reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LowerSwitch transformation rewrites switch instructions with a sequence
// of branches, which allows targets to get away with not implementing the
// switch instruction until it is convenient.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "lower-switch"

namespace {

  struct IntRange {
    int64_t Low, High;
  };

} // end anonymous namespace

// Return true iff R is covered by Ranges.
static bool IsInRanges(const IntRange &R,
                       const std::vector<IntRange> &Ranges) {
  // Note: Ranges must be sorted, non-overlapping and non-adjacent.

  // Find the first range whose High field is >= R.High,
  // then check if the Low field is <= R.Low. If so, we
  // have a Range that covers R.
  auto I = llvm::lower_bound(
      Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
  return I != Ranges.end() && I->Low <= R.Low;
}

namespace {

  /// Replace all SwitchInst instructions with chained branch instructions.
  class LowerSwitch : public FunctionPass {
  public:
    // Pass identification, replacement for typeid
    static char ID;

    LowerSwitch() : FunctionPass(ID) {
      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LazyValueInfoWrapperPass>();
    }

    struct CaseRange {
      ConstantInt* Low;
      ConstantInt* High;
      BasicBlock* BB;

      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
          : Low(low), High(high), BB(bb) {}
    };

    using CaseVector = std::vector<CaseRange>;
    using CaseItr = std::vector<CaseRange>::iterator;

  private:
    void processSwitchInst(SwitchInst *SI,
                           SmallPtrSetImpl<BasicBlock *> &DeleteList,
                           AssumptionCache *AC, LazyValueInfo *LVI);

    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
                              ConstantInt *LowerBound, ConstantInt *UpperBound,
                              Value *Val, BasicBlock *Predecessor,
                              BasicBlock *OrigBlock, BasicBlock *Default,
                              const std::vector<IntRange> &UnreachableRanges);
    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val,
                             ConstantInt *LowerBound, ConstantInt *UpperBound,
                             BasicBlock *OrigBlock, BasicBlock *Default);
    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
  };

  /// The comparison function for sorting the switch case values in the vector.
  /// WARNING: Case ranges should be disjoint!
  struct CaseCmp {
    bool operator()(const LowerSwitch::CaseRange& C1,
                    const LowerSwitch::CaseRange& C2) {
      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
      return CI1->getValue().slt(CI2->getValue());
    }
  };

} // end anonymous namespace

char LowerSwitch::ID = 0;

// Publicly exposed interface to pass...
char &llvm::LowerSwitchID = LowerSwitch::ID;

INITIALIZE_PASS_BEGIN(LowerSwitch, "lowerswitch",
                      "Lower SwitchInst's to branches", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(LowerSwitch, "lowerswitch",
                    "Lower SwitchInst's to branches", false, false)

// createLowerSwitchPass - Interface to this file...
FunctionPass *llvm::createLowerSwitchPass() {
  return new LowerSwitch();
}

bool LowerSwitch::runOnFunction(Function &F) {
  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
  AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
  // Prevent LazyValueInfo from using the DominatorTree as LowerSwitch does not
  // preserve it and it becomes stale (when available) pretty much immediately.
  // Currently the DominatorTree is only used by LowerSwitch indirectly via LVI
  // and computeKnownBits to refine isValidAssumeForContext's results. Given
  // that the latter can handle some of the simple cases w/o a DominatorTree,
  // it's easier to refrain from using the tree than to keep it up to date.
  LVI->disableDT();

  bool Changed = false;
  SmallPtrSet<BasicBlock*, 8> DeleteList;

  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks

    // If the block is a dead Default block that will be deleted later, don't
    // waste time processing it.
    if (DeleteList.count(Cur))
      continue;

    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
      Changed = true;
      processSwitchInst(SI, DeleteList, AC, LVI);
    }
  }

  for (BasicBlock* BB: DeleteList) {
    LVI->eraseBlock(BB);
    DeleteDeadBlock(BB);
  }

  return Changed;
}

/// Used for debugging purposes.
LLVM_ATTRIBUTE_USED
static raw_ostream &operator<<(raw_ostream &O,
                               const LowerSwitch::CaseVector &C) {
  O << "[";

  for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end();
       B != E;) {
    O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
    if (++B != E)
      O << ", ";
  }

  return O << "]";
}

/// Update the first occurrence of the "switch statement" BB in the PHI
/// node with the "new" BB. The other occurrences will:
///
/// 1) Be updated by subsequent calls to this function.  Switch statements may
/// have more than one outcoming edge into the same BB if they all have the same
/// value. When the switch statement is converted these incoming edges are now
/// coming from multiple BBs.
/// 2) Removed if subsequent incoming values now share the same case, i.e.,
/// multiple outcome edges are condensed into one. This is necessary to keep the
/// number of phi values equal to the number of branches to SuccBB.
static void
fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
        const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
  for (BasicBlock::iterator I = SuccBB->begin(),
                            IE = SuccBB->getFirstNonPHI()->getIterator();
       I != IE; ++I) {
    PHINode *PN = cast<PHINode>(I);

