reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
//===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the new LLVM's Global Value Numbering pass.
/// GVN partitions values computed by a function into congruence classes.
/// Values ending up in the same congruence class are guaranteed to be the same
/// for every execution of the program. In that respect, congruency is a
/// compile-time approximation of equivalence of values at runtime.
/// The algorithm implemented here uses a sparse formulation and it's based
/// on the ideas described in the paper:
/// "A Sparse Algorithm for Predicated Global Value Numbering" from
/// Karthik Gargi.
///
/// A brief overview of the algorithm: The algorithm is essentially the same as
/// the standard RPO value numbering algorithm (a good reference is the paper
/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
/// The RPO algorithm proceeds, on every iteration, to process every reachable
/// block and every instruction in that block.  This is because the standard RPO
/// algorithm does not track what things have the same value number, it only
/// tracks what the value number of a given operation is (the mapping is
/// operation -> value number).  Thus, when a value number of an operation
/// changes, it must reprocess everything to ensure all uses of a value number
/// get updated properly.  In constrast, the sparse algorithm we use *also*
/// tracks what operations have a given value number (IE it also tracks the
/// reverse mapping from value number -> operations with that value number), so
/// that it only needs to reprocess the instructions that are affected when
/// something's value number changes.  The vast majority of complexity and code
/// in this file is devoted to tracking what value numbers could change for what
/// instructions when various things happen.  The rest of the algorithm is
/// devoted to performing symbolic evaluation, forward propagation, and
/// simplification of operations based on the value numbers deduced so far
///
/// In order to make the GVN mostly-complete, we use a technique derived from
/// "Detection of Redundant Expressions: A Complete and Polynomial-time
/// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
/// based GVN algorithms is related to their inability to detect equivalence
/// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
/// We resolve this issue by generating the equivalent "phi of ops" form for
/// each op of phis we see, in a way that only takes polynomial time to resolve.
///
/// We also do not perform elimination by using any published algorithm.  All
/// published algorithms are O(Instructions). Instead, we use a technique that
/// is O(number of operations with the same value number), enabling us to skip
/// trying to eliminate things that have unique value numbers.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include "llvm/Transforms/Utils/VNCoercion.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::GVNExpression;
using namespace llvm::VNCoercion;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "newgvn"

STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
STATISTIC(NumGVNMaxIterations,
          "Maximum Number of iterations it took to converge GVN");
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
          "Number of avoided sorted leader changes");
STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
STATISTIC(NumGVNPHIOfOpsEliminations,
          "Number of things eliminated using PHI of ops");
DEBUG_COUNTER(VNCounter, "newgvn-vn",
              "Controls which instructions are value numbered");
DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
              "Controls which instructions we create phi of ops for");
// Currently store defining access refinement is too slow due to basicaa being
// egregiously slow.  This flag lets us keep it working while we work on this
// issue.
static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
                                           cl::init(false), cl::Hidden);

/// Currently, the generation "phi of ops" can result in correctness issues.
static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
                                    cl::Hidden);

//===----------------------------------------------------------------------===//
//                                GVN Pass
//===----------------------------------------------------------------------===//

// Anchor methods.
namespace llvm {
namespace GVNExpression {

Expression::~Expression() = default;
BasicExpression::~BasicExpression() = default;
CallExpression::~CallExpression() = default;
LoadExpression::~LoadExpression() = default;
StoreExpression::~StoreExpression() = default;
AggregateValueExpression::~AggregateValueExpression() = default;
PHIExpression::~PHIExpression() = default;

} // end namespace GVNExpression
} // end namespace llvm

namespace {

// Tarjan's SCC finding algorithm with Nuutila's improvements
// SCCIterator is actually fairly complex for the simple thing we want.
// It also wants to hand us SCC's that are unrelated to the phi node we ask
// about, and have us process them there or risk redoing work.
// Graph traits over a filter iterator also doesn't work that well here.
// This SCC finder is specialized to walk use-def chains, and only follows
// instructions,
// not generic values (arguments, etc).
struct TarjanSCC {
  TarjanSCC() : Components(1) {}

  void Start(const Instruction *Start) {
    if (Root.lookup(Start) == 0)
      FindSCC(Start);
  }

  const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
    unsigned ComponentID = ValueToComponent.lookup(V);

    assert(ComponentID > 0 &&
           "Asking for a component for a value we never processed");
    return Components[ComponentID];
  }

private:
  void FindSCC(const Instruction *I) {
    Root[I] = ++DFSNum;
    // Store the DFS Number we had before it possibly gets incremented.
    unsigned int OurDFS = DFSNum;
    for (auto &Op : I->operands()) {
      if (auto *InstOp = dyn_cast<Instruction>(Op)) {
        if (Root.lookup(Op) == 0)
          FindSCC(InstOp);
        if (!InComponent.count(Op))
          Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
      }
    }
    // See if we really were the root of a component, by seeing if we still have
    // our DFSNumber.  If we do, we are the root of the component, and we have
    // completed a component. If we do not, we are not the root of a component,
    // and belong on the component stack.
    if (Root.lookup(I) == OurDFS) {
      unsigned ComponentID = Components.size();
      Components.resize(Components.size() + 1);
      auto &Component = Components.back();
      Component.insert(I);
      LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
      InComponent.insert(I);
      ValueToComponent[I] = ComponentID;
      // Pop a component off the stack and label it.
      while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
        auto *Member = Stack.back();
        LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
        Component.insert(Member);
        InComponent.insert(Member);
        ValueToComponent[Member] = ComponentID;
        Stack.pop_back();
      }
    } else {
      // Part of a component, push to stack
      Stack.push_back(I);
    }
  }

  unsigned int DFSNum = 1;
  SmallPtrSet<const Value *, 8> InComponent;
  DenseMap<const Value *, unsigned int> Root;
  SmallVector<const Value *, 8> Stack;

  // Store the components as vector of ptr sets, because we need the topo order
  // of SCC's, but not individual member order
  SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;

  DenseMap<const Value *, unsigned> ValueToComponent;
};

// Congruence classes represent the set of expressions/instructions
// that are all the same *during some scope in the function*.
// That is, because of the way we perform equality propagation, and
// because of memory value numbering, it is not correct to assume
// you can willy-nilly replace any member with any other at any
// point in the function.
//
// For any Value in the Member set, it is valid to replace any dominated member
// with that Value.
//
// Every congruence class has a leader, and the leader is used to symbolize
// instructions in a canonical way (IE every operand of an instruction that is a
// member of the same congruence class will always be replaced with leader
// during symbolization).  To simplify symbolization, we keep the leader as a
// constant if class can be proved to be a constant value.  Otherwise, the
// leader is the member of the value set with the smallest DFS number.  Each
// congruence class also has a defining expression, though the expression may be
// null.  If it exists, it can be used for forward propagation and reassociation
// of values.

// For memory, we also track a representative MemoryAccess, and a set of memory
// members for MemoryPhis (which have no real instructions). Note that for
// memory, it seems tempting to try to split the memory members into a
// MemoryCongruenceClass or something.  Unfortunately, this does not work
// easily.  The value numbering of a given memory expression depends on the
// leader of the memory congruence class, and the leader of memory congruence
// class depends on the value numbering of a given memory expression.  This
// leads to wasted propagation, and in some cases, missed optimization.  For
// example: If we had value numbered two stores together before, but now do not,
// we move them to a new value congruence class.  This in turn will move at one
// of the memorydefs to a new memory congruence class.  Which in turn, affects
// the value numbering of the stores we just value numbered (because the memory
// congruence class is part of the value number).  So while theoretically
// possible to split them up, it turns out to be *incredibly* complicated to get
// it to work right, because of the interdependency.  While structurally
// slightly messier, it is algorithmically much simpler and faster to do what we
// do here, and track them both at once in the same class.
// Note: The default iterators for this class iterate over values
class CongruenceClass {
public:
  using MemberType = Value;
  using MemberSet = SmallPtrSet<MemberType *, 4>;
  using MemoryMemberType = MemoryPhi;
  using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;

  explicit CongruenceClass(unsigned ID) : ID(ID) {}
  CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
      : ID(ID), RepLeader(Leader), DefiningExpr(E) {}

  unsigned getID() const { return ID; }

  // True if this class has no members left.  This is mainly used for assertion
  // purposes, and for skipping empty classes.
  bool isDead() const {
    // If it's both dead from a value perspective, and dead from a memory
    // perspective, it's really dead.
    return empty() && memory_empty();
  }

  // Leader functions
  Value *getLeader() const { return RepLeader; }
  void setLeader(Value *Leader) { RepLeader = Leader; }
  const std::pair<Value *, unsigned int> &getNextLeader() const {
    return NextLeader;
  }
  void resetNextLeader() { NextLeader = {nullptr, ~0}; }
  void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
    if (LeaderPair.second < NextLeader.second)
      NextLeader = LeaderPair;
  }

  Value *getStoredValue() const { return RepStoredValue; }
  void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
  const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
  void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }

  // Forward propagation info
  const Expression *getDefiningExpr() const { return DefiningExpr; }

  // Value member set
  bool empty() const { return Members.empty(); }
  unsigned size() const { return Members.size(); }
  MemberSet::const_iterator begin() const { return Members.begin(); }
  MemberSet::const_iterator end() const { return Members.end(); }
  void insert(MemberType *M) { Members.insert(M); }
  void erase(MemberType *M) { Members.erase(M); }
  void swap(MemberSet &Other) { Members.swap(Other); }

  // Memory member set
  bool memory_empty() const { return MemoryMembers.empty(); }
  unsigned memory_size() const { return MemoryMembers.size(); }
  MemoryMemberSet::const_iterator memory_begin() const {
    return MemoryMembers.begin();
  }
  MemoryMemberSet::const_iterator memory_end() const {
    return MemoryMembers.end();
  }
  iterator_range<MemoryMemberSet::const_iterator> memory() const {
    return make_range(memory_begin(), memory_end());
  }

  void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
  void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }

  // Store count
  unsigned getStoreCount() const { return StoreCount; }
  void incStoreCount() { ++StoreCount; }
  void decStoreCount() {
    assert(StoreCount != 0 && "Store count went negative");
    --StoreCount;
  }

  // True if this class has no memory members.
  bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }

  // Return true if two congruence classes are equivalent to each other. This
  // means that every field but the ID number and the dead field are equivalent.
  bool isEquivalentTo(const CongruenceClass *Other) const {
    if (!Other)
      return false;
    if (this == Other)
      return true;

    if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
        std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
                 Other->RepMemoryAccess))
      return false;
    if (DefiningExpr != Other->DefiningExpr)
      if (!DefiningExpr || !Other->DefiningExpr ||
          *DefiningExpr != *Other->DefiningExpr)
        return false;

    if (Members.size() != Other->Members.size())
      return false;

    return all_of(Members,
                  [&](const Value *V) { return Other->Members.count(V); });
  }

private:
  unsigned ID;

  // Representative leader.
  Value *RepLeader = nullptr;

  // The most dominating leader after our current leader, because the member set
  // is not sorted and is expensive to keep sorted all the time.
  std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};

  // If this is represented by a store, the value of the store.
  Value *RepStoredValue = nullptr;

  // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
  // access.
  const MemoryAccess *RepMemoryAccess = nullptr;

  // Defining Expression.
  const Expression *DefiningExpr = nullptr;

  // Actual members of this class.
  MemberSet Members;

  // This is the set of MemoryPhis that exist in the class. MemoryDefs and
  // MemoryUses have real instructions representing them, so we only need to
  // track MemoryPhis here.
  MemoryMemberSet MemoryMembers;

  // Number of stores in this congruence class.
  // This is used so we can detect store equivalence changes properly.
  int StoreCount = 0;
};

} // end anonymous namespace

namespace llvm {

struct ExactEqualsExpression {
  const Expression &E;

  explicit ExactEqualsExpression(const Expression &E) : E(E) {}

  hash_code getComputedHash() const { return E.getComputedHash(); }

  bool operator==(const Expression &Other) const {
    return E.exactlyEquals(Other);
  }
};

template <> struct DenseMapInfo<const Expression *> {
  static const Expression *getEmptyKey() {
    auto Val = static_cast<uintptr_t>(-1);
    Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
    return reinterpret_cast<const Expression *>(Val);
  }

  static const Expression *getTombstoneKey() {
    auto Val = static_cast<uintptr_t>(~1U);
    Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
    return reinterpret_cast<const Expression *>(Val);
  }

  static unsigned getHashValue(const Expression *E) {
    return E->getComputedHash();
  }

  static unsigned getHashValue(const ExactEqualsExpression &E) {
    return E.getComputedHash();
  }

  static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
    if (RHS == getTombstoneKey() || RHS == getEmptyKey())
      return false;
    return LHS == *RHS;
  }

  static bool isEqual(const Expression *LHS, const Expression *RHS) {
    if (LHS == RHS)
      return true;
    if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
        LHS == getEmptyKey() || RHS == getEmptyKey())
      return false;
    // Compare hashes before equality.  This is *not* what the hashtable does,
    // since it is computing it modulo the number of buckets, whereas we are
    // using the full hash keyspace.  Since the hashes are precomputed, this
    // check is *much* faster than equality.
    if (LHS->getComputedHash() != RHS->getComputedHash())
      return false;
    return *LHS == *RHS;
  }
};

} // end namespace llvm

namespace {

class NewGVN {
  Function &F;
  DominatorTree *DT;
  const TargetLibraryInfo *TLI;
  AliasAnalysis *AA;
  MemorySSA *MSSA;
  MemorySSAWalker *MSSAWalker;
  const DataLayout &DL;
  std::unique_ptr<PredicateInfo> PredInfo;

  // These are the only two things the create* functions should have
  // side-effects on due to allocating memory.
  mutable BumpPtrAllocator ExpressionAllocator;
  mutable ArrayRecycler<Value *> ArgRecycler;
  mutable TarjanSCC SCCFinder;
  const SimplifyQuery SQ;

  // Number of function arguments, used by ranking
  unsigned int NumFuncArgs;

  // RPOOrdering of basic blocks
  DenseMap<const DomTreeNode *, unsigned> RPOOrdering;

  // Congruence class info.

