1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
| //===- WorkList.cpp - Analyzer work-list implementation--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines different worklist implementations for the static analyzer.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include <deque>
#include <vector>
using namespace clang;
using namespace ento;
#define DEBUG_TYPE "WorkList"
STATISTIC(MaxQueueSize, "Maximum size of the worklist");
STATISTIC(MaxReachableSize, "Maximum size of auxiliary worklist set");
//===----------------------------------------------------------------------===//
// Worklist classes for exploration of reachable states.
//===----------------------------------------------------------------------===//
namespace {
class DFS : public WorkList {
SmallVector<WorkListUnit, 20> Stack;
public:
bool hasWork() const override {
return !Stack.empty();
}
void enqueue(const WorkListUnit& U) override {
Stack.push_back(U);
}
WorkListUnit dequeue() override {
assert(!Stack.empty());
const WorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
};
class BFS : public WorkList {
std::deque<WorkListUnit> Queue;
public:
bool hasWork() const override {
return !Queue.empty();
}
void enqueue(const WorkListUnit& U) override {
Queue.push_back(U);
}
WorkListUnit dequeue() override {
WorkListUnit U = Queue.front();
Queue.pop_front();
return U;
}
};
} // namespace
// Place the dstor for WorkList here because it contains virtual member
// functions, and we the code for the dstor generated in one compilation unit.
WorkList::~WorkList() = default;
std::unique_ptr<WorkList> WorkList::makeDFS() {
return std::make_unique<DFS>();
}
std::unique_ptr<WorkList> WorkList::makeBFS() {
return std::make_unique<BFS>();
}
namespace {
class BFSBlockDFSContents : public WorkList {
std::deque<WorkListUnit> Queue;
SmallVector<WorkListUnit, 20> Stack;
public:
bool hasWork() const override {
return !Queue.empty() || !Stack.empty();
}
void enqueue(const WorkListUnit& U) override {
if (U.getNode()->getLocation().getAs<BlockEntrance>())
Queue.push_front(U);
else
Stack.push_back(U);
}
WorkListUnit dequeue() override {
// Process all basic blocks to completion.
if (!Stack.empty()) {
const WorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
assert(!Queue.empty());
// Don't use const reference. The subsequent pop_back() might make it
// unsafe.
WorkListUnit U = Queue.front();
Queue.pop_front();
return U;
}
};
} // namespace
std::unique_ptr<WorkList> WorkList::makeBFSBlockDFSContents() {
return std::make_unique<BFSBlockDFSContents>();
}
namespace {
class UnexploredFirstStack : public WorkList {
/// Stack of nodes known to have statements we have not traversed yet.
SmallVector<WorkListUnit, 20> StackUnexplored;
/// Stack of all other nodes.
SmallVector<WorkListUnit, 20> StackOthers;
using BlockID = unsigned;
using LocIdentifier = std::pair<BlockID, const StackFrameContext *>;
llvm::DenseSet<LocIdentifier> Reachable;
public:
bool hasWork() const override {
return !(StackUnexplored.empty() && StackOthers.empty());
}
void enqueue(const WorkListUnit &U) override {
const ExplodedNode *N = U.getNode();
auto BE = N->getLocation().getAs<BlockEntrance>();
if (!BE) {
// Assume the choice of the order of the preceding block entrance was
// correct.
StackUnexplored.push_back(U);
} else {
LocIdentifier LocId = std::make_pair(
BE->getBlock()->getBlockID(),
N->getLocationContext()->getStackFrame());
auto InsertInfo = Reachable.insert(LocId);
if (InsertInfo.second) {
StackUnexplored.push_back(U);
} else {
StackOthers.push_back(U);
}
}
MaxReachableSize.updateMax(Reachable.size());
MaxQueueSize.updateMax(StackUnexplored.size() + StackOthers.size());
}
WorkListUnit dequeue() override {
if (!StackUnexplored.empty()) {
WorkListUnit &U = StackUnexplored.back();
StackUnexplored.pop_back();
return U;
} else {
WorkListUnit &U = StackOthers.back();
StackOthers.pop_back();
return U;
}
}
};
} // namespace
std::unique_ptr<WorkList> WorkList::makeUnexploredFirst() {
return std::make_unique<UnexploredFirstStack>();
}
namespace {
class UnexploredFirstPriorityQueue : public WorkList {
using BlockID = unsigned;
using LocIdentifier = std::pair<BlockID, const StackFrameContext *>;
// How many times each location was visited.