    // Only update the first occurrence.
    unsigned Idx = 0, E = PN->getNumIncomingValues();
    unsigned LocalNumMergedCases = NumMergedCases;
    for (; Idx != E; ++Idx) {
      if (PN->getIncomingBlock(Idx) == OrigBB) {
        PN->setIncomingBlock(Idx, NewBB);
        break;
      }
    }

    // Remove additional occurrences coming from condensed cases and keep the
    // number of incoming values equal to the number of branches to SuccBB.
    SmallVector<unsigned, 8> Indices;
    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
      if (PN->getIncomingBlock(Idx) == OrigBB) {
        Indices.push_back(Idx);
        LocalNumMergedCases--;
      }
    // Remove incoming values in the reverse order to prevent invalidating
    // *successive* index.
    for (unsigned III : llvm::reverse(Indices))
      PN->removeIncomingValue(III);
  }
}

/// Convert the switch statement into a binary lookup of the case values.
/// The function recursively builds this tree. LowerBound and UpperBound are
/// used to keep track of the bounds for Val that have already been checked by
/// a block emitted by one of the previous calls to switchConvert in the call
/// stack.
BasicBlock *
LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
                           ConstantInt *UpperBound, Value *Val,
                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
                           BasicBlock *Default,
                           const std::vector<IntRange> &UnreachableRanges) {
  assert(LowerBound && UpperBound && "Bounds must be initialized");
  unsigned Size = End - Begin;

  if (Size == 1) {
    // Check if the Case Range is perfectly squeezed in between
    // already checked Upper and Lower bounds. If it is then we can avoid
    // emitting the code that checks if the value actually falls in the range
    // because the bounds already tell us so.
    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
      unsigned NumMergedCases = 0;
      NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
      return Begin->BB;
    }
    return newLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
                        Default);
  }

  unsigned Mid = Size / 2;
  std::vector<CaseRange> LHS(Begin, Begin + Mid);
  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
  std::vector<CaseRange> RHS(Begin + Mid, End);
  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");

  CaseRange &Pivot = *(Begin + Mid);
  LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
                    << Pivot.High->getValue() << "]\n");

  // NewLowerBound here should never be the integer minimal value.
  // This is because it is computed from a case range that is never
  // the smallest, so there is always a case range that has at least
  // a smaller value.
  ConstantInt *NewLowerBound = Pivot.Low;

  // Because NewLowerBound is never the smallest representable integer
  // it is safe here to subtract one.
  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
                                                NewLowerBound->getValue() - 1);

  if (!UnreachableRanges.empty()) {
    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
    IntRange Gap = { GapLow, GapHigh };
    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
      NewUpperBound = LHS.back().High;
  }

  LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
                    << NewUpperBound->getSExtValue() << "]\n"
                    << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
                    << ", " << UpperBound->getSExtValue() << "]\n");

  // Create a new node that checks if the value is < pivot. Go to the
  // left branch if it is and right branch if not.
  Function* F = OrigBlock->getParent();
  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");

  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
                                Val, Pivot.Low, "Pivot");

  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
                                      NewUpperBound, Val, NewNode, OrigBlock,
                                      Default, UnreachableRanges);
  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
                                      UpperBound, Val, NewNode, OrigBlock,
                                      Default, UnreachableRanges);

  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
  NewNode->getInstList().push_back(Comp);

  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
  return NewNode;
}

/// Create a new leaf block for the binary lookup tree. It checks if the
/// switch's value == the case's value. If not, then it jumps to the default
/// branch. At this point in the tree, the value can't be another valid case
/// value, so the jump to the "default" branch is warranted.
BasicBlock *LowerSwitch::newLeafBlock(CaseRange &Leaf, Value *Val,
                                      ConstantInt *LowerBound,
                                      ConstantInt *UpperBound,
                                      BasicBlock *OrigBlock,
                                      BasicBlock *Default) {
  Function* F = OrigBlock->getParent();
  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);

