reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <map>

using namespace clang;

/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
///   - create a corresponding syntax node,
///   - assign roles to all pending child nodes with 'markChild' and
///     'markChildToken',
///   - replace the child nodes with the new syntax node in the pending list
///     with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
  TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {}

  llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }

  /// Populate children for \p New node, assuming it covers tokens from \p
  /// Range.
  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New);

  /// Set role for a token starting at \p Loc.
  void markChildToken(SourceLocation Loc, tok::TokenKind Kind, NodeRole R);

  /// Finish building the tree and consume the root node.
  syntax::TranslationUnit *finalize() && {
    auto Tokens = Arena.tokenBuffer().expandedTokens();
    assert(!Tokens.empty());
    assert(Tokens.back().kind() == tok::eof);

    // Build the root of the tree, consuming all the children.
    Pending.foldChildren(Tokens.drop_back(),
                         new (Arena.allocator()) syntax::TranslationUnit);

    return cast<syntax::TranslationUnit>(std::move(Pending).finalize());
  }

  /// getRange() finds the syntax tokens corresponding to the passed source
  /// locations.
  /// \p First is the start position of the first token and \p Last is the start
  /// position of the last token.
  llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
                                         SourceLocation Last) const {
    assert(First.isValid());
    assert(Last.isValid());
    assert(First == Last ||
           Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
    return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
  }
  llvm::ArrayRef<syntax::Token> getRange(const Decl *D) const {
    return getRange(D->getBeginLoc(), D->getEndLoc());
  }
  llvm::ArrayRef<syntax::Token> getRange(const Stmt *S) const {
    return getRange(S->getBeginLoc(), S->getEndLoc());
  }

private:
  /// Finds a token starting at \p L. The token must exist.
  const syntax::Token *findToken(SourceLocation L) const;

  /// A collection of trees covering the input tokens.
  /// When created, each tree corresponds to a single token in the file.
  /// Clients call 'foldChildren' to attach one or more subtrees to a parent
  /// node and update the list of trees accordingly.
  ///
  /// Ensures that added nodes properly nest and cover the whole token stream.
  struct Forest {
    Forest(syntax::Arena &A) {
      assert(!A.tokenBuffer().expandedTokens().empty());
      assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
      // Create all leaf nodes.
      // Note that we do not have 'eof' in the tree.
      for (auto &T : A.tokenBuffer().expandedTokens().drop_back())
        Trees.insert(Trees.end(),
                     {&T, NodeAndRole{new (A.allocator()) syntax::Leaf(&T)}});
    }

    void assignRole(llvm::ArrayRef<syntax::Token> Range,
                    syntax::NodeRole Role) {
      assert(!Range.empty());
      auto It = Trees.lower_bound(Range.begin());
      assert(It != Trees.end() && "no node found");
      assert(It->first == Range.begin() && "no child with the specified range");
      assert((std::next(It) == Trees.end() ||
              std::next(It)->first == Range.end()) &&
             "no child with the specified range");
      It->second.Role = Role;
    }

    /// Add \p Node to the forest and fill its children nodes based on the \p
    /// NodeRange.
    void foldChildren(llvm::ArrayRef<syntax::Token> NodeTokens,
                      syntax::Tree *Node) {
      assert(!NodeTokens.empty());
      assert(Node->firstChild() == nullptr && "node already has children");

      auto *FirstToken = NodeTokens.begin();
      auto BeginChildren = Trees.lower_bound(FirstToken);
      assert(BeginChildren != Trees.end() &&
             BeginChildren->first == FirstToken &&
             "fold crosses boundaries of existing subtrees");
      auto EndChildren = Trees.lower_bound(NodeTokens.end());
      assert((EndChildren == Trees.end() ||
              EndChildren->first == NodeTokens.end()) &&
             "fold crosses boundaries of existing subtrees");

      // (!) we need to go in reverse order, because we can only prepend.
      for (auto It = EndChildren; It != BeginChildren; --It)
        Node->prependChildLowLevel(std::prev(It)->second.Node,
                                   std::prev(It)->second.Role);

      Trees.erase(BeginChildren, EndChildren);
      Trees.insert({FirstToken, NodeAndRole(Node)});
    }

    // EXPECTS: all tokens were consumed and are owned by a single root node.
    syntax::Node *finalize() && {
      assert(Trees.size() == 1);
      auto *Root = Trees.begin()->second.Node;
      Trees = {};
      return Root;
    }

    std::string str(const syntax::Arena &A) const {
      std::string R;
      for (auto It = Trees.begin(); It != Trees.end(); ++It) {
        unsigned CoveredTokens =
            It != Trees.end()
                ? (std::next(It)->first - It->first)
                : A.tokenBuffer().expandedTokens().end() - It->first;

        R += llvm::formatv("- '{0}' covers '{1}'+{2} tokens\n",
                           It->second.Node->kind(),
                           It->first->text(A.sourceManager()), CoveredTokens);
        R += It->second.Node->dump(A);
      }
      return R;
    }

  private:
    /// A with a role that should be assigned to it when adding to a parent.
    struct NodeAndRole {
      explicit NodeAndRole(syntax::Node *Node)
          : Node(Node), Role(NodeRole::Unknown) {}

      syntax::Node *Node;
      NodeRole Role;
    };

    /// Maps from the start token to a subtree starting at that token.
    /// FIXME: storing the end tokens is redundant.
    /// FIXME: the key of a map is redundant, it is also stored in NodeForRange.
    std::map<const syntax::Token *, NodeAndRole> Trees;
  };

  /// For debugging purposes.
  std::string str() { return Pending.str(Arena); }

  syntax::Arena &Arena;
  Forest Pending;
};

namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
  explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
      : Builder(Builder), LangOpts(Ctx.getLangOpts()) {}

  bool shouldTraversePostOrder() const { return true; }

  bool TraverseDecl(Decl *D) {
    if (!D || isa<TranslationUnitDecl>(D))
      return RecursiveASTVisitor::TraverseDecl(D);
    if (!llvm::isa<TranslationUnitDecl>(D->getDeclContext()))
      return true; // Only build top-level decls for now, do not recurse.
    return RecursiveASTVisitor::TraverseDecl(D);
  }

  bool VisitDecl(Decl *D) {
    assert(llvm::isa<TranslationUnitDecl>(D->getDeclContext()) &&
           "expected a top-level decl");
    assert(!D->isImplicit());
    Builder.foldNode(Builder.getRange(D),
                     new (allocator()) syntax::TopLevelDeclaration());
    return true;
  }

  bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
    // (!) we do not want to call VisitDecl(), the declaration for translation
    // unit is built by finalize().
    return true;
  }

  bool WalkUpFromCompoundStmt(CompoundStmt *S) {
    using NodeRole = syntax::NodeRole;

    Builder.markChildToken(S->getLBracLoc(), tok::l_brace,
                           NodeRole::CompoundStatement_lbrace);
    Builder.markChildToken(S->getRBracLoc(), tok::r_brace,
                           NodeRole::CompoundStatement_rbrace);

    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::CompoundStatement);
    return true;
  }

private:
  /// A small helper to save some typing.
  llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }

  syntax::TreeBuilder &Builder;
  const LangOptions &LangOpts;
};
} // namespace

void syntax::TreeBuilder::foldNode(llvm::ArrayRef<syntax::Token> Range,
                                   syntax::Tree *New) {
  Pending.foldChildren(Range, New);
}

void syntax::TreeBuilder::markChildToken(SourceLocation Loc,
                                         tok::TokenKind Kind, NodeRole Role) {
  if (Loc.isInvalid())
    return;
  Pending.assignRole(*findToken(Loc), Role);
}

const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
  auto Tokens = Arena.tokenBuffer().expandedTokens();
  auto &SM = Arena.sourceManager();
  auto It = llvm::partition_point(Tokens, [&](const syntax::Token &T) {
    return SM.isBeforeInTranslationUnit(T.location(), L);
  });
  assert(It != Tokens.end());
  assert(It->location() == L);
  return &*It;
}

syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
  TreeBuilder Builder(A);
  BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
  return std::move(Builder).finalize();
}