// Is signed because we negate it later in order to have a reversed
// comparison.
using VisitedTimesMap = llvm::DenseMap<LocIdentifier, int>;
// Compare by number of times the location was visited first (negated
// to prefer less often visited locations), then by insertion time (prefer
// expanding nodes inserted sooner first).
using QueuePriority = std::pair<int, unsigned long>;
using QueueItem = std::pair<WorkListUnit, QueuePriority>;
struct ExplorationComparator {
bool operator() (const QueueItem &LHS, const QueueItem &RHS) {
return LHS.second < RHS.second;
}
};
// Number of inserted nodes, used to emulate DFS ordering in the priority
// queue when insertions are equal.
unsigned long Counter = 0;
// Number of times a current location was reached.
VisitedTimesMap NumReached;
// The top item is the largest one.
llvm::PriorityQueue<QueueItem, std::vector<QueueItem>, ExplorationComparator>
queue;
public:
bool hasWork() const override {
return !queue.empty();
}
void enqueue(const WorkListUnit &U) override {
const ExplodedNode *N = U.getNode();
unsigned NumVisited = 0;
if (auto BE = N->getLocation().getAs<BlockEntrance>()) {
LocIdentifier LocId = std::make_pair(
BE->getBlock()->getBlockID(),
N->getLocationContext()->getStackFrame());
NumVisited = NumReached[LocId]++;
}
queue.push(std::make_pair(U, std::make_pair(-NumVisited, ++Counter)));
}
WorkListUnit dequeue() override {
QueueItem U = queue.top();
queue.pop();
return U.first;
}
};
} // namespace
std::unique_ptr<WorkList> WorkList::makeUnexploredFirstPriorityQueue() {
return std::make_unique<UnexploredFirstPriorityQueue>();
}
namespace {
class UnexploredFirstPriorityLocationQueue : public WorkList {
using LocIdentifier = const CFGBlock *;
// How many times each location was visited.
// Is signed because we negate it later in order to have a reversed
// comparison.
using VisitedTimesMap = llvm::DenseMap<LocIdentifier, int>;
// Compare by number of times the location was visited first (negated
// to prefer less often visited locations), then by insertion time (prefer
// expanding nodes inserted sooner first).
using QueuePriority = std::pair<int, unsigned long>;
using QueueItem = std::pair<WorkListUnit, QueuePriority>;
struct ExplorationComparator {
bool operator() (const QueueItem &LHS, const QueueItem &RHS) {
return LHS.second < RHS.second;
}
};
// Number of inserted nodes, used to emulate DFS ordering in the priority
// queue when insertions are equal.
unsigned long Counter = 0;
// Number of times a current location was reached.
VisitedTimesMap NumReached;
// The top item is the largest one.
llvm::PriorityQueue<QueueItem, std::vector<QueueItem>, ExplorationComparator>
queue;
public:
bool hasWork() const override {
return !queue.empty();
}
void enqueue(const WorkListUnit &U) override {
const ExplodedNode *N = U.getNode();
unsigned NumVisited = 0;
if (auto BE = N->getLocation().getAs<BlockEntrance>())
NumVisited = NumReached[BE->getBlock()]++;
queue.push(std::make_pair(U, std::make_pair(-NumVisited, ++Counter)));
}
WorkListUnit dequeue() override {
QueueItem U = queue.top();
queue.pop();
return U.first;
}
};
}
std::unique_ptr<WorkList> WorkList::makeUnexploredFirstPriorityLocationQueue() {
return std::make_unique<UnexploredFirstPriorityLocationQueue>();
}
|