  // Emit comparison
  ICmpInst* Comp = nullptr;
  if (Leaf.Low == Leaf.High) {
    // Make the seteq instruction...
    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
                        Leaf.Low, "SwitchLeaf");
  } else {
    // Make range comparison
    if (Leaf.Low == LowerBound) {
      // Val >= Min && Val <= Hi --> Val <= Hi
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
                          "SwitchLeaf");
    } else if (Leaf.High == UpperBound) {
      // Val <= Max && Val >= Lo --> Val >= Lo
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
                          "SwitchLeaf");
    } else if (Leaf.Low->isZero()) {
      // Val >= 0 && Val <= Hi --> Val <=u Hi
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
                          "SwitchLeaf");
    } else {
      // Emit V-Lo <=u Hi-Lo
      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
                                                   Val->getName()+".off",
                                                   NewLeaf);
      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
                          "SwitchLeaf");
    }
  }

  // Make the conditional branch...
  BasicBlock* Succ = Leaf.BB;
  BranchInst::Create(Succ, Default, Comp, NewLeaf);

  // If there were any PHI nodes in this successor, rewrite one entry
  // from OrigBlock to come from NewLeaf.
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode* PN = cast<PHINode>(I);
    // Remove all but one incoming entries from the cluster
    uint64_t Range = Leaf.High->getSExtValue() -
                     Leaf.Low->getSExtValue();
    for (uint64_t j = 0; j < Range; ++j) {
      PN->removeIncomingValue(OrigBlock);
    }

    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
  }

  return NewLeaf;
}

/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
/// \post \p Cases wouldn't contain references to \p SI's default BB.
/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
  unsigned NumSimpleCases = 0;

  // Start with "simple" cases
  for (auto Case : SI->cases()) {
    if (Case.getCaseSuccessor() == SI->getDefaultDest())
      continue;
    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
                              Case.getCaseSuccessor()));
    ++NumSimpleCases;
  }

  llvm::sort(Cases, CaseCmp());

  // Merge case into clusters
  if (Cases.size() >= 2) {
    CaseItr I = Cases.begin();
    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
      int64_t nextValue = J->Low->getSExtValue();
      int64_t currentValue = I->High->getSExtValue();
      BasicBlock* nextBB = J->BB;
      BasicBlock* currentBB = I->BB;

      // If the two neighboring cases go to the same destination, merge them
      // into a single case.
      assert(nextValue > currentValue && "Cases should be strictly ascending");
      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
        I->High = J->High;
        // FIXME: Combine branch weights.
      } else if (++I != J) {
        *I = *J;
      }
    }
    Cases.erase(std::next(I), Cases.end());
  }

  return NumSimpleCases;
}

/// Replace the specified switch instruction with a sequence of chained if-then
/// insts in a balanced binary search.
void LowerSwitch::processSwitchInst(SwitchInst *SI,
                                    SmallPtrSetImpl<BasicBlock *> &DeleteList,
                                    AssumptionCache *AC, LazyValueInfo *LVI) {
  BasicBlock *OrigBlock = SI->getParent();
  Function *F = OrigBlock->getParent();
  Value *Val = SI->getCondition();  // The value we are switching on...
  BasicBlock* Default = SI->getDefaultDest();

  // Don't handle unreachable blocks. If there are successors with phis, this
  // would leave them behind with missing predecessors.
  if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
      OrigBlock->getSinglePredecessor() == OrigBlock) {
    DeleteList.insert(OrigBlock);
    return;
  }

  // Prepare cases vector.
  CaseVector Cases;
  const unsigned NumSimpleCases = Clusterify(Cases, SI);
  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
                    << ". Total non-default cases: " << NumSimpleCases
                    << "\nCase clusters: " << Cases << "\n");

  // If there is only the default destination, just branch.
  if (Cases.empty()) {
    BranchInst::Create(Default, OrigBlock);
    // Remove all the references from Default's PHIs to OrigBlock, but one.
    fixPhis(Default, OrigBlock, OrigBlock);
    SI->eraseFromParent();
    return;
  }

  ConstantInt *LowerBound = nullptr;
  ConstantInt *UpperBound = nullptr;
  bool DefaultIsUnreachableFromSwitch = false;

  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
    // Make the bounds tightly fitted around the case value range, because we
    // know that the value passed to the switch must be exactly one of the case
    // values.
    LowerBound = Cases.front().Low;
    UpperBound = Cases.back().High;
    DefaultIsUnreachableFromSwitch = true;
  } else {
    // Constraining the range of the value being switched over helps eliminating
    // unreachable BBs and minimizing the number of `add` instructions
    // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
    // LowerSwitch isn't as good, and also much more expensive in terms of
    // compile time for the following reasons:
    // 1. it processes many kinds of instructions, not just switches;
    // 2. even if limited to icmp instructions only, it will have to process
    //    roughly C icmp's per switch, where C is the number of cases in the
    //    switch, while LowerSwitch only needs to call LVI once per switch.
    const DataLayout &DL = F->getParent()->getDataLayout();
    KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
    // TODO Shouldn't this create a signed range?
    ConstantRange KnownBitsRange =
        ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
    const ConstantRange LVIRange = LVI->getConstantRange(Val, OrigBlock, SI);
    ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
    // We delegate removal of unreachable non-default cases to other passes. In
    // the unlikely event that some of them survived, we just conservatively
    // maintain the invariant that all the cases lie between the bounds. This
    // may, however, still render the default case effectively unreachable.
    APInt Low = Cases.front().Low->getValue();
    APInt High = Cases.back().High->getValue();
    APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
    APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);

    LowerBound = ConstantInt::get(SI->getContext(), Min);
    UpperBound = ConstantInt::get(SI->getContext(), Max);
    DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
  }

  std::vector<IntRange> UnreachableRanges;

  if (DefaultIsUnreachableFromSwitch) {
    DenseMap<BasicBlock *, unsigned> Popularity;
    unsigned MaxPop = 0;
    BasicBlock *PopSucc = nullptr;

    IntRange R = {std::numeric_limits<int64_t>::min(),
                  std::numeric_limits<int64_t>::max()};
    UnreachableRanges.push_back(R);
    for (const auto &I : Cases) {
      int64_t Low = I.Low->getSExtValue();
      int64_t High = I.High->getSExtValue();

      IntRange &LastRange = UnreachableRanges.back();
      if (LastRange.Low == Low) {
        // There is nothing left of the previous range.
        UnreachableRanges.pop_back();
      } else {
        // Terminate the previous range.
        assert(Low > LastRange.Low);
        LastRange.High = Low - 1;
      }
      if (High != std::numeric_limits<int64_t>::max()) {
        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
        UnreachableRanges.push_back(R);
      }

      // Count popularity.
      int64_t N = High - Low + 1;
      unsigned &Pop = Popularity[I.BB];
      if ((Pop += N) > MaxPop) {
        MaxPop = Pop;
        PopSucc = I.BB;
      }
    }
#ifndef NDEBUG
    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
         I != E; ++I) {
      assert(I->Low <= I->High);
      auto Next = I + 1;
      if (Next != E) {
        assert(Next->Low > I->High);
      }
    }
#endif

    // As the default block in the switch is unreachable, update the PHI nodes
    // (remove all of the references to the default block) to reflect this.
    const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
    for (unsigned I = 0; I < NumDefaultEdges; ++I)
      Default->removePredecessor(OrigBlock);

    // Use the most popular block as the new default, reducing the number of
    // cases.
    assert(MaxPop > 0 && PopSucc);
    Default = PopSucc;
    Cases.erase(
        llvm::remove_if(
            Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
        Cases.end());

    // If there are no cases left, just branch.
    if (Cases.empty()) {
      BranchInst::Create(Default, OrigBlock);
      SI->eraseFromParent();
      // As all the cases have been replaced with a single branch, only keep
      // one entry in the PHI nodes.
      for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
        PopSucc->removePredecessor(OrigBlock);
      return;
    }

    // If the condition was a PHI node with the switch block as a predecessor
    // removing predecessors may have caused the condition to be erased.
    // Getting the condition value again here protects against that.
    Val = SI->getCondition();
  }

  // Create a new, empty default block so that the new hierarchy of
  // if-then statements go to this and the PHI nodes are happy.
  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
  BranchInst::Create(Default, NewDefault);

  BasicBlock *SwitchBlock =
      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);

  // If there are entries in any PHI nodes for the default edge, make sure
  // to update them as well.
  fixPhis(Default, OrigBlock, NewDefault);

  // Branch to our shiny new if-then stuff...
  BranchInst::Create(SwitchBlock, OrigBlock);

  // We are now done with the switch instruction, delete it.
  BasicBlock *OldDefault = SI->getDefaultDest();
  OrigBlock->getInstList().erase(SI);

  // If the Default block has no more predecessors just add it to DeleteList.
  if (pred_begin(OldDefault) == pred_end(OldDefault))
    DeleteList.insert(OldDefault);
}