }
  }
  return thread_sp;
}

void OperatingSystemPython::ThreadWasSelected(Thread *thread) {}

RegisterContextSP
OperatingSystemPython::CreateRegisterContextForThread(Thread *thread,
                                                      addr_t reg_data_addr) {
  RegisterContextSP reg_ctx_sp;
  if (!m_interpreter || !m_python_object_sp || !thread)
    return reg_ctx_sp;

  if (!IsOperatingSystemPluginThread(thread->shared_from_this()))
    return reg_ctx_sp;

  // First thing we have to do is to try to get the API lock, and the
  // interpreter lock. We're going to change the thread content of the process,
  // and we're going to use python, which requires the API lock to do it. We
  // need the interpreter lock to make sure thread_info_dict stays alive.
  //
  // If someone already has the API lock, that is ok, we just want to avoid
  // external code from making new API calls while this call is happening.
  //
  // This is a recursive lock so we can grant it to any Python code called on
  // the stack below us.
  Target &target = m_process->GetTarget();
  std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
                                                  std::defer_lock);
  api_lock.try_lock();
  auto interpreter_lock = m_interpreter->AcquireInterpreterLock();

  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));

  if (reg_data_addr != LLDB_INVALID_ADDRESS) {
    // The registers data is in contiguous memory, just create the register
    // context using the address provided
    LLDB_LOGF(log,
              "OperatingSystemPython::CreateRegisterContextForThread (tid "
              "= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64
              ") creating memory register context",
              thread->GetID(), thread->GetProtocolID(), reg_data_addr);
    reg_ctx_sp = std::make_shared<RegisterContextMemory>(
        *thread, 0, *GetDynamicRegisterInfo(), reg_data_addr);
  } else {
    // No register data address is provided, query the python plug-in to let it
    // make up the data as it sees fit
    LLDB_LOGF(log,
              "OperatingSystemPython::CreateRegisterContextForThread (tid "
              "= 0x%" PRIx64 ", 0x%" PRIx64
              ") fetching register data from python",
              thread->GetID(), thread->GetProtocolID());

    StructuredData::StringSP reg_context_data =
        m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp,
                                                    thread->GetID());
    if (reg_context_data) {
      std::string value = reg_context_data->GetValue();
      DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length()));
      if (data_sp->GetByteSize()) {
        RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory(
            *thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS);
        if (reg_ctx_memory) {
          reg_ctx_sp.reset(reg_ctx_memory);
          reg_ctx_memory->SetAllRegisterData(data_sp);
        }
      }
    }
  }
  // if we still have no register data, fallback on a dummy context to avoid
  // crashing
  if (!reg_ctx_sp) {
    LLDB_LOGF(log,
              "OperatingSystemPython::CreateRegisterContextForThread (tid "
              "= 0x%" PRIx64 ") forcing a dummy register context",
              thread->GetID());
    reg_ctx_sp = std::make_shared<RegisterContextDummy>(
        *thread, 0, target.GetArchitecture().GetAddressByteSize());
  }
  return reg_ctx_sp;
}

StopInfoSP
OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) {
  // We should have gotten the thread stop info from the dictionary of data for
  // the thread in the initial call to get_thread_info(), this should have been
  // cached so we can return it here
  StopInfoSP
      stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP));
  return stop_info_sp;
}

lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid,
                                                   addr_t context) {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));

  LLDB_LOGF(log,
            "OperatingSystemPython::CreateThread (tid = 0x%" PRIx64
            ", context = 0x%" PRIx64 ") fetching register data from python",
            tid, context);

  if (m_interpreter && m_python_object_sp) {
    // First thing we have to do is to try to get the API lock, and the
    // interpreter lock. We're going to change the thread content of the
    // process, and we're going to use python, which requires the API lock to
    // do it. We need the interpreter lock to make sure thread_info_dict stays
    // alive.
    //
    // If someone already has the API lock, that is ok, we just want to avoid
    // external code from making new API calls while this call is happening.
    //
    // This is a recursive lock so we can grant it to any Python code called on
    // the stack below us.
    Target &target = m_process->GetTarget();
    std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
                                                    std::defer_lock);
    api_lock.try_lock();
    auto interpreter_lock = m_interpreter->AcquireInterpreterLock();

    StructuredData::DictionarySP thread_info_dict =
        m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context);
    std::vector<bool> core_used_map;
    if (thread_info_dict) {
      ThreadList core_threads(m_process);
      ThreadList &thread_list = m_process->GetThreadList();
      bool did_create = false;
      ThreadSP thread_sp(
          CreateThreadFromThreadInfo(*thread_info_dict, core_threads,
                                     thread_list, core_used_map, &did_create));
      if (did_create)
        thread_list.AddThread(thread_sp);
      return thread_sp;
    }
  }
  return ThreadSP();
}

#endif // #ifndef LLDB_DISABLE_PYTHON