  // This class is called INITIAL in the paper. It is the class everything
  // startsout in, and represents any value. Being an optimistic analysis,
  // anything in the TOP class has the value TOP, which is indeterminate and
  // equivalent to everything.
  CongruenceClass *TOPClass;
  std::vector<CongruenceClass *> CongruenceClasses;
  unsigned NextCongruenceNum;

  // Value Mappings.
  DenseMap<Value *, CongruenceClass *> ValueToClass;
  DenseMap<Value *, const Expression *> ValueToExpression;

  // Value PHI handling, used to make equivalence between phi(op, op) and
  // op(phi, phi).
  // These mappings just store various data that would normally be part of the
  // IR.
  SmallPtrSet<const Instruction *, 8> PHINodeUses;

  DenseMap<const Value *, bool> OpSafeForPHIOfOps;

  // Map a temporary instruction we created to a parent block.
  DenseMap<const Value *, BasicBlock *> TempToBlock;

  // Map between the already in-program instructions and the temporary phis we
  // created that they are known equivalent to.
  DenseMap<const Value *, PHINode *> RealToTemp;

  // In order to know when we should re-process instructions that have
  // phi-of-ops, we track the set of expressions that they needed as
  // leaders. When we discover new leaders for those expressions, we process the
  // associated phi-of-op instructions again in case they have changed.  The
  // other way they may change is if they had leaders, and those leaders
  // disappear.  However, at the point they have leaders, there are uses of the
  // relevant operands in the created phi node, and so they will get reprocessed
  // through the normal user marking we perform.
  mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
  DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
      ExpressionToPhiOfOps;

  // Map from temporary operation to MemoryAccess.
  DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;

  // Set of all temporary instructions we created.
  // Note: This will include instructions that were just created during value
  // numbering.  The way to test if something is using them is to check
  // RealToTemp.
  DenseSet<Instruction *> AllTempInstructions;

  // This is the set of instructions to revisit on a reachability change.  At
  // the end of the main iteration loop it will contain at least all the phi of
  // ops instructions that will be changed to phis, as well as regular phis.
  // During the iteration loop, it may contain other things, such as phi of ops
  // instructions that used edge reachability to reach a result, and so need to
  // be revisited when the edge changes, independent of whether the phi they
  // depended on changes.
  DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;

  // Mapping from predicate info we used to the instructions we used it with.
  // In order to correctly ensure propagation, we must keep track of what
  // comparisons we used, so that when the values of the comparisons change, we
  // propagate the information to the places we used the comparison.
  mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
      PredicateToUsers;

  // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
  // stores, we no longer can rely solely on the def-use chains of MemorySSA.
  mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
      MemoryToUsers;

  // A table storing which memorydefs/phis represent a memory state provably
  // equivalent to another memory state.
  // We could use the congruence class machinery, but the MemoryAccess's are
  // abstract memory states, so they can only ever be equivalent to each other,
  // and not to constants, etc.
  DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;

  // We could, if we wanted, build MemoryPhiExpressions and
  // MemoryVariableExpressions, etc, and value number them the same way we value
  // number phi expressions.  For the moment, this seems like overkill.  They
  // can only exist in one of three states: they can be TOP (equal to
  // everything), Equivalent to something else, or unique.  Because we do not
  // create expressions for them, we need to simulate leader change not just
  // when they change class, but when they change state.  Note: We can do the
  // same thing for phis, and avoid having phi expressions if we wanted, We
  // should eventually unify in one direction or the other, so this is a little
  // bit of an experiment in which turns out easier to maintain.
  enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
  DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;

  enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
  mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;

  // Expression to class mapping.
  using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
  ExpressionClassMap ExpressionToClass;

  // We have a single expression that represents currently DeadExpressions.
  // For dead expressions we can prove will stay dead, we mark them with
  // DFS number zero.  However, it's possible in the case of phi nodes
  // for us to assume/prove all arguments are dead during fixpointing.
  // We use DeadExpression for that case.
  DeadExpression *SingletonDeadExpression = nullptr;

  // Which values have changed as a result of leader changes.
  SmallPtrSet<Value *, 8> LeaderChanges;

  // Reachability info.
  using BlockEdge = BasicBlockEdge;
  DenseSet<BlockEdge> ReachableEdges;
  SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;

  // This is a bitvector because, on larger functions, we may have
  // thousands of touched instructions at once (entire blocks,
  // instructions with hundreds of uses, etc).  Even with optimization
  // for when we mark whole blocks as touched, when this was a
  // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
  // the time in GVN just managing this list.  The bitvector, on the
  // other hand, efficiently supports test/set/clear of both
  // individual and ranges, as well as "find next element" This
  // enables us to use it as a worklist with essentially 0 cost.
  BitVector TouchedInstructions;

  DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;

#ifndef NDEBUG
  // Debugging for how many times each block and instruction got processed.
  DenseMap<const Value *, unsigned> ProcessedCount;
#endif

  // DFS info.
  // This contains a mapping from Instructions to DFS numbers.
  // The numbering starts at 1. An instruction with DFS number zero
  // means that the instruction is dead.
  DenseMap<const Value *, unsigned> InstrDFS;

  // This contains the mapping DFS numbers to instructions.
  SmallVector<Value *, 32> DFSToInstr;

  // Deletion info.
  SmallPtrSet<Instruction *, 8> InstructionsToErase;

public:
  NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
         TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
         const DataLayout &DL)
      : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
        PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
        SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}

  bool runGVN();

private:
  // Expression handling.
  const Expression *createExpression(Instruction *) const;
  const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
                                           Instruction *) const;

  // Our canonical form for phi arguments is a pair of incoming value, incoming
  // basic block.
  using ValPair = std::pair<Value *, BasicBlock *>;

  PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
                                     BasicBlock *, bool &HasBackEdge,
                                     bool &OriginalOpsConstant) const;
  const DeadExpression *createDeadExpression() const;
  const VariableExpression *createVariableExpression(Value *) const;
  const ConstantExpression *createConstantExpression(Constant *) const;
  const Expression *createVariableOrConstant(Value *V) const;
  const UnknownExpression *createUnknownExpression(Instruction *) const;
  const StoreExpression *createStoreExpression(StoreInst *,
                                               const MemoryAccess *) const;
  LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
                                       const MemoryAccess *) const;
  const CallExpression *createCallExpression(CallInst *,
                                             const MemoryAccess *) const;
  const AggregateValueExpression *
  createAggregateValueExpression(Instruction *) const;
  bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;

  // Congruence class handling.
  CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
    auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
    CongruenceClasses.emplace_back(result);
    return result;
  }

  CongruenceClass *createMemoryClass(MemoryAccess *MA) {
    auto *CC = createCongruenceClass(nullptr, nullptr);
    CC->setMemoryLeader(MA);
    return CC;
  }

  CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
    auto *CC = getMemoryClass(MA);
    if (CC->getMemoryLeader() != MA)
      CC = createMemoryClass(MA);
    return CC;
  }

  CongruenceClass *createSingletonCongruenceClass(Value *Member) {
    CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
    CClass->insert(Member);
    ValueToClass[Member] = CClass;
    return CClass;
  }

  void initializeCongruenceClasses(Function &F);
  const Expression *makePossiblePHIOfOps(Instruction *,
                                         SmallPtrSetImpl<Value *> &);
  Value *findLeaderForInst(Instruction *ValueOp,
                           SmallPtrSetImpl<Value *> &Visited,
                           MemoryAccess *MemAccess, Instruction *OrigInst,
                           BasicBlock *PredBB);
  bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
                                 SmallPtrSetImpl<const Value *> &Visited,
                                 SmallVectorImpl<Instruction *> &Worklist);
  bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
                           SmallPtrSetImpl<const Value *> &);
  void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
  void removePhiOfOps(Instruction *I, PHINode *PHITemp);

  // Value number an Instruction or MemoryPhi.
  void valueNumberMemoryPhi(MemoryPhi *);
  void valueNumberInstruction(Instruction *);

  // Symbolic evaluation.
  const Expression *checkSimplificationResults(Expression *, Instruction *,
                                               Value *) const;
  const Expression *performSymbolicEvaluation(Value *,
                                              SmallPtrSetImpl<Value *> &) const;
  const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
                                                Instruction *,
                                                MemoryAccess *) const;
  const Expression *performSymbolicLoadEvaluation(Instruction *) const;
  const Expression *performSymbolicStoreEvaluation(Instruction *) const;
  const Expression *performSymbolicCallEvaluation(Instruction *) const;
  void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
  const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
                                                 Instruction *I,
                                                 BasicBlock *PHIBlock) const;
  const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
  const Expression *performSymbolicCmpEvaluation(Instruction *) const;
  const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;

  // Congruence finding.
  bool someEquivalentDominates(const Instruction *, const Instruction *) const;
  Value *lookupOperandLeader(Value *) const;
  CongruenceClass *getClassForExpression(const Expression *E) const;
  void performCongruenceFinding(Instruction *, const Expression *);
  void moveValueToNewCongruenceClass(Instruction *, const Expression *,
                                     CongruenceClass *, CongruenceClass *);
  void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
                                      CongruenceClass *, CongruenceClass *);
  Value *getNextValueLeader(CongruenceClass *) const;
  const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
  bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
  CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
  const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
  bool isMemoryAccessTOP(const MemoryAccess *) const;

  // Ranking
  unsigned int getRank(const Value *) const;
  bool shouldSwapOperands(const Value *, const Value *) const;

  // Reachability handling.
  void updateReachableEdge(BasicBlock *, BasicBlock *);
  void processOutgoingEdges(Instruction *, BasicBlock *);
  Value *findConditionEquivalence(Value *) const;

  // Elimination.
  struct ValueDFS;
  void convertClassToDFSOrdered(const CongruenceClass &,
                                SmallVectorImpl<ValueDFS> &,
                                DenseMap<const Value *, unsigned int> &,
                                SmallPtrSetImpl<Instruction *> &) const;
  void convertClassToLoadsAndStores(const CongruenceClass &,
                                    SmallVectorImpl<ValueDFS> &) const;

  bool eliminateInstructions(Function &);
  void replaceInstruction(Instruction *, Value *);
  void markInstructionForDeletion(Instruction *);
  void deleteInstructionsInBlock(BasicBlock *);
  Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
                            const BasicBlock *) const;

  // New instruction creation.
  void handleNewInstruction(Instruction *) {}

  // Various instruction touch utilities
  template <typename Map, typename KeyType, typename Func>
  void for_each_found(Map &, const KeyType &, Func);
  template <typename Map, typename KeyType>
  void touchAndErase(Map &, const KeyType &);
  void markUsersTouched(Value *);
  void markMemoryUsersTouched(const MemoryAccess *);
  void markMemoryDefTouched(const MemoryAccess *);
  void markPredicateUsersTouched(Instruction *);
  void markValueLeaderChangeTouched(CongruenceClass *CC);
  void markMemoryLeaderChangeTouched(CongruenceClass *CC);
  void markPhiOfOpsChanged(const Expression *E);
  void addPredicateUsers(const PredicateBase *, Instruction *) const;
  void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
  void addAdditionalUsers(Value *To, Value *User) const;

  // Main loop of value numbering
  void iterateTouchedInstructions();

  // Utilities.
  void cleanupTables();
  std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
  void updateProcessedCount(const Value *V);
  void verifyMemoryCongruency() const;
  void verifyIterationSettled(Function &F);
  void verifyStoreExpressions() const;
  bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
                              const MemoryAccess *, const MemoryAccess *) const;
  BasicBlock *getBlockForValue(Value *V) const;
  void deleteExpression(const Expression *E) const;
  MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
  MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
  MemoryPhi *getMemoryAccess(const BasicBlock *) const;
  template <class T, class Range> T *getMinDFSOfRange(const Range &) const;

  unsigned InstrToDFSNum(const Value *V) const {
    assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
    return InstrDFS.lookup(V);
  }

  unsigned InstrToDFSNum(const MemoryAccess *MA) const {
    return MemoryToDFSNum(MA);
  }

  Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }

  // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
  // This deliberately takes a value so it can be used with Use's, which will
  // auto-convert to Value's but not to MemoryAccess's.
  unsigned MemoryToDFSNum(const Value *MA) const {
    assert(isa<MemoryAccess>(MA) &&
           "This should not be used with instructions");
    return isa<MemoryUseOrDef>(MA)
               ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
               : InstrDFS.lookup(MA);
  }

  bool isCycleFree(const Instruction *) const;
  bool isBackedge(BasicBlock *From, BasicBlock *To) const;

  // Debug counter info.  When verifying, we have to reset the value numbering
  // debug counter to the same state it started in to get the same results.
  int64_t StartingVNCounter;
};

} // end anonymous namespace

template <typename T>
static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
  if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
    return false;
  return LHS.MemoryExpression::equals(RHS);
}

bool LoadExpression::equals(const Expression &Other) const {
  return equalsLoadStoreHelper(*this, Other);
}

bool StoreExpression::equals(const Expression &Other) const {
  if (!equalsLoadStoreHelper(*this, Other))
    return false;
  // Make sure that store vs store includes the value operand.
  if (const auto *S = dyn_cast<StoreExpression>(&Other))
    if (getStoredValue() != S->getStoredValue())
      return false;
  return true;
}

// Determine if the edge From->To is a backedge
bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
  return From == To ||
         RPOOrdering.lookup(DT->getNode(From)) >=
             RPOOrdering.lookup(DT->getNode(To));
}

#ifndef NDEBUG
static std::string getBlockName(const BasicBlock *B) {
  return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
}
#endif

// Get a MemoryAccess for an instruction, fake or real.
MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
  auto *Result = MSSA->getMemoryAccess(I);
  return Result ? Result : TempToMemory.lookup(I);
}

// Get a MemoryPhi for a basic block. These are all real.
MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
  return MSSA->getMemoryAccess(BB);
}

// Get the basic block from an instruction/memory value.
BasicBlock *NewGVN::getBlockForValue(Value *V) const {
  if (auto *I = dyn_cast<Instruction>(V)) {
    auto *Parent = I->getParent();
    if (Parent)
      return Parent;
    Parent = TempToBlock.lookup(V);
    assert(Parent && "Every fake instruction should have a block");
    return Parent;
  }

  auto *MP = dyn_cast<MemoryPhi>(V);
  assert(MP && "Should have been an instruction or a MemoryPhi");
  return MP->getBlock();
}

// Delete a definitely dead expression, so it can be reused by the expression
// allocator.  Some of these are not in creation functions, so we have to accept
// const versions.
void NewGVN::deleteExpression(const Expression *E) const {
  assert(isa<BasicExpression>(E));
  auto *BE = cast<BasicExpression>(E);
  const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
  ExpressionAllocator.Deallocate(E);
}

// If V is a predicateinfo copy, get the thing it is a copy of.
static Value *getCopyOf(const Value *V) {
  if (auto *II = dyn_cast<IntrinsicInst>(V))
    if (II->getIntrinsicID() == Intrinsic::ssa_copy)
      return II->getOperand(0);
  return nullptr;
}

// Return true if V is really PN, even accounting for predicateinfo copies.
static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
  return V == PN || getCopyOf(V) == PN;
}

static bool isCopyOfAPHI(const Value *V) {
  auto *CO = getCopyOf(V);
  return CO && isa<PHINode>(CO);
}

// Sort PHI Operands into a canonical order.  What we use here is an RPO
// order. The BlockInstRange numbers are generated in an RPO walk of the basic
// blocks.
void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
  llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
    return BlockInstRange.lookup(P1.second).first <
           BlockInstRange.lookup(P2.second).first;
  });
}

// Return true if V is a value that will always be available (IE can
// be placed anywhere) in the function.  We don't do globals here
// because they are often worse to put in place.
static bool alwaysAvailable(Value *V) {
  return isa<Constant>(V) || isa<Argument>(V);
}

// Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
// the original instruction we are creating a PHIExpression for (but may not be
// a phi node). We require, as an invariant, that all the PHIOperands in the
// same block are sorted the same way. sortPHIOps will sort them into a
// canonical order.
PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
                                           const Instruction *I,
                                           BasicBlock *PHIBlock,
                                           bool &HasBackedge,
                                           bool &OriginalOpsConstant) const {
  unsigned NumOps = PHIOperands.size();
  auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);

  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  E->setType(PHIOperands.begin()->first->getType());
  E->setOpcode(Instruction::PHI);

  // Filter out unreachable phi operands.
  auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
    auto *BB = P.second;
    if (auto *PHIOp = dyn_cast<PHINode>(I))
      if (isCopyOfPHI(P.first, PHIOp))
        return false;
    if (!ReachableEdges.count({BB, PHIBlock}))
      return false;
    // Things in TOPClass are equivalent to everything.
    if (ValueToClass.lookup(P.first) == TOPClass)
      return false;
    OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
    HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
    return lookupOperandLeader(P.first) != I;
  });
  std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
                 [&](const ValPair &P) -> Value * {
                   return lookupOperandLeader(P.first);
                 });
  return E;
}

// Set basic expression info (Arguments, type, opcode) for Expression
// E from Instruction I in block B.
bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
  bool AllConstant = true;
  if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
    E->setType(GEP->getSourceElementType());
  else
    E->setType(I->getType());
  E->setOpcode(I->getOpcode());
  E->allocateOperands(ArgRecycler, ExpressionAllocator);

  // Transform the operand array into an operand leader array, and keep track of
  // whether all members are constant.
  std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
    auto Operand = lookupOperandLeader(O);
    AllConstant = AllConstant && isa<Constant>(Operand);
    return Operand;
  });

  return AllConstant;
}

const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
                                                 Value *Arg1, Value *Arg2,
                                                 Instruction *I) const {
  auto *E = new (ExpressionAllocator) BasicExpression(2);

  E->setType(T);
  E->setOpcode(Opcode);
  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  if (Instruction::isCommutative(Opcode)) {
    // Ensure that commutative instructions that only differ by a permutation
    // of their operands get the same value number by sorting the operand value
    // numbers.  Since all commutative instructions have two operands it is more
    // efficient to sort by hand rather than using, say, std::sort.
    if (shouldSwapOperands(Arg1, Arg2))
      std::swap(Arg1, Arg2);
  }
  E->op_push_back(lookupOperandLeader(Arg1));
  E->op_push_back(lookupOperandLeader(Arg2));

  Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
  if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
    return SimplifiedE;
  return E;
}

// Take a Value returned by simplification of Expression E/Instruction
// I, and see if it resulted in a simpler expression. If so, return
// that expression.
const Expression *NewGVN::checkSimplificationResults(Expression *E,
                                                     Instruction *I,
                                                     Value *V) const {
  if (!V)
    return nullptr;
  if (auto *C = dyn_cast<Constant>(V)) {
    if (I)
      LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
                        << " constant " << *C << "\n");
    NumGVNOpsSimplified++;
    assert(isa<BasicExpression>(E) &&
           "We should always have had a basic expression here");
    deleteExpression(E);
    return createConstantExpression(C);
  } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
    if (I)
      LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
                        << " variable " << *V << "\n");
    deleteExpression(E);
    return createVariableExpression(V);
  }

  CongruenceClass *CC = ValueToClass.lookup(V);
  if (CC) {
    if (CC->getLeader() && CC->getLeader() != I) {
      // If we simplified to something else, we need to communicate
      // that we're users of the value we simplified to.
      if (I != V) {
        // Don't add temporary instructions to the user lists.
        if (!AllTempInstructions.count(I))
          addAdditionalUsers(V, I);
      }
      return createVariableOrConstant(CC->getLeader());
    }
    if (CC->getDefiningExpr()) {
      // If we simplified to something else, we need to communicate
      // that we're users of the value we simplified to.
      if (I != V) {
        // Don't add temporary instructions to the user lists.
        if (!AllTempInstructions.count(I))
          addAdditionalUsers(V, I);
      }

      if (I)
        LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
                          << " expression " << *CC->getDefiningExpr() << "\n");
      NumGVNOpsSimplified++;
      deleteExpression(E);
      return CC->getDefiningExpr();
    }
  }

  return nullptr;
}

// Create a value expression from the instruction I, replacing operands with
// their leaders.

const Expression *NewGVN::createExpression(Instruction *I) const {
  auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());

  bool AllConstant = setBasicExpressionInfo(I, E);

  if (I->isCommutative()) {
    // Ensure that commutative instructions that only differ by a permutation
    // of their operands get the same value number by sorting the operand value
    // numbers.  Since all commutative instructions have two operands it is more
    // efficient to sort by hand rather than using, say, std::sort.
    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
      E->swapOperands(0, 1);
  }
  // Perform simplification.
  if (auto *CI = dyn_cast<CmpInst>(I)) {
    // Sort the operand value numbers so x<y and y>x get the same value
    // number.
    CmpInst::Predicate Predicate = CI->getPredicate();
    if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
      E->swapOperands(0, 1);
      Predicate = CmpInst::getSwappedPredicate(Predicate);
    }
    E->setOpcode((CI->getOpcode() << 8) | Predicate);
    // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
    assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
           "Wrong types on cmp instruction");
    assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
            E->getOperand(1)->getType() == I->getOperand(1)->getType()));
    Value *V =
        SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (isa<SelectInst>(I)) {
    if (isa<Constant>(E->getOperand(0)) ||
        E->getOperand(1) == E->getOperand(2)) {
      assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
             E->getOperand(2)->getType() == I->getOperand(2)->getType());
      Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
                                    E->getOperand(2), SQ);
      if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
        return SimplifiedE;
    }
  } else if (I->isBinaryOp()) {
    Value *V =
        SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (auto *CI = dyn_cast<CastInst>(I)) {
    Value *V =
        SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (isa<GetElementPtrInst>(I)) {
    Value *V = SimplifyGEPInst(
        E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (AllConstant) {
    // We don't bother trying to simplify unless all of the operands
    // were constant.
    // TODO: There are a lot of Simplify*'s we could call here, if we
    // wanted to.  The original motivating case for this code was a
    // zext i1 false to i8, which we don't have an interface to
    // simplify (IE there is no SimplifyZExt).

    SmallVector<Constant *, 8> C;
    for (Value *Arg : E->operands())
      C.emplace_back(cast<Constant>(Arg));

    if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
      if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
        return SimplifiedE;
  }
  return E;
}

const AggregateValueExpression *
NewGVN::createAggregateValueExpression(Instruction *I) const {
  if (auto *II = dyn_cast<InsertValueInst>(I)) {
    auto *E = new (ExpressionAllocator)
        AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
    setBasicExpressionInfo(I, E);
    E->allocateIntOperands(ExpressionAllocator);
    std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
    return E;
  } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
    auto *E = new (ExpressionAllocator)
        AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
    setBasicExpressionInfo(EI, E);
    E->allocateIntOperands(ExpressionAllocator);
    std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
    return E;
  }
  llvm_unreachable("Unhandled type of aggregate value operation");
}

const DeadExpression *NewGVN::createDeadExpression() const {
  // DeadExpression has no arguments and all DeadExpression's are the same,
  // so we only need one of them.
  return SingletonDeadExpression;
}

const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
  auto *E = new (ExpressionAllocator) VariableExpression(V);
  E->setOpcode(V->getValueID());
  return E;
}

const Expression *NewGVN::createVariableOrConstant(Value *V) const {
  if (auto *C = dyn_cast<Constant>(V))
    return createConstantExpression(C);
  return createVariableExpression(V);
}

const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
  auto *E = new (ExpressionAllocator) ConstantExpression(C);
  E->setOpcode(C->getValueID());
  return E;
}

const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
  auto *E = new (ExpressionAllocator) UnknownExpression(I);
  E->setOpcode(I->getOpcode());
  return E;
}

const CallExpression *
NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
  // FIXME: Add operand bundles for calls.
  auto *E =
      new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
  setBasicExpressionInfo(CI, E);
  return E;
}

// Return true if some equivalent of instruction Inst dominates instruction U.
bool NewGVN::someEquivalentDominates(const Instruction *Inst,
                                     const Instruction *U) const {
  auto *CC = ValueToClass.lookup(Inst);
   // This must be an instruction because we are only called from phi nodes
  // in the case that the value it needs to check against is an instruction.

  // The most likely candidates for dominance are the leader and the next leader.
  // The leader or nextleader will dominate in all cases where there is an
  // equivalent that is higher up in the dom tree.
  // We can't *only* check them, however, because the
  // dominator tree could have an infinite number of non-dominating siblings
  // with instructions that are in the right congruence class.
  //       A
  // B C D E F G
  // |
  // H
  // Instruction U could be in H,  with equivalents in every other sibling.
  // Depending on the rpo order picked, the leader could be the equivalent in
  // any of these siblings.
  if (!CC)
    return false;
  if (alwaysAvailable(CC->getLeader()))
    return true;
  if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
    return true;
  if (CC->getNextLeader().first &&
      DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
    return true;
  return llvm::any_of(*CC, [&](const Value *Member) {
    return Member != CC->getLeader() &&
           DT->dominates(cast<Instruction>(Member), U);
  });
}

// See if we have a congruence class and leader for this operand, and if so,
// return it. Otherwise, return the operand itself.
Value *NewGVN::lookupOperandLeader(Value *V) const {
  CongruenceClass *CC = ValueToClass.lookup(V);
  if (CC) {
    // Everything in TOP is represented by undef, as it can be any value.
    // We do have to make sure we get the type right though, so we can't set the
    // RepLeader to undef.
    if (CC == TOPClass)
      return UndefValue::get(V->getType());
    return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
  }

  return V;
}

const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
  auto *CC = getMemoryClass(MA);
  assert(CC->getMemoryLeader() &&
         "Every MemoryAccess should be mapped to a congruence class with a "
         "representative memory access");
  return CC->getMemoryLeader();
}

// Return true if the MemoryAccess is really equivalent to everything. This is
// equivalent to the lattice value "TOP" in most lattices.  This is the initial
// state of all MemoryAccesses.
bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
  return getMemoryClass(MA) == TOPClass;
}

LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
                                             LoadInst *LI,
                                             const MemoryAccess *MA) const {
  auto *E =
      new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  E->setType(LoadType);

  // Give store and loads same opcode so they value number together.
  E->setOpcode(0);
  E->op_push_back(PointerOp);
  if (LI)
    E->setAlignment(MaybeAlign(LI->getAlignment()));

  // TODO: Value number heap versions. We may be able to discover
  // things alias analysis can't on it's own (IE that a store and a
  // load have the same value, and thus, it isn't clobbering the load).
  return E;
}

const StoreExpression *
NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
  auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
  auto *E = new (ExpressionAllocator)
      StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  E->setType(SI->getValueOperand()->getType());

  // Give store and loads same opcode so they value number together.
  E->setOpcode(0);
  E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));

  // TODO: Value number heap versions. We may be able to discover
  // things alias analysis can't on it's own (IE that a store and a
  // load have the same value, and thus, it isn't clobbering the load).
  return E;
}

const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
  // Unlike loads, we never try to eliminate stores, so we do not check if they
  // are simple and avoid value numbering them.
  auto *SI = cast<StoreInst>(I);
  auto *StoreAccess = getMemoryAccess(SI);
  // Get the expression, if any, for the RHS of the MemoryDef.
  const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
  if (EnableStoreRefinement)
    StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
  // If we bypassed the use-def chains, make sure we add a use.
  StoreRHS = lookupMemoryLeader(StoreRHS);
  if (StoreRHS != StoreAccess->getDefiningAccess())
    addMemoryUsers(StoreRHS, StoreAccess);
  // If we are defined by ourselves, use the live on entry def.
  if (StoreRHS == StoreAccess)
    StoreRHS = MSSA->getLiveOnEntryDef();

  if (SI->isSimple()) {
    // See if we are defined by a previous store expression, it already has a
    // value, and it's the same value as our current store. FIXME: Right now, we
    // only do this for simple stores, we should expand to cover memcpys, etc.
    const auto *LastStore = createStoreExpression(SI, StoreRHS);
    const auto *LastCC = ExpressionToClass.lookup(LastStore);
    // We really want to check whether the expression we matched was a store. No
    // easy way to do that. However, we can check that the class we found has a
    // store, which, assuming the value numbering state is not corrupt, is
    // sufficient, because we must also be equivalent to that store's expression
    // for it to be in the same class as the load.
    if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
      return LastStore;
    // Also check if our value operand is defined by a load of the same memory
    // location, and the memory state is the same as it was then (otherwise, it
    // could have been overwritten later. See test32 in
    // transforms/DeadStoreElimination/simple.ll).
    if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
      if ((lookupOperandLeader(LI->getPointerOperand()) ==
           LastStore->getOperand(0)) &&
          (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
           StoreRHS))
        return LastStore;
    deleteExpression(LastStore);
  }

  // If the store is not equivalent to anything, value number it as a store that
  // produces a unique memory state (instead of using it's MemoryUse, we use
  // it's MemoryDef).
  return createStoreExpression(SI, StoreAccess);
}

// See if we can extract the value of a loaded pointer from a load, a store, or
// a memory instruction.
const Expression *
NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
                                    LoadInst *LI, Instruction *DepInst,
                                    MemoryAccess *DefiningAccess) const {
  assert((!LI || LI->isSimple()) && "Not a simple load");
  if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
    // Can't forward from non-atomic to atomic without violating memory model.
    // Also don't need to coerce if they are the same type, we will just
    // propagate.
    if (LI->isAtomic() > DepSI->isAtomic() ||
        LoadType == DepSI->getValueOperand()->getType())
      return nullptr;
    int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
    if (Offset >= 0) {
      if (auto *C = dyn_cast<Constant>(
              lookupOperandLeader(DepSI->getValueOperand()))) {
        LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
                          << " to constant " << *C << "\n");
        return createConstantExpression(
            getConstantStoreValueForLoad(C, Offset, LoadType, DL));
      }
    }
  } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
    // Can't forward from non-atomic to atomic without violating memory model.
    if (LI->isAtomic() > DepLI->isAtomic())
      return nullptr;
    int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
    if (Offset >= 0) {
      // We can coerce a constant load into a load.
      if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
        if (auto *PossibleConstant =
                getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
          LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
                            << " to constant " << *PossibleConstant << "\n");
          return createConstantExpression(PossibleConstant);
        }
    }
  } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
    int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
    if (Offset >= 0) {
      if (auto *PossibleConstant =
              getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
        LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
                          << " to constant " << *PossibleConstant << "\n");
        return createConstantExpression(PossibleConstant);
      }
    }
  }

  // All of the below are only true if the loaded pointer is produced
  // by the dependent instruction.
  if (LoadPtr != lookupOperandLeader(DepInst) &&
      !AA->isMustAlias(LoadPtr, DepInst))
    return nullptr;
  // If this load really doesn't depend on anything, then we must be loading an
  // undef value.  This can happen when loading for a fresh allocation with no
  // intervening stores, for example.  Note that this is only true in the case
  // that the result of the allocation is pointer equal to the load ptr.
  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
    return createConstantExpression(UndefValue::get(LoadType));
  }
  // If this load occurs either right after a lifetime begin,
  // then the loaded value is undefined.
  else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
      return createConstantExpression(UndefValue::get(LoadType));
  }
  // If this load follows a calloc (which zero initializes memory),
  // then the loaded value is zero
  else if (isCallocLikeFn(DepInst, TLI)) {
    return createConstantExpression(Constant::getNullValue(LoadType));
  }

  return nullptr;
}

const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
  auto *LI = cast<LoadInst>(I);

  // We can eliminate in favor of non-simple loads, but we won't be able to
  // eliminate the loads themselves.
  if (!LI->isSimple())
    return nullptr;

  Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
  // Load of undef is undef.
  if (isa<UndefValue>(LoadAddressLeader))
    return createConstantExpression(UndefValue::get(LI->getType()));
  MemoryAccess *OriginalAccess = getMemoryAccess(I);
  MemoryAccess *DefiningAccess =
      MSSAWalker->getClobberingMemoryAccess(OriginalAccess);

  if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
    if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
      Instruction *DefiningInst = MD->getMemoryInst();
      // If the defining instruction is not reachable, replace with undef.
      if (!ReachableBlocks.count(DefiningInst->getParent()))
        return createConstantExpression(UndefValue::get(LI->getType()));
      // This will handle stores and memory insts.  We only do if it the
      // defining access has a different type, or it is a pointer produced by
      // certain memory operations that cause the memory to have a fixed value
      // (IE things like calloc).
      if (const auto *CoercionResult =
              performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
                                          DefiningInst, DefiningAccess))
        return CoercionResult;
    }
  }

  const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
                                        DefiningAccess);
  // If our MemoryLeader is not our defining access, add a use to the
  // MemoryLeader, so that we get reprocessed when it changes.
  if (LE->getMemoryLeader() != DefiningAccess)
    addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
  return LE;
}

const Expression *
NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
  auto *PI = PredInfo->getPredicateInfoFor(I);
  if (!PI)
    return nullptr;

  LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");

  auto *PWC = dyn_cast<PredicateWithCondition>(PI);
  if (!PWC)
    return nullptr;

  auto *CopyOf = I->getOperand(0);
  auto *Cond = PWC->Condition;

  // If this a copy of the condition, it must be either true or false depending
  // on the predicate info type and edge.
  if (CopyOf == Cond) {
    // We should not need to add predicate users because the predicate info is
    // already a use of this operand.
    if (isa<PredicateAssume>(PI))
      return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
    if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
      if (PBranch->TrueEdge)
        return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
      return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
    }
    if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
      return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
  }

  // Not a copy of the condition, so see what the predicates tell us about this
  // value.  First, though, we check to make sure the value is actually a copy
  // of one of the condition operands. It's possible, in certain cases, for it
  // to be a copy of a predicateinfo copy. In particular, if two branch
  // operations use the same condition, and one branch dominates the other, we
  // will end up with a copy of a copy.  This is currently a small deficiency in
  // predicateinfo.  What will end up happening here is that we will value
  // number both copies the same anyway.

  // Everything below relies on the condition being a comparison.
  auto *Cmp = dyn_cast<CmpInst>(Cond);
  if (!Cmp)
    return nullptr;

  if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
    LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
    return nullptr;
  }
  Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
  Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
  bool SwappedOps = false;
  // Sort the ops.
  if (shouldSwapOperands(FirstOp, SecondOp)) {
    std::swap(FirstOp, SecondOp);
    SwappedOps = true;
  }
  CmpInst::Predicate Predicate =
      SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();

  if (isa<PredicateAssume>(PI)) {
    // If we assume the operands are equal, then they are equal.
    if (Predicate == CmpInst::ICMP_EQ) {
      addPredicateUsers(PI, I);
      addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
                         I);
      return createVariableOrConstant(FirstOp);
    }
  }
  if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
    // If we are *not* a copy of the comparison, we may equal to the other
    // operand when the predicate implies something about equality of
    // operations.  In particular, if the comparison is true/false when the
    // operands are equal, and we are on the right edge, we know this operation
    // is equal to something.
    if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
        (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
      addPredicateUsers(PI, I);
      addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
                         I);
      return createVariableOrConstant(FirstOp);
    }
    // Handle the special case of floating point.
    if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
         (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
        isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
      addPredicateUsers(PI, I);
      addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
                         I);
      return createConstantExpression(cast<Constant>(FirstOp));
    }
  }
  return nullptr;
}

// Evaluate read only and pure calls, and create an expression result.
const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
  auto *CI = cast<CallInst>(I);
  if (auto *II = dyn_cast<IntrinsicInst>(I)) {
    // Intrinsics with the returned attribute are copies of arguments.
    if (auto *ReturnedValue = II->getReturnedArgOperand()) {
      if (II->getIntrinsicID() == Intrinsic::ssa_copy)
        if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
          return Result;
      return createVariableOrConstant(ReturnedValue);
    }
  }
  if (AA->doesNotAccessMemory(CI)) {
    return createCallExpression(CI, TOPClass->getMemoryLeader());
  } else if (AA->onlyReadsMemory(CI)) {
    if (auto *MA = MSSA->getMemoryAccess(CI)) {
      auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
      return createCallExpression(CI, DefiningAccess);
    } else // MSSA determined that CI does not access memory.
      return createCallExpression(CI, TOPClass->getMemoryLeader());
  }
  return nullptr;
}

// Retrieve the memory class for a given MemoryAccess.
CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
  auto *Result = MemoryAccessToClass.lookup(MA);
  assert(Result && "Should have found memory class");
  return Result;
}

// Update the MemoryAccess equivalence table to say that From is equal to To,
// and return true if this is different from what already existed in the table.
bool NewGVN::setMemoryClass(const MemoryAccess *From,
                            CongruenceClass *NewClass) {
  assert(NewClass &&
         "Every MemoryAccess should be getting mapped to a non-null class");
  LLVM_DEBUG(dbgs() << "Setting " << *From);
  LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
  LLVM_DEBUG(dbgs() << NewClass->getID()
                    << " with current MemoryAccess leader ");
  LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");

  auto LookupResult = MemoryAccessToClass.find(From);
  bool Changed = false;
  // If it's already in the table, see if the value changed.
  if (LookupResult != MemoryAccessToClass.end()) {
    auto *OldClass = LookupResult->second;
    if (OldClass != NewClass) {
      // If this is a phi, we have to handle memory member updates.
      if (auto *MP = dyn_cast<MemoryPhi>(From)) {
        OldClass->memory_erase(MP);
        NewClass->memory_insert(MP);
        // This may have killed the class if it had no non-memory members
        if (OldClass->getMemoryLeader() == From) {
          if (OldClass->definesNoMemory()) {
            OldClass->setMemoryLeader(nullptr);
          } else {
            OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
            LLVM_DEBUG(dbgs() << "Memory class leader change for class "
                              << OldClass->getID() << " to "
                              << *OldClass->getMemoryLeader()
                              << " due to removal of a memory member " << *From
                              << "\n");
            markMemoryLeaderChangeTouched(OldClass);
          }
        }
      }
      // It wasn't equivalent before, and now it is.
      LookupResult->second = NewClass;
      Changed = true;
    }
  }

  return Changed;
}

// Determine if a instruction is cycle-free.  That means the values in the
// instruction don't depend on any expressions that can change value as a result
// of the instruction.  For example, a non-cycle free instruction would be v =
// phi(0, v+1).
bool NewGVN::isCycleFree(const Instruction *I) const {
  // In order to compute cycle-freeness, we do SCC finding on the instruction,
  // and see what kind of SCC it ends up in.  If it is a singleton, it is
  // cycle-free.  If it is not in a singleton, it is only cycle free if the
  // other members are all phi nodes (as they do not compute anything, they are
  // copies).
  auto ICS = InstCycleState.lookup(I);
  if (ICS == ICS_Unknown) {
    SCCFinder.Start(I);
    auto &SCC = SCCFinder.getComponentFor(I);
    // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
    if (SCC.size() == 1)
      InstCycleState.insert({I, ICS_CycleFree});
    else {
      bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
        return isa<PHINode>(V) || isCopyOfAPHI(V);
      });
      ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
      for (auto *Member : SCC)
        if (auto *MemberPhi = dyn_cast<PHINode>(Member))
          InstCycleState.insert({MemberPhi, ICS});
    }
  }
  if (ICS == ICS_Cycle)
    return false;
  return true;
}

// Evaluate PHI nodes symbolically and create an expression result.
const Expression *
NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
                                     Instruction *I,
                                     BasicBlock *PHIBlock) const {
  // True if one of the incoming phi edges is a backedge.
  bool HasBackedge = false;
  // All constant tracks the state of whether all the *original* phi operands
  // This is really shorthand for "this phi cannot cycle due to forward
  // change in value of the phi is guaranteed not to later change the value of
  // the phi. IE it can't be v = phi(undef, v+1)
  bool OriginalOpsConstant = true;
  auto *E = cast<PHIExpression>(createPHIExpression(
      PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
  // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
  // See if all arguments are the same.
  // We track if any were undef because they need special handling.
  bool HasUndef = false;
  auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
    if (isa<UndefValue>(Arg)) {
      HasUndef = true;
      return false;
    }
    return true;
  });
  // If we are left with no operands, it's dead.
  if (Filtered.empty()) {
    // If it has undef at this point, it means there are no-non-undef arguments,
    // and thus, the value of the phi node must be undef.
    if (HasUndef) {
      LLVM_DEBUG(
          dbgs() << "PHI Node " << *I
                 << " has no non-undef arguments, valuing it as undef\n");
      return createConstantExpression(UndefValue::get(I->getType()));
    }

    LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
    deleteExpression(E);
    return createDeadExpression();
  }
  Value *AllSameValue = *(Filtered.begin());
  ++Filtered.begin();
  // Can't use std::equal here, sadly, because filter.begin moves.
  if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
    // In LLVM's non-standard representation of phi nodes, it's possible to have
    // phi nodes with cycles (IE dependent on other phis that are .... dependent
    // on the original phi node), especially in weird CFG's where some arguments
    // are unreachable, or uninitialized along certain paths.  This can cause
    // infinite loops during evaluation. We work around this by not trying to
    // really evaluate them independently, but instead using a variable
    // expression to say if one is equivalent to the other.
    // We also special case undef, so that if we have an undef, we can't use the
    // common value unless it dominates the phi block.
    if (HasUndef) {
      // If we have undef and at least one other value, this is really a
      // multivalued phi, and we need to know if it's cycle free in order to
      // evaluate whether we can ignore the undef.  The other parts of this are
      // just shortcuts.  If there is no backedge, or all operands are
      // constants, it also must be cycle free.
      if (HasBackedge && !OriginalOpsConstant &&
          !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
        return E;

      // Only have to check for instructions
      if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
        if (!someEquivalentDominates(AllSameInst, I))
          return E;
    }
    // Can't simplify to something that comes later in the iteration.
    // Otherwise, when and if it changes congruence class, we will never catch
    // up. We will always be a class behind it.
    if (isa<Instruction>(AllSameValue) &&
        InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
      return E;
    NumGVNPhisAllSame++;
    LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
                      << "\n");
    deleteExpression(E);
    return createVariableOrConstant(AllSameValue);
  }
  return E;
}

const Expression *
NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
  if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
    auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
    if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
      // EI is an extract from one of our with.overflow intrinsics. Synthesize
      // a semantically equivalent expression instead of an extract value
      // expression.
      return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
                                    WO->getLHS(), WO->getRHS(), I);
  }

  return createAggregateValueExpression(I);
}

const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
  assert(isa<CmpInst>(I) && "Expected a cmp instruction.");

  auto *CI = cast<CmpInst>(I);
  // See if our operands are equal to those of a previous predicate, and if so,
  // if it implies true or false.
  auto Op0 = lookupOperandLeader(CI->getOperand(0));
  auto Op1 = lookupOperandLeader(CI->getOperand(1));
  auto OurPredicate = CI->getPredicate();
  if (shouldSwapOperands(Op0, Op1)) {
    std::swap(Op0, Op1);
    OurPredicate = CI->getSwappedPredicate();
  }

  // Avoid processing the same info twice.
  const PredicateBase *LastPredInfo = nullptr;
  // See if we know something about the comparison itself, like it is the target
  // of an assume.
  auto *CmpPI = PredInfo->getPredicateInfoFor(I);
  if (dyn_cast_or_null<PredicateAssume>(CmpPI))
    return createConstantExpression(ConstantInt::getTrue(CI->getType()));

  if (Op0 == Op1) {
    // This condition does not depend on predicates, no need to add users
    if (CI->isTrueWhenEqual())
      return createConstantExpression(ConstantInt::getTrue(CI->getType()));
    else if (CI->isFalseWhenEqual())
      return createConstantExpression(ConstantInt::getFalse(CI->getType()));
  }

  // NOTE: Because we are comparing both operands here and below, and using
  // previous comparisons, we rely on fact that predicateinfo knows to mark
  // comparisons that use renamed operands as users of the earlier comparisons.
  // It is *not* enough to just mark predicateinfo renamed operands as users of
  // the earlier comparisons, because the *other* operand may have changed in a
  // previous iteration.
  // Example:
  // icmp slt %a, %b
  // %b.0 = ssa.copy(%b)
  // false branch:
  // icmp slt %c, %b.0

  // %c and %a may start out equal, and thus, the code below will say the second
  // %icmp is false.  c may become equal to something else, and in that case the
  // %second icmp *must* be reexamined, but would not if only the renamed
  // %operands are considered users of the icmp.

  // *Currently* we only check one level of comparisons back, and only mark one
  // level back as touched when changes happen.  If you modify this code to look
  // back farther through comparisons, you *must* mark the appropriate
  // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
  // we know something just from the operands themselves

  // See if our operands have predicate info, so that we may be able to derive
  // something from a previous comparison.
  for (const auto &Op : CI->operands()) {
    auto *PI = PredInfo->getPredicateInfoFor(Op);
    if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
      if (PI == LastPredInfo)
        continue;
      LastPredInfo = PI;
      // In phi of ops cases, we may have predicate info that we are evaluating
      // in a different context.
      if (!DT->dominates(PBranch->To, getBlockForValue(I)))
        continue;
      // TODO: Along the false edge, we may know more things too, like
      // icmp of
      // same operands is false.
      // TODO: We only handle actual comparison conditions below, not
      // and/or.
      auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
      if (!BranchCond)
        continue;
      auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
      auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
      auto BranchPredicate = BranchCond->getPredicate();
      if (shouldSwapOperands(BranchOp0, BranchOp1)) {
        std::swap(BranchOp0, BranchOp1);
        BranchPredicate = BranchCond->getSwappedPredicate();
      }
      if (BranchOp0 == Op0 && BranchOp1 == Op1) {
        if (PBranch->TrueEdge) {
          // If we know the previous predicate is true and we are in the true
          // edge then we may be implied true or false.
          if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
                                                  OurPredicate)) {
            addPredicateUsers(PI, I);
            return createConstantExpression(
                ConstantInt::getTrue(CI->getType()));
          }

          if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
                                                   OurPredicate)) {
            addPredicateUsers(PI, I);
            return createConstantExpression(
                ConstantInt::getFalse(CI->getType()));
          }
        } else {
          // Just handle the ne and eq cases, where if we have the same
          // operands, we may know something.
          if (BranchPredicate == OurPredicate) {
            addPredicateUsers(PI, I);
            // Same predicate, same ops,we know it was false, so this is false.
            return createConstantExpression(
                ConstantInt::getFalse(CI->getType()));
          } else if (BranchPredicate ==
                     CmpInst::getInversePredicate(OurPredicate)) {
            addPredicateUsers(PI, I);
            // Inverse predicate, we know the other was false, so this is true.
            return createConstantExpression(
                ConstantInt::getTrue(CI->getType()));
          }
        }
      }
    }
  }
  // Create expression will take care of simplifyCmpInst
  return createExpression(I);
}

// Substitute and symbolize the value before value numbering.
const Expression *
NewGVN::performSymbolicEvaluation(Value *V,
                                  SmallPtrSetImpl<Value *> &Visited) const {
  const Expression *E = nullptr;
  if (auto *C = dyn_cast<Constant>(V))
    E = createConstantExpression(C);
  else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
    E = createVariableExpression(V);
  } else {
    // TODO: memory intrinsics.
    // TODO: Some day, we should do the forward propagation and reassociation
    // parts of the algorithm.
    auto *I = cast<Instruction>(V);
    switch (I->getOpcode()) {
    case Instruction::ExtractValue:
    case Instruction::InsertValue:
      E = performSymbolicAggrValueEvaluation(I);
      break;
    case Instruction::PHI: {
      SmallVector<ValPair, 3> Ops;
      auto *PN = cast<PHINode>(I);
      for (unsigned i = 0; i < PN->getNumOperands(); ++i)
        Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
      // Sort to ensure the invariant createPHIExpression requires is met.
      sortPHIOps(Ops);
      E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
    } break;
    case Instruction::Call:
      E = performSymbolicCallEvaluation(I);
      break;
    case Instruction::Store:
      E = performSymbolicStoreEvaluation(I);
      break;
    case Instruction::Load:
      E = performSymbolicLoadEvaluation(I);
      break;
    case Instruction::BitCast:
    case Instruction::AddrSpaceCast:
      E = createExpression(I);
      break;
    case Instruction::ICmp:
    case Instruction::FCmp:
      E = performSymbolicCmpEvaluation(I);
      break;
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::Select:
    case Instruction::ExtractElement:
    case Instruction::InsertElement:
    case Instruction::ShuffleVector:
    case Instruction::GetElementPtr:
      E = createExpression(I);
      break;
    default:
      return nullptr;
    }
  }
  return E;
}

// Look up a container in a map, and then call a function for each thing in the
// found container.
template <typename Map, typename KeyType, typename Func>
void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
  const auto Result = M.find_as(Key);
  if (Result != M.end())
    for (typename Map::mapped_type::value_type Mapped : Result->second)
      F(Mapped);
}

// Look up a container of values/instructions in a map, and touch all the
// instructions in the container.  Then erase value from the map.
template <typename Map, typename KeyType>
void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
  const auto Result = M.find_as(Key);
  if (Result != M.end()) {
    for (const typename Map::mapped_type::value_type Mapped : Result->second)
      TouchedInstructions.set(InstrToDFSNum(Mapped));
    M.erase(Result);
  }
}

void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
  assert(User && To != User);
  if (isa<Instruction>(To))
    AdditionalUsers[To].insert(User);
}

void NewGVN::markUsersTouched(Value *V) {
  // Now mark the users as touched.
  for (auto *User : V->users()) {
    assert(isa<Instruction>(User) && "Use of value not within an instruction?");
    TouchedInstructions.set(InstrToDFSNum(User));
  }
  touchAndErase(AdditionalUsers, V);
}

void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
  LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
  MemoryToUsers[To].insert(U);
}

void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
  TouchedInstructions.set(MemoryToDFSNum(MA));
}

void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
  if (isa<MemoryUse>(MA))
    return;
  for (auto U : MA->users())
    TouchedInstructions.set(MemoryToDFSNum(U));
  touchAndErase(MemoryToUsers, MA);
}

// Add I to the set of users of a given predicate.
void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
  // Don't add temporary instructions to the user lists.
  if (AllTempInstructions.count(I))
    return;

  if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
    PredicateToUsers[PBranch->Condition].insert(I);
  else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
    PredicateToUsers[PAssume->Condition].insert(I);
}

// Touch all the predicates that depend on this instruction.
void NewGVN::markPredicateUsersTouched(Instruction *I) {
  touchAndErase(PredicateToUsers, I);
}

// Mark users affected by a memory leader change.
void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
  for (auto M : CC->memory())
    markMemoryDefTouched(M);
}

// Touch the instructions that need to be updated after a congruence class has a
// leader change, and mark changed values.
void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
  for (auto M : *CC) {
    if (auto *I = dyn_cast<Instruction>(M))
      TouchedInstructions.set(InstrToDFSNum(I));
    LeaderChanges.insert(M);
  }
}

// Give a range of things that have instruction DFS numbers, this will return
// the member of the range with the smallest dfs number.
template <class T, class Range>
T *NewGVN::getMinDFSOfRange(const Range &R) const {
  std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
  for (const auto X : R) {
    auto DFSNum = InstrToDFSNum(X);
    if (DFSNum < MinDFS.second)
      MinDFS = {X, DFSNum};
  }
  return MinDFS.first;
}

// This function returns the MemoryAccess that should be the next leader of
// congruence class CC, under the assumption that the current leader is going to
// disappear.
const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
  // TODO: If this ends up to slow, we can maintain a next memory leader like we
  // do for regular leaders.
  // Make sure there will be a leader to find.
  assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
  if (CC->getStoreCount() > 0) {
    if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
      return getMemoryAccess(NL);
    // Find the store with the minimum DFS number.
    auto *V = getMinDFSOfRange<Value>(make_filter_range(
        *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
    return getMemoryAccess(cast<StoreInst>(V));
  }
  assert(CC->getStoreCount() == 0);

  // Given our assertion, hitting this part must mean
  // !OldClass->memory_empty()
  if (CC->memory_size() == 1)
    return *CC->memory_begin();
  return getMinDFSOfRange<const MemoryPhi>(CC->memory());
}

// This function returns the next value leader of a congruence class, under the
// assumption that the current leader is going away.  This should end up being
// the next most dominating member.
Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
  // We don't need to sort members if there is only 1, and we don't care about
  // sorting the TOP class because everything either gets out of it or is
  // unreachable.

  if (CC->size() == 1 || CC == TOPClass) {
    return *(CC->begin());
  } else if (CC->getNextLeader().first) {
    ++NumGVNAvoidedSortedLeaderChanges;
    return CC->getNextLeader().first;
  } else {
    ++NumGVNSortedLeaderChanges;
    // NOTE: If this ends up to slow, we can maintain a dual structure for
    // member testing/insertion, or keep things mostly sorted, and sort only
    // here, or use SparseBitVector or ....
    return getMinDFSOfRange<Value>(*CC);
  }
}

// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
// the memory members, etc for the move.
//
// The invariants of this function are:
//
// - I must be moving to NewClass from OldClass
// - The StoreCount of OldClass and NewClass is expected to have been updated
//   for I already if it is a store.
// - The OldClass memory leader has not been updated yet if I was the leader.
void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
                                            MemoryAccess *InstMA,
                                            CongruenceClass *OldClass,
                                            CongruenceClass *NewClass) {
  // If the leader is I, and we had a representative MemoryAccess, it should
  // be the MemoryAccess of OldClass.
  assert((!InstMA || !OldClass->getMemoryLeader() ||
          OldClass->getLeader() != I ||
          MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
              MemoryAccessToClass.lookup(InstMA)) &&
         "Representative MemoryAccess mismatch");
  // First, see what happens to the new class
  if (!NewClass->getMemoryLeader()) {
    // Should be a new class, or a store becoming a leader of a new class.
    assert(NewClass->size() == 1 ||
           (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
    NewClass->setMemoryLeader(InstMA);
    // Mark it touched if we didn't just create a singleton
    LLVM_DEBUG(dbgs() << "Memory class leader change for class "
                      << NewClass->getID()
                      << " due to new memory instruction becoming leader\n");
    markMemoryLeaderChangeTouched(NewClass);
  }
  setMemoryClass(InstMA, NewClass);
  // Now, fixup the old class if necessary
  if (OldClass->getMemoryLeader() == InstMA) {
    if (!OldClass->definesNoMemory()) {
      OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
      LLVM_DEBUG(dbgs() << "Memory class leader change for class "
                        << OldClass->getID() << " to "
                        << *OldClass->getMemoryLeader()
                        << " due to removal of old leader " << *InstMA << "\n");
      markMemoryLeaderChangeTouched(OldClass);
    } else
      OldClass->setMemoryLeader(nullptr);
  }
}

// Move a value, currently in OldClass, to be part of NewClass
// Update OldClass and NewClass for the move (including changing leaders, etc).
void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
                                           CongruenceClass *OldClass,
                                           CongruenceClass *NewClass) {
  if (I == OldClass->getNextLeader().first)
    OldClass->resetNextLeader();

  OldClass->erase(I);
  NewClass->insert(I);

  if (NewClass->getLeader() != I)
    NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
  // Handle our special casing of stores.
  if (auto *SI = dyn_cast<StoreInst>(I)) {
    OldClass->decStoreCount();
    // Okay, so when do we want to make a store a leader of a class?
    // If we have a store defined by an earlier load, we want the earlier load
    // to lead the class.
    // If we have a store defined by something else, we want the store to lead
    // the class so everything else gets the "something else" as a value.
    // If we have a store as the single member of the class, we want the store
    // as the leader
    if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
      // If it's a store expression we are using, it means we are not equivalent
      // to something earlier.
      if (auto *SE = dyn_cast<StoreExpression>(E)) {
        NewClass->setStoredValue(SE->getStoredValue());
        markValueLeaderChangeTouched(NewClass);
        // Shift the new class leader to be the store
        LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
                          << NewClass->getID() << " from "
                          << *NewClass->getLeader() << " to  " << *SI
                          << " because store joined class\n");
        // If we changed the leader, we have to mark it changed because we don't
        // know what it will do to symbolic evaluation.
        NewClass->setLeader(SI);
      }
      // We rely on the code below handling the MemoryAccess change.
    }
    NewClass->incStoreCount();
  }
  // True if there is no memory instructions left in a class that had memory
  // instructions before.

  // If it's not a memory use, set the MemoryAccess equivalence
  auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
  if (InstMA)
    moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
  ValueToClass[I] = NewClass;
  // See if we destroyed the class or need to swap leaders.
  if (OldClass->empty() && OldClass != TOPClass) {
    if (OldClass->getDefiningExpr()) {
      LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
                        << " from table\n");
      // We erase it as an exact expression to make sure we don't just erase an
      // equivalent one.
      auto Iter = ExpressionToClass.find_as(
          ExactEqualsExpression(*OldClass->getDefiningExpr()));
      if (Iter != ExpressionToClass.end())
        ExpressionToClass.erase(Iter);
#ifdef EXPENSIVE_CHECKS
      assert(
          (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
          "We erased the expression we just inserted, which should not happen");
#endif
    }
  } else if (OldClass->getLeader() == I) {
    // When the leader changes, the value numbering of
    // everything may change due to symbolization changes, so we need to
    // reprocess.
    LLVM_DEBUG(dbgs() << "Value class leader change for class "
                      << OldClass->getID() << "\n");
    ++NumGVNLeaderChanges;
    // Destroy the stored value if there are no more stores to represent it.
    // Note that this is basically clean up for the expression removal that
    // happens below.  If we remove stores from a class, we may leave it as a
    // class of equivalent memory phis.
    if (OldClass->getStoreCount() == 0) {
      if (OldClass->getStoredValue())
        OldClass->setStoredValue(nullptr);
    }
    OldClass->setLeader(getNextValueLeader(OldClass));
    OldClass->resetNextLeader();
    markValueLeaderChangeTouched(OldClass);
  }
}

// For a given expression, mark the phi of ops instructions that could have
// changed as a result.
void NewGVN::markPhiOfOpsChanged(const Expression *E) {
  touchAndErase(ExpressionToPhiOfOps, E);
}

// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
  // This is guaranteed to return something, since it will at least find
  // TOP.

  CongruenceClass *IClass = ValueToClass.lookup(I);
  assert(IClass && "Should have found a IClass");
  // Dead classes should have been eliminated from the mapping.
  assert(!IClass->isDead() && "Found a dead class");

  CongruenceClass *EClass = nullptr;
  if (const auto *VE = dyn_cast<VariableExpression>(E)) {
    EClass = ValueToClass.lookup(VE->getVariableValue());
  } else if (isa<DeadExpression>(E)) {
    EClass = TOPClass;
  }
  if (!EClass) {
    auto lookupResult = ExpressionToClass.insert({E, nullptr});

    // If it's not in the value table, create a new congruence class.
    if (lookupResult.second) {
      CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
      auto place = lookupResult.first;
      place->second = NewClass;

      // Constants and variables should always be made the leader.
      if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
        NewClass->setLeader(CE->getConstantValue());
      } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
        StoreInst *SI = SE->getStoreInst();
        NewClass->setLeader(SI);
        NewClass->setStoredValue(SE->getStoredValue());
        // The RepMemoryAccess field will be filled in properly by the
        // moveValueToNewCongruenceClass call.
      } else {
        NewClass->setLeader(I);
      }
      assert(!isa<VariableExpression>(E) &&
             "VariableExpression should have been handled already");

      EClass = NewClass;
      LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
                        << " using expression " << *E << " at "
                        << NewClass->getID() << " and leader "
                        << *(NewClass->getLeader()));
      if (NewClass->getStoredValue())
        LLVM_DEBUG(dbgs() << " and stored value "
                          << *(NewClass->getStoredValue()));
      LLVM_DEBUG(dbgs() << "\n");
    } else {
      EClass = lookupResult.first->second;
      if (isa<ConstantExpression>(E))
        assert((isa<Constant>(EClass->getLeader()) ||
                (EClass->getStoredValue() &&
                 isa<Constant>(EClass->getStoredValue()))) &&
               "Any class with a constant expression should have a "
               "constant leader");

      assert(EClass && "Somehow don't have an eclass");

      assert(!EClass->isDead() && "We accidentally looked up a dead class");
    }
  }
  bool ClassChanged = IClass != EClass;
  bool LeaderChanged = LeaderChanges.erase(I);
  if (ClassChanged || LeaderChanged) {
    LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
                      << *E << "\n");
    if (ClassChanged) {
      moveValueToNewCongruenceClass(I, E, IClass, EClass);
      markPhiOfOpsChanged(E);
    }

    markUsersTouched(I);
    if (MemoryAccess *MA = getMemoryAccess(I))
      markMemoryUsersTouched(MA);
    if (auto *CI = dyn_cast<CmpInst>(I))
      markPredicateUsersTouched(CI);
  }
  // If we changed the class of the store, we want to ensure nothing finds the
  // old store expression.  In particular, loads do not compare against stored
  // value, so they will find old store expressions (and associated class
  // mappings) if we leave them in the table.
  if (ClassChanged && isa<StoreInst>(I)) {
    auto *OldE = ValueToExpression.lookup(I);
    // It could just be that the old class died. We don't want to erase it if we
    // just moved classes.
    if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
      // Erase this as an exact expression to ensure we don't erase expressions
      // equivalent to it.
      auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
      if (Iter != ExpressionToClass.end())
        ExpressionToClass.erase(Iter);
    }
  }
  ValueToExpression[I] = E;
}

// Process the fact that Edge (from, to) is reachable, including marking
// any newly reachable blocks and instructions for processing.
void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
  // Check if the Edge was reachable before.
  if (ReachableEdges.insert({From, To}).second) {
    // If this block wasn't reachable before, all instructions are touched.
    if (ReachableBlocks.insert(To).second) {
      LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
                        << " marked reachable\n");
      const auto &InstRange = BlockInstRange.lookup(To);
      TouchedInstructions.set(InstRange.first, InstRange.second);
    } else {
      LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
                        << " was reachable, but new edge {"
                        << getBlockName(From) << "," << getBlockName(To)
                        << "} to it found\n");

      // We've made an edge reachable to an existing block, which may
      // impact predicates. Otherwise, only mark the phi nodes as touched, as
      // they are the only thing that depend on new edges. Anything using their
      // values will get propagated to if necessary.
      if (MemoryAccess *MemPhi = getMemoryAccess(To))
        TouchedInstructions.set(InstrToDFSNum(MemPhi));

      // FIXME: We should just add a union op on a Bitvector and
      // SparseBitVector.  We can do it word by word faster than we are doing it
      // here.
      for (auto InstNum : RevisitOnReachabilityChange[To])
        TouchedInstructions.set(InstNum);
    }
  }
}

// Given a predicate condition (from a switch, cmp, or whatever) and a block,
// see if we know some constant value for it already.
Value *NewGVN::findConditionEquivalence(Value *Cond) const {
  auto Result = lookupOperandLeader(Cond);
  return isa<Constant>(Result) ? Result : nullptr;
}

// Process the outgoing edges of a block for reachability.
void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
  // Evaluate reachability of terminator instruction.
  Value *Cond;
  BasicBlock *TrueSucc, *FalseSucc;
  if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
    Value *CondEvaluated = findConditionEquivalence(Cond);
    if (!CondEvaluated) {
      if (auto *I = dyn_cast<Instruction>(Cond)) {
        const Expression *E = createExpression(I);
        if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
          CondEvaluated = CE->getConstantValue();
        }
      } else if (isa<ConstantInt>(Cond)) {
        CondEvaluated = Cond;
      }
    }
    ConstantInt *CI;
    if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
      if (CI->isOne()) {
        LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
                          << " evaluated to true\n");
        updateReachableEdge(B, TrueSucc);
      } else if (CI->isZero()) {
        LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
                          << " evaluated to false\n");
        updateReachableEdge(B, FalseSucc);
      }
    } else {
      updateReachableEdge(B, TrueSucc);
      updateReachableEdge(B, FalseSucc);
    }
  } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
    // For switches, propagate the case values into the case
    // destinations.

    Value *SwitchCond = SI->getCondition();
    Value *CondEvaluated = findConditionEquivalence(SwitchCond);
    // See if we were able to turn this switch statement into a constant.
    if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
      auto *CondVal = cast<ConstantInt>(CondEvaluated);
      // We should be able to get case value for this.
      auto Case = *SI->findCaseValue(CondVal);
      if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
        // We proved the value is outside of the range of the case.
        // We can't do anything other than mark the default dest as reachable,
        // and go home.
        updateReachableEdge(B, SI->getDefaultDest());
        return;
      }
      // Now get where it goes and mark it reachable.
      BasicBlock *TargetBlock = Case.getCaseSuccessor();
      updateReachableEdge(B, TargetBlock);
    } else {
      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
        BasicBlock *TargetBlock = SI->getSuccessor(i);
        updateReachableEdge(B, TargetBlock);
      }
    }
  } else {
    // Otherwise this is either unconditional, or a type we have no
    // idea about. Just mark successors as reachable.
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
      BasicBlock *TargetBlock = TI->getSuccessor(i);
      updateReachableEdge(B, TargetBlock);
    }

    // This also may be a memory defining terminator, in which case, set it
    // equivalent only to itself.
    //
    auto *MA = getMemoryAccess(TI);
    if (MA && !isa<MemoryUse>(MA)) {
      auto *CC = ensureLeaderOfMemoryClass(MA);
      if (setMemoryClass(MA, CC))
        markMemoryUsersTouched(MA);
    }
  }
}

// Remove the PHI of Ops PHI for I
void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
  InstrDFS.erase(PHITemp);
  // It's still a temp instruction. We keep it in the array so it gets erased.
  // However, it's no longer used by I, or in the block
  TempToBlock.erase(PHITemp);
  RealToTemp.erase(I);
  // We don't remove the users from the phi node uses. This wastes a little
  // time, but such is life.  We could use two sets to track which were there
  // are the start of NewGVN, and which were added, but right nowt he cost of
  // tracking is more than the cost of checking for more phi of ops.
}

// Add PHI Op in BB as a PHI of operations version of ExistingValue.
void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
                         Instruction *ExistingValue) {
  InstrDFS[Op] = InstrToDFSNum(ExistingValue);
  AllTempInstructions.insert(Op);
  TempToBlock[Op] = BB;
  RealToTemp[ExistingValue] = Op;
  // Add all users to phi node use, as they are now uses of the phi of ops phis
  // and may themselves be phi of ops.
  for (auto *U : ExistingValue->users())
    if (auto *UI = dyn_cast<Instruction>(U))
      PHINodeUses.insert(UI);
}

static bool okayForPHIOfOps(const Instruction *I) {
  if (!EnablePhiOfOps)
    return false;
  return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
         isa<LoadInst>(I);
}

bool NewGVN::OpIsSafeForPHIOfOpsHelper(
    Value *V, const BasicBlock *PHIBlock,
    SmallPtrSetImpl<const Value *> &Visited,
    SmallVectorImpl<Instruction *> &Worklist) {

  if (!isa<Instruction>(V))
    return true;
  auto OISIt = OpSafeForPHIOfOps.find(V);
  if (OISIt != OpSafeForPHIOfOps.end())
    return OISIt->second;

  // Keep walking until we either dominate the phi block, or hit a phi, or run
  // out of things to check.
  if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
    OpSafeForPHIOfOps.insert({V, true});
    return true;
  }
  // PHI in the same block.
  if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
    OpSafeForPHIOfOps.insert({V, false});
    return false;
  }

  auto *OrigI = cast<Instruction>(V);
  for (auto *Op : OrigI->operand_values()) {
    if (!isa<Instruction>(Op))
      continue;
    // Stop now if we find an unsafe operand.
    auto OISIt = OpSafeForPHIOfOps.find(OrigI);
    if (OISIt != OpSafeForPHIOfOps.end()) {
      if (!OISIt->second) {
        OpSafeForPHIOfOps.insert({V, false});
        return false;
      }
      continue;
    }
    if (!Visited.insert(Op).second)
      continue;
    Worklist.push_back(cast<Instruction>(Op));
  }
  return true;
}

// Return true if this operand will be safe to use for phi of ops.
//
// The reason some operands are unsafe is that we are not trying to recursively
// translate everything back through phi nodes.  We actually expect some lookups
// of expressions to fail.  In particular, a lookup where the expression cannot
// exist in the predecessor.  This is true even if the expression, as shown, can
// be determined to be constant.
bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
                                 SmallPtrSetImpl<const Value *> &Visited) {
  SmallVector<Instruction *, 4> Worklist;
  if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
    return false;
  while (!Worklist.empty()) {
    auto *I = Worklist.pop_back_val();
    if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
      return false;
  }
  OpSafeForPHIOfOps.insert({V, true});
  return true;
}

// Try to find a leader for instruction TransInst, which is a phi translated
// version of something in our original program.  Visited is used to ensure we
// don't infinite loop during translations of cycles.  OrigInst is the
// instruction in the original program, and PredBB is the predecessor we
// translated it through.
Value *NewGVN::findLeaderForInst(Instruction *TransInst,
                                 SmallPtrSetImpl<Value *> &Visited,
                                 MemoryAccess *MemAccess, Instruction *OrigInst,
                                 BasicBlock *PredBB) {
  unsigned IDFSNum = InstrToDFSNum(OrigInst);
  // Make sure it's marked as a temporary instruction.
  AllTempInstructions.insert(TransInst);
  // and make sure anything that tries to add it's DFS number is
  // redirected to the instruction we are making a phi of ops
  // for.
  TempToBlock.insert({TransInst, PredBB});
  InstrDFS.insert({TransInst, IDFSNum});

  const Expression *E = performSymbolicEvaluation(TransInst, Visited);
  InstrDFS.erase(TransInst);
  AllTempInstructions.erase(TransInst);
  TempToBlock.erase(TransInst);
  if (MemAccess)
    TempToMemory.erase(TransInst);
  if (!E)
    return nullptr;
  auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
  if (!FoundVal) {
    ExpressionToPhiOfOps[E].insert(OrigInst);
    LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
                      << " in block " << getBlockName(PredBB) << "\n");
    return nullptr;
  }
  if (auto *SI = dyn_cast<StoreInst>(FoundVal))
    FoundVal = SI->getValueOperand();
  return FoundVal;
}

// When we see an instruction that is an op of phis, generate the equivalent phi
// of ops form.
const Expression *
NewGVN::makePossiblePHIOfOps(Instruction *I,
                             SmallPtrSetImpl<Value *> &Visited) {
  if (!okayForPHIOfOps(I))
    return nullptr;

  if (!Visited.insert(I).second)
    return nullptr;
  // For now, we require the instruction be cycle free because we don't
  // *always* create a phi of ops for instructions that could be done as phi
  // of ops, we only do it if we think it is useful.  If we did do it all the
  // time, we could remove the cycle free check.
  if (!isCycleFree(I))
    return nullptr;

  SmallPtrSet<const Value *, 8> ProcessedPHIs;
  // TODO: We don't do phi translation on memory accesses because it's
  // complicated. For a load, we'd need to be able to simulate a new memoryuse,
  // which we don't have a good way of doing ATM.
  auto *MemAccess = getMemoryAccess(I);
  // If the memory operation is defined by a memory operation this block that
  // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
  // can't help, as it would still be killed by that memory operation.
  if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
      MemAccess->getDefiningAccess()->getBlock() == I->getParent())
    return nullptr;

  // Convert op of phis to phi of ops
  SmallPtrSet<const Value *, 10> VisitedOps;
  SmallVector<Value *, 4> Ops(I->operand_values());
  BasicBlock *SamePHIBlock = nullptr;
  PHINode *OpPHI = nullptr;
  if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
    return nullptr;
  for (auto *Op : Ops) {
    if (!isa<PHINode>(Op)) {
      auto *ValuePHI = RealToTemp.lookup(Op);
      if (!ValuePHI)
        continue;
      LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
      Op = ValuePHI;
    }
    OpPHI = cast<PHINode>(Op);
    if (!SamePHIBlock) {
      SamePHIBlock = getBlockForValue(OpPHI);
    } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
      LLVM_DEBUG(
          dbgs()
          << "PHIs for operands are not all in the same block, aborting\n");
      return nullptr;
    }
    // No point in doing this for one-operand phis.
    if (OpPHI->getNumOperands() == 1) {
      OpPHI = nullptr;
      continue;
    }
  }

  if (!OpPHI)
    return nullptr;

  SmallVector<ValPair, 4> PHIOps;
  SmallPtrSet<Value *, 4> Deps;
  auto *PHIBlock = getBlockForValue(OpPHI);
  RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
  for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
    auto *PredBB = OpPHI->getIncomingBlock(PredNum);
    Value *FoundVal = nullptr;
    SmallPtrSet<Value *, 4> CurrentDeps;
    // We could just skip unreachable edges entirely but it's tricky to do
    // with rewriting existing phi nodes.
    if (ReachableEdges.count({PredBB, PHIBlock})) {
      // Clone the instruction, create an expression from it that is
      // translated back into the predecessor, and see if we have a leader.
      Instruction *ValueOp = I->clone();
      if (MemAccess)
        TempToMemory.insert({ValueOp, MemAccess});
      bool SafeForPHIOfOps = true;
      VisitedOps.clear();
      for (auto &Op : ValueOp->operands()) {
        auto *OrigOp = &*Op;
        // When these operand changes, it could change whether there is a
        // leader for us or not, so we have to add additional users.
        if (isa<PHINode>(Op)) {
          Op = Op->DoPHITranslation(PHIBlock, PredBB);
          if (Op != OrigOp && Op != I)
            CurrentDeps.insert(Op);
        } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
          if (getBlockForValue(ValuePHI) == PHIBlock)
            Op = ValuePHI->getIncomingValueForBlock(PredBB);
        }
        // If we phi-translated the op, it must be safe.
        SafeForPHIOfOps =
            SafeForPHIOfOps &&
            (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
      }
      // FIXME: For those things that are not safe we could generate
      // expressions all the way down, and see if this comes out to a
      // constant.  For anything where that is true, and unsafe, we should
      // have made a phi-of-ops (or value numbered it equivalent to something)
      // for the pieces already.
      FoundVal = !SafeForPHIOfOps ? nullptr
                                  : findLeaderForInst(ValueOp, Visited,
                                                      MemAccess, I, PredBB);
      ValueOp->deleteValue();
      if (!FoundVal) {
        // We failed to find a leader for the current ValueOp, but this might
        // change in case of the translated operands change.
        if (SafeForPHIOfOps)
          for (auto Dep : CurrentDeps)
            addAdditionalUsers(Dep, I);

        return nullptr;
      }
      Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
    } else {
      LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
                        << getBlockName(PredBB)
                        << " because the block is unreachable\n");
      FoundVal = UndefValue::get(I->getType());
      RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
    }

    PHIOps.push_back({FoundVal, PredBB});
    LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
                      << getBlockName(PredBB) << "\n");
  }
  for (auto Dep : Deps)
    addAdditionalUsers(Dep, I);
  sortPHIOps(PHIOps);
  auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
  if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
    LLVM_DEBUG(
        dbgs()
        << "Not creating real PHI of ops because it simplified to existing "
           "value or constant\n");
    return E;
  }
  auto *ValuePHI = RealToTemp.lookup(I);
  bool NewPHI = false;
  if (!ValuePHI) {
    ValuePHI =
        PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
    addPhiOfOps(ValuePHI, PHIBlock, I);
    NewPHI = true;
    NumGVNPHIOfOpsCreated++;
  }
  if (NewPHI) {
    for (auto PHIOp : PHIOps)
      ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
  } else {
    TempToBlock[ValuePHI] = PHIBlock;
    unsigned int i = 0;
    for (auto PHIOp : PHIOps) {
      ValuePHI->setIncomingValue(i, PHIOp.first);
      ValuePHI->setIncomingBlock(i, PHIOp.second);
      ++i;
    }
  }
  RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
  LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
                    << "\n");

  return E;
}

// The algorithm initially places the values of the routine in the TOP
// congruence class. The leader of TOP is the undetermined value `undef`.
// When the algorithm has finished, values still in TOP are unreachable.
void NewGVN::initializeCongruenceClasses(Function &F) {
  NextCongruenceNum = 0;

  // Note that even though we use the live on entry def as a representative
  // MemoryAccess, it is *not* the same as the actual live on entry def. We
  // have no real equivalemnt to undef for MemoryAccesses, and so we really
  // should be checking whether the MemoryAccess is top if we want to know if it
  // is equivalent to everything.  Otherwise, what this really signifies is that
  // the access "it reaches all the way back to the beginning of the function"

  // Initialize all other instructions to be in TOP class.
  TOPClass = createCongruenceClass(nullptr, nullptr);
  TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
  //  The live on entry def gets put into it's own class
  MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
      createMemoryClass(MSSA->getLiveOnEntryDef());

  for (auto DTN : nodes(DT)) {
    BasicBlock *BB = DTN->getBlock();
    // All MemoryAccesses are equivalent to live on entry to start. They must
    // be initialized to something so that initial changes are noticed. For
    // the maximal answer, we initialize them all to be the same as
    // liveOnEntry.
    auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
    if (MemoryBlockDefs)
      for (const auto &Def : *MemoryBlockDefs) {
        MemoryAccessToClass[&Def] = TOPClass;
        auto *MD = dyn_cast<MemoryDef>(&Def);
        // Insert the memory phis into the member list.
        if (!MD) {
          const MemoryPhi *MP = cast<MemoryPhi>(&Def);
          TOPClass->memory_insert(MP);
          MemoryPhiState.insert({MP, MPS_TOP});
        }

        if (MD && isa<StoreInst>(MD->getMemoryInst()))
          TOPClass->incStoreCount();
      }

    // FIXME: This is trying to discover which instructions are uses of phi
    // nodes.  We should move this into one of the myriad of places that walk
    // all the operands already.
    for (auto &I : *BB) {
      if (isa<PHINode>(&I))
        for (auto *U : I.users())
          if (auto *UInst = dyn_cast<Instruction>(U))
            if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
              PHINodeUses.insert(UInst);
      // Don't insert void terminators into the class. We don't value number
      // them, and they just end up sitting in TOP.
      if (I.isTerminator() && I.getType()->isVoidTy())
        continue;
      TOPClass->insert(&I);
      ValueToClass[&I] = TOPClass;
    }
  }

  // Initialize arguments to be in their own unique congruence classes
  for (auto &FA : F.args())
    createSingletonCongruenceClass(&FA);
}

void NewGVN::cleanupTables() {
  for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
    LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
                      << " has " << CongruenceClasses[i]->size()
                      << " members\n");
    // Make sure we delete the congruence class (probably worth switching to
    // a unique_ptr at some point.
    delete CongruenceClasses[i];
    CongruenceClasses[i] = nullptr;
  }

  // Destroy the value expressions
  SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
                                         AllTempInstructions.end());
  AllTempInstructions.clear();

  // We have to drop all references for everything first, so there are no uses
  // left as we delete them.
  for (auto *I : TempInst) {
    I->dropAllReferences();
  }

  while (!TempInst.empty()) {
    auto *I = TempInst.back();
    TempInst.pop_back();
    I->deleteValue();
  }

  ValueToClass.clear();
  ArgRecycler.clear(ExpressionAllocator);
  ExpressionAllocator.Reset();
  CongruenceClasses.clear();
  ExpressionToClass.clear();
  ValueToExpression.clear();
  RealToTemp.clear();
  AdditionalUsers.clear();
  ExpressionToPhiOfOps.clear();
  TempToBlock.clear();
  TempToMemory.clear();
  PHINodeUses.clear();
  OpSafeForPHIOfOps.clear();
  ReachableBlocks.clear();
  ReachableEdges.clear();
#ifndef NDEBUG
  ProcessedCount.clear();
#endif
  InstrDFS.clear();
  InstructionsToErase.clear();
  DFSToInstr.clear();
  BlockInstRange.clear();
  TouchedInstructions.clear();
  MemoryAccessToClass.clear();
  PredicateToUsers.clear();
  MemoryToUsers.clear();
  RevisitOnReachabilityChange.clear();
}

// Assign local DFS number mapping to instructions, and leave space for Value
// PHI's.
std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
                                                       unsigned Start) {
  unsigned End = Start;
  if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
    InstrDFS[MemPhi] = End++;
    DFSToInstr.emplace_back(MemPhi);
  }

  // Then the real block goes next.
  for (auto &I : *B) {
    // There's no need to call isInstructionTriviallyDead more than once on
    // an instruction. Therefore, once we know that an instruction is dead
    // we change its DFS number so that it doesn't get value numbered.
    if (isInstructionTriviallyDead(&I, TLI)) {
      InstrDFS[&I] = 0;
      LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
      markInstructionForDeletion(&I);
      continue;
    }
    if (isa<PHINode>(&I))
      RevisitOnReachabilityChange[B].set(End);
    InstrDFS[&I] = End++;
    DFSToInstr.emplace_back(&I);
  }

  // All of the range functions taken half-open ranges (open on the end side).
  // So we do not subtract one from count, because at this point it is one
  // greater than the last instruction.
  return std::make_pair(Start, End);
}

void NewGVN::updateProcessedCount(const Value *V) {
#ifndef NDEBUG
  if (ProcessedCount.count(V) == 0) {
    ProcessedCount.insert({V, 1});
  } else {
    ++ProcessedCount[V];
    assert(ProcessedCount[V] < 100 &&
           "Seem to have processed the same Value a lot");
  }
#endif
}

// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
  // If all the arguments are the same, the MemoryPhi has the same value as the
  // argument.  Filter out unreachable blocks and self phis from our operands.
  // TODO: We could do cycle-checking on the memory phis to allow valueizing for
  // self-phi checking.
  const BasicBlock *PHIBlock = MP->getBlock();
  auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
    return cast<MemoryAccess>(U) != MP &&
           !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
           ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
  });
  // If all that is left is nothing, our memoryphi is undef. We keep it as
  // InitialClass.  Note: The only case this should happen is if we have at
  // least one self-argument.
  if (Filtered.begin() == Filtered.end()) {
    if (setMemoryClass(MP, TOPClass))
      markMemoryUsersTouched(MP);
    return;
  }

  // Transform the remaining operands into operand leaders.
  // FIXME: mapped_iterator should have a range version.
  auto LookupFunc = [&](const Use &U) {
    return lookupMemoryLeader(cast<MemoryAccess>(U));
  };
  auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
  auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);

  // and now check if all the elements are equal.
  // Sadly, we can't use std::equals since these are random access iterators.
  const auto *AllSameValue = *MappedBegin;
  ++MappedBegin;
  bool AllEqual = std::all_of(
      MappedBegin, MappedEnd,
      [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });

  if (AllEqual)
    LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
                      << "\n");
  else
    LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
  // If it's equal to something, it's in that class. Otherwise, it has to be in
  // a class where it is the leader (other things may be equivalent to it, but
  // it needs to start off in its own class, which means it must have been the
  // leader, and it can't have stopped being the leader because it was never
  // removed).
  CongruenceClass *CC =
      AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
  auto OldState = MemoryPhiState.lookup(MP);
  assert(OldState != MPS_Invalid && "Invalid memory phi state");
  auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
  MemoryPhiState[MP] = NewState;
  if (setMemoryClass(MP, CC) || OldState != NewState)
    markMemoryUsersTouched(MP);
}

// Value number a single instruction, symbolically evaluating, performing
// congruence finding, and updating mappings.
void NewGVN::valueNumberInstruction(Instruction *I) {
  LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
  if (!I->isTerminator()) {
    const Expression *Symbolized = nullptr;
    SmallPtrSet<Value *, 2> Visited;
    if (DebugCounter::shouldExecute(VNCounter)) {
      Symbolized = performSymbolicEvaluation(I, Visited);
      // Make a phi of ops if necessary
      if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
          !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
        auto *PHIE = makePossiblePHIOfOps(I, Visited);
        // If we created a phi of ops, use it.
        // If we couldn't create one, make sure we don't leave one lying around
        if (PHIE) {
          Symbolized = PHIE;
        } else if (auto *Op = RealToTemp.lookup(I)) {
          removePhiOfOps(I, Op);
        }
      }
    } else {
      // Mark the instruction as unused so we don't value number it again.
      InstrDFS[I] = 0;
    }
    // If we couldn't come up with a symbolic expression, use the unknown
    // expression
    if (Symbolized == nullptr)
      Symbolized = createUnknownExpression(I);
    performCongruenceFinding(I, Symbolized);
  } else {
    // Handle terminators that return values. All of them produce values we
    // don't currently understand.  We don't place non-value producing
    // terminators in a class.
    if (!I->getType()->isVoidTy()) {
      auto *Symbolized = createUnknownExpression(I);
      performCongruenceFinding(I, Symbolized);
    }
    processOutgoingEdges(I, I->getParent());
  }
}

// Check if there is a path, using single or equal argument phi nodes, from
// First to Second.
bool NewGVN::singleReachablePHIPath(
    SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
    const MemoryAccess *Second) const {
  if (First == Second)
    return true;
  if (MSSA->isLiveOnEntryDef(First))
    return false;

  // This is not perfect, but as we're just verifying here, we can live with
  // the loss of precision. The real solution would be that of doing strongly
  // connected component finding in this routine, and it's probably not worth
  // the complexity for the time being. So, we just keep a set of visited
  // MemoryAccess and return true when we hit a cycle.
  if (Visited.count(First))
    return true;
  Visited.insert(First);

  const auto *EndDef = First;
  for (auto *ChainDef : optimized_def_chain(First)) {
    if (ChainDef == Second)
      return true;
    if (MSSA->isLiveOnEntryDef(