reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
//===--- USRLocFinder.cpp - Clang refactoring library ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Methods for finding all instances of a USR. Our strategy is very
/// simple; we just compare the USR at every relevant AST node with the one
/// provided.
///
//===----------------------------------------------------------------------===//

#include "clang/Tooling/Refactoring/Rename/USRLocFinder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Core/Lookup.h"
#include "clang/Tooling/Refactoring/RecursiveSymbolVisitor.h"
#include "clang/Tooling/Refactoring/Rename/SymbolName.h"
#include "clang/Tooling/Refactoring/Rename/USRFinder.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <cstddef>
#include <set>
#include <string>
#include <vector>

using namespace llvm;

namespace clang {
namespace tooling {

namespace {

// Returns true if the given Loc is valid for edit. We don't edit the
// SourceLocations that are valid or in temporary buffer.
bool IsValidEditLoc(const clang::SourceManager& SM, clang::SourceLocation Loc) {
  if (Loc.isInvalid())
    return false;
  const clang::FullSourceLoc FullLoc(Loc, SM);
  std::pair<clang::FileID, unsigned> FileIdAndOffset =
      FullLoc.getSpellingLoc().getDecomposedLoc();
  return SM.getFileEntryForID(FileIdAndOffset.first) != nullptr;
}

// This visitor recursively searches for all instances of a USR in a
// translation unit and stores them for later usage.
class USRLocFindingASTVisitor
    : public RecursiveSymbolVisitor<USRLocFindingASTVisitor> {
public:
  explicit USRLocFindingASTVisitor(const std::vector<std::string> &USRs,
                                   StringRef PrevName,
                                   const ASTContext &Context)
      : RecursiveSymbolVisitor(Context.getSourceManager(),
                               Context.getLangOpts()),
        USRSet(USRs.begin(), USRs.end()), PrevName(PrevName), Context(Context) {
  }

  bool visitSymbolOccurrence(const NamedDecl *ND,
                             ArrayRef<SourceRange> NameRanges) {
    if (USRSet.find(getUSRForDecl(ND)) != USRSet.end()) {
      assert(NameRanges.size() == 1 &&
             "Multiple name pieces are not supported yet!");
      SourceLocation Loc = NameRanges[0].getBegin();
      const SourceManager &SM = Context.getSourceManager();
      // TODO: Deal with macro occurrences correctly.
      if (Loc.isMacroID())
        Loc = SM.getSpellingLoc(Loc);
      checkAndAddLocation(Loc);
    }
    return true;
  }

  // Non-visitors:

  /// Returns a set of unique symbol occurrences. Duplicate or
  /// overlapping occurrences are erroneous and should be reported!
  SymbolOccurrences takeOccurrences() { return std::move(Occurrences); }

private:
  void checkAndAddLocation(SourceLocation Loc) {
    const SourceLocation BeginLoc = Loc;
    const SourceLocation EndLoc = Lexer::getLocForEndOfToken(
        BeginLoc, 0, Context.getSourceManager(), Context.getLangOpts());
    StringRef TokenName =
        Lexer::getSourceText(CharSourceRange::getTokenRange(BeginLoc, EndLoc),
                             Context.getSourceManager(), Context.getLangOpts());
    size_t Offset = TokenName.find(PrevName.getNamePieces()[0]);

    // The token of the source location we find actually has the old
    // name.
    if (Offset != StringRef::npos)
      Occurrences.emplace_back(PrevName, SymbolOccurrence::MatchingSymbol,
                               BeginLoc.getLocWithOffset(Offset));
  }

  const std::set<std::string> USRSet;
  const SymbolName PrevName;
  SymbolOccurrences Occurrences;
  const ASTContext &Context;
};

SourceLocation StartLocationForType(TypeLoc TL) {
  // For elaborated types (e.g. `struct a::A`) we want the portion after the
  // `struct` but including the namespace qualifier, `a::`.
  if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>()) {
    NestedNameSpecifierLoc NestedNameSpecifier =
        ElaboratedTypeLoc.getQualifierLoc();
    if (NestedNameSpecifier.getNestedNameSpecifier())
      return NestedNameSpecifier.getBeginLoc();
    TL = TL.getNextTypeLoc();
  }
  return TL.getBeginLoc();
}

SourceLocation EndLocationForType(TypeLoc TL) {
  // Dig past any namespace or keyword qualifications.
  while (TL.getTypeLocClass() == TypeLoc::Elaborated ||
         TL.getTypeLocClass() == TypeLoc::Qualified)
    TL = TL.getNextTypeLoc();

  // The location for template specializations (e.g. Foo<int>) includes the
  // templated types in its location range.  We want to restrict this to just
  // before the `<` character.
  if (TL.getTypeLocClass() == TypeLoc::TemplateSpecialization) {
    return TL.castAs<TemplateSpecializationTypeLoc>()
        .getLAngleLoc()
        .getLocWithOffset(-1);
  }
  return TL.getEndLoc();
}

NestedNameSpecifier *GetNestedNameForType(TypeLoc TL) {
  // Dig past any keyword qualifications.
  while (TL.getTypeLocClass() == TypeLoc::Qualified)
    TL = TL.getNextTypeLoc();

  // For elaborated types (e.g. `struct a::A`) we want the portion after the
  // `struct` but including the namespace qualifier, `a::`.
  if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>())
    return ElaboratedTypeLoc.getQualifierLoc().getNestedNameSpecifier();
  return nullptr;
}

// Find all locations identified by the given USRs for rename.
//
// This class will traverse the AST and find every AST node whose USR is in the
// given USRs' set.
class RenameLocFinder : public RecursiveASTVisitor<RenameLocFinder> {
public:
  RenameLocFinder(llvm::ArrayRef<std::string> USRs, ASTContext &Context)
      : USRSet(USRs.begin(), USRs.end()), Context(Context) {}

  // A structure records all information of a symbol reference being renamed.
  // We try to add as few prefix qualifiers as possible.
  struct RenameInfo {
    // The begin location of a symbol being renamed.
    SourceLocation Begin;
    // The end location of a symbol being renamed.
    SourceLocation End;
    // The declaration of a symbol being renamed (can be nullptr).
    const NamedDecl *FromDecl;
    // The declaration in which the nested name is contained (can be nullptr).
    const Decl *Context;
    // The nested name being replaced (can be nullptr).
    const NestedNameSpecifier *Specifier;
    // Determine whether the prefix qualifiers of the NewName should be ignored.
    // Normally, we set it to true for the symbol declaration and definition to
    // avoid adding prefix qualifiers.
    // For example, if it is true and NewName is "a::b::foo", then the symbol
    // occurrence which the RenameInfo points to will be renamed to "foo".
    bool IgnorePrefixQualifers;
  };

  bool VisitNamedDecl(const NamedDecl *Decl) {
    // UsingDecl has been handled in other place.
    if (llvm::isa<UsingDecl>(Decl))
      return true;

    // DestructorDecl has been handled in Typeloc.
    if (llvm::isa<CXXDestructorDecl>(Decl))
      return true;

    if (Decl->isImplicit())
      return true;

    if (isInUSRSet(Decl)) {
      // For the case of renaming an alias template, we actually rename the
      // underlying alias declaration of the template.
      if (const auto* TAT = dyn_cast<TypeAliasTemplateDecl>(Decl))
        Decl = TAT->getTemplatedDecl();

      auto StartLoc = Decl->getLocation();
      auto EndLoc = StartLoc;
      if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
        RenameInfo Info = {StartLoc,
                           EndLoc,
                           /*FromDecl=*/nullptr,
                           /*Context=*/nullptr,
                           /*Specifier=*/nullptr,
                           /*IgnorePrefixQualifers=*/true};
        RenameInfos.push_back(Info);
      }
    }
    return true;
  }

  bool VisitMemberExpr(const MemberExpr *Expr) {
    const NamedDecl *Decl = Expr->getFoundDecl();
    auto StartLoc = Expr->getMemberLoc();
    auto EndLoc = Expr->getMemberLoc();
    if (isInUSRSet(Decl)) {
      RenameInfos.push_back({StartLoc, EndLoc,
                            /*FromDecl=*/nullptr,
                            /*Context=*/nullptr,
                            /*Specifier=*/nullptr,
                            /*IgnorePrefixQualifiers=*/true});
    }
    return true;
  }

  bool VisitCXXConstructorDecl(const CXXConstructorDecl *CD) {
    // Fix the constructor initializer when renaming class members.
    for (const auto *Initializer : CD->inits()) {
      // Ignore implicit initializers.
      if (!Initializer->isWritten())
        continue;

      if (const FieldDecl *FD = Initializer->getMember()) {
        if (isInUSRSet(FD)) {
          auto Loc = Initializer->getSourceLocation();
          RenameInfos.push_back({Loc, Loc,
                                 /*FromDecl=*/nullptr,
                                 /*Context=*/nullptr,
                                 /*Specifier=*/nullptr,
                                 /*IgnorePrefixQualifiers=*/true});
        }
      }
    }
    return true;
  }

  bool VisitDeclRefExpr(const DeclRefExpr *Expr) {
    const NamedDecl *Decl = Expr->getFoundDecl();
    // Get the underlying declaration of the shadow declaration introduced by a
    // using declaration.
    if (auto *UsingShadow = llvm::dyn_cast<UsingShadowDecl>(Decl)) {
      Decl = UsingShadow->getTargetDecl();
    }

    auto StartLoc = Expr->getBeginLoc();
    // For template function call expressions like `foo<int>()`, we want to
    // restrict the end of location to just before the `<` character.
    SourceLocation EndLoc = Expr->hasExplicitTemplateArgs()
                                ? Expr->getLAngleLoc().getLocWithOffset(-1)
                                : Expr->getEndLoc();

    if (const auto *MD = llvm::dyn_cast<CXXMethodDecl>(Decl)) {
      if (isInUSRSet(MD)) {
        // Handle renaming static template class methods, we only rename the
        // name without prefix qualifiers and restrict the source range to the
        // name.
        RenameInfos.push_back({EndLoc, EndLoc,
                               /*FromDecl=*/nullptr,
                               /*Context=*/nullptr,
                               /*Specifier=*/nullptr,
                               /*IgnorePrefixQualifiers=*/true});
        return true;
      }
    }

    // In case of renaming an enum declaration, we have to explicitly handle
    // unscoped enum constants referenced in expressions (e.g.
    // "auto r = ns1::ns2::Green" where Green is an enum constant of an unscoped
    // enum decl "ns1::ns2::Color") as these enum constants cannot be caught by
    // TypeLoc.
    if (const auto *T = llvm::dyn_cast<EnumConstantDecl>(Decl)) {
      // FIXME: Handle the enum constant without prefix qualifiers (`a = Green`)
      // when renaming an unscoped enum declaration with a new namespace.
      if (!Expr->hasQualifier())
        return true;

      if (const auto *ED =
              llvm::dyn_cast_or_null<EnumDecl>(getClosestAncestorDecl(*T))) {
        if (ED->isScoped())
          return true;
        Decl = ED;
      }
      // The current fix would qualify "ns1::ns2::Green" as
      // "ns1::ns2::Color::Green".
      //
      // Get the EndLoc of the replacement by moving 1 character backward (
      // to exclude the last '::').
      //
      //    ns1::ns2::Green;
      //    ^      ^^
      // BeginLoc  |EndLoc of the qualifier
      //           new EndLoc
      EndLoc = Expr->getQualifierLoc().getEndLoc().getLocWithOffset(-1);
      assert(EndLoc.isValid() &&
             "The enum constant should have prefix qualifers.");
    }
    if (isInUSRSet(Decl) &&
        IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
      RenameInfo Info = {StartLoc,
                         EndLoc,
                         Decl,
                         getClosestAncestorDecl(*Expr),
                         Expr->getQualifier(),
                         /*IgnorePrefixQualifers=*/false};
      RenameInfos.push_back(Info);
    }

    return true;
  }

  bool VisitUsingDecl(const UsingDecl *Using) {
    for (const auto *UsingShadow : Using->shadows()) {
      if (isInUSRSet(UsingShadow->getTargetDecl())) {
        UsingDecls.push_back(Using);
        break;
      }
    }
    return true;
  }

  bool VisitNestedNameSpecifierLocations(NestedNameSpecifierLoc NestedLoc) {
    if (!NestedLoc.getNestedNameSpecifier()->getAsType())
      return true;

    if (const auto *TargetDecl =
            getSupportedDeclFromTypeLoc(NestedLoc.getTypeLoc())) {
      if (isInUSRSet(TargetDecl)) {
        RenameInfo Info = {NestedLoc.getBeginLoc(),
                           EndLocationForType(NestedLoc.getTypeLoc()),
                           TargetDecl,
                           getClosestAncestorDecl(NestedLoc),
                           NestedLoc.getNestedNameSpecifier()->getPrefix(),
                           /*IgnorePrefixQualifers=*/false};
        RenameInfos.push_back(Info);
      }
    }
    return true;
  }

  bool VisitTypeLoc(TypeLoc Loc) {
    auto Parents = Context.getParents(Loc);
    TypeLoc ParentTypeLoc;
    if (!Parents.empty()) {
      // Handle cases of nested name specificier locations.
      //
      // The VisitNestedNameSpecifierLoc interface is not impelmented in
      // RecursiveASTVisitor, we have to handle it explicitly.
      if (const auto *NSL = Parents[0].get<NestedNameSpecifierLoc>()) {
        VisitNestedNameSpecifierLocations(*NSL);
        return true;
      }

      if (const auto *TL = Parents[0].get<TypeLoc>())
        ParentTypeLoc = *TL;
    }

    // Handle the outermost TypeLoc which is directly linked to the interesting
    // declaration and don't handle nested name specifier locations.
    if (const auto *TargetDecl = getSupportedDeclFromTypeLoc(Loc)) {
      if (isInUSRSet(TargetDecl)) {
        // Only handle the outermost typeLoc.
        //
        // For a type like "a::Foo", there will be two typeLocs for it.
        // One ElaboratedType, the other is RecordType:
        //
        //   ElaboratedType 0x33b9390 'a::Foo' sugar
        //   `-RecordType 0x338fef0 'class a::Foo'
        //     `-CXXRecord 0x338fe58 'Foo'
        //
        // Skip if this is an inner typeLoc.
        if (!ParentTypeLoc.isNull() &&
            isInUSRSet(getSupportedDeclFromTypeLoc(ParentTypeLoc)))
          return true;

        auto StartLoc = StartLocationForType(Loc);
        auto EndLoc = EndLocationForType(Loc);
        if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
          RenameInfo Info = {StartLoc,
                             EndLoc,
                             TargetDecl,
                             getClosestAncestorDecl(Loc),
                             GetNestedNameForType(Loc),
                             /*IgnorePrefixQualifers=*/false};
          RenameInfos.push_back(Info);
        }
        return true;
      }
    }

    // Handle specific template class specialiation cases.
    if (const auto *TemplateSpecType =
            dyn_cast<TemplateSpecializationType>(Loc.getType())) {
      TypeLoc TargetLoc = Loc;
      if (!ParentTypeLoc.isNull()) {
        if (llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
          TargetLoc = ParentTypeLoc;
      }

      if (isInUSRSet(TemplateSpecType->getTemplateName().getAsTemplateDecl())) {
        TypeLoc TargetLoc = Loc;
        // FIXME: Find a better way to handle this case.
        // For the qualified template class specification type like
        // "ns::Foo<int>" in "ns::Foo<int>& f();", we want the parent typeLoc
        // (ElaboratedType) of the TemplateSpecializationType in order to
        // catch the prefix qualifiers "ns::".
        if (!ParentTypeLoc.isNull() &&
            llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
          TargetLoc = ParentTypeLoc;

        auto StartLoc = StartLocationForType(TargetLoc);
        auto EndLoc = EndLocationForType(TargetLoc);
        if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
          RenameInfo Info = {
              StartLoc,
              EndLoc,
              TemplateSpecType->getTemplateName().getAsTemplateDecl(),
              getClosestAncestorDecl(
                  ast_type_traits::DynTypedNode::create(TargetLoc)),
              GetNestedNameForType(TargetLoc),
              /*IgnorePrefixQualifers=*/false};
          RenameInfos.push_back(Info);
        }
      }
    }
    return true;
  }

  // Returns a list of RenameInfo.
  const std::vector<RenameInfo> &getRenameInfos() const { return RenameInfos; }

  // Returns a list of using declarations which are needed to update.
  const std::vector<const UsingDecl *> &getUsingDecls() const {
    return UsingDecls;
  }

private:
  // Get the supported declaration from a given typeLoc. If the declaration type
  // is not supported, returns nullptr.
  const NamedDecl *getSupportedDeclFromTypeLoc(TypeLoc Loc) {
    if (const auto* TT = Loc.getType()->getAs<clang::TypedefType>())
      return TT->getDecl();
    if (const auto *RD = Loc.getType()->getAsCXXRecordDecl())
      return RD;
    if (const auto *ED =
            llvm::dyn_cast_or_null<EnumDecl>(Loc.getType()->getAsTagDecl()))
      return ED;
    return nullptr;
  }

  // Get the closest ancester which is a declaration of a given AST node.
  template <typename ASTNodeType>
  const Decl *getClosestAncestorDecl(const ASTNodeType &Node) {
    auto Parents = Context.getParents(Node);
    // FIXME: figure out how to handle it when there are multiple parents.
    if (Parents.size() != 1)
      return nullptr;
    if (ast_type_traits::ASTNodeKind::getFromNodeKind<Decl>().isBaseOf(
            Parents[0].getNodeKind()))
      return Parents[0].template get<Decl>();
    return getClosestAncestorDecl(Parents[0]);
  }

  // Get the parent typeLoc of a given typeLoc. If there is no such parent,
  // return nullptr.
  const TypeLoc *getParentTypeLoc(TypeLoc Loc) const {
    auto Parents = Context.getParents(Loc);
    // FIXME: figure out how to handle it when there are multiple parents.
    if (Parents.size() != 1)
      return nullptr;
    return Parents[0].get<TypeLoc>();
  }

  // Check whether the USR of a given Decl is in the USRSet.
  bool isInUSRSet(const Decl *Decl) const {
    auto USR = getUSRForDecl(Decl);
    if (USR.empty())
      return false;
    return llvm::is_contained(USRSet, USR);
  }

  const std::set<std::string> USRSet;
  ASTContext &Context;
  std::vector<RenameInfo> RenameInfos;
  // Record all interested using declarations which contains the using-shadow
  // declarations of the symbol declarations being renamed.
  std::vector<const UsingDecl *> UsingDecls;
};

} // namespace

SymbolOccurrences getOccurrencesOfUSRs(ArrayRef<std::string> USRs,
                                       StringRef PrevName, Decl *Decl) {
  USRLocFindingASTVisitor Visitor(USRs, PrevName, Decl->getASTContext());
  Visitor.TraverseDecl(Decl);
  return Visitor.takeOccurrences();
}

std::vector<tooling::AtomicChange>
createRenameAtomicChanges(llvm::ArrayRef<std::string> USRs,
                          llvm::StringRef NewName, Decl *TranslationUnitDecl) {
  RenameLocFinder Finder(USRs, TranslationUnitDecl->getASTContext());
  Finder.TraverseDecl(TranslationUnitDecl);

  const SourceManager &SM =
      TranslationUnitDecl->getASTContext().getSourceManager();

  std::vector<tooling::AtomicChange> AtomicChanges;
  auto Replace = [&](SourceLocation Start, SourceLocation End,
                     llvm::StringRef Text) {
    tooling::AtomicChange ReplaceChange = tooling::AtomicChange(SM, Start);
    llvm::Error Err = ReplaceChange.replace(
        SM, CharSourceRange::getTokenRange(Start, End), Text);
    if (Err) {
      llvm::errs() << "Failed to add replacement to AtomicChange: "
                   << llvm::toString(std::move(Err)) << "\n";
      return;
    }
    AtomicChanges.push_back(std::move(ReplaceChange));
  };

  for (const auto &RenameInfo : Finder.getRenameInfos()) {
    std::string ReplacedName = NewName.str();
    if (RenameInfo.IgnorePrefixQualifers) {
      // Get the name without prefix qualifiers from NewName.
      size_t LastColonPos = NewName.find_last_of(':');
      if (LastColonPos != std::string::npos)
        ReplacedName = NewName.substr(LastColonPos + 1);
    } else {
      if (RenameInfo.FromDecl && RenameInfo.Context) {
        if (!llvm::isa<clang::TranslationUnitDecl>(
                RenameInfo.Context->getDeclContext())) {
          ReplacedName = tooling::replaceNestedName(
              RenameInfo.Specifier, RenameInfo.Begin,
              RenameInfo.Context->getDeclContext(), RenameInfo.FromDecl,
              NewName.startswith("::") ? NewName.str()
                                       : ("::" + NewName).str());
        } else {
          // This fixes the case where type `T` is a parameter inside a function
          // type (e.g. `std::function<void(T)>`) and the DeclContext of `T`
          // becomes the translation unit. As a workaround, we simply use
          // fully-qualified name here for all references whose `DeclContext` is
          // the translation unit and ignore the possible existence of
          // using-decls (in the global scope) that can shorten the replaced
          // name.
          llvm::StringRef ActualName = Lexer::getSourceText(
              CharSourceRange::getTokenRange(
                  SourceRange(RenameInfo.Begin, RenameInfo.End)),
              SM, TranslationUnitDecl->getASTContext().getLangOpts());
          // Add the leading "::" back if the name written in the code contains
          // it.
          if (ActualName.startswith("::") && !NewName.startswith("::")) {
            ReplacedName = "::" + NewName.str();
          }
        }
      }
      // If the NewName contains leading "::", add it back.
      if (NewName.startswith("::") && NewName.substr(2) == ReplacedName)
        ReplacedName = NewName.str();
    }
    Replace(RenameInfo.Begin, RenameInfo.End, ReplacedName);
  }

  // Hanlde using declarations explicitly as "using a::Foo" don't trigger
  // typeLoc for "a::Foo".
  for (const auto *Using : Finder.getUsingDecls())
    Replace(Using->getBeginLoc(), Using->getEndLoc(), "using " + NewName.str());

  return AtomicChanges;
}

} // end namespace tooling
} // end namespace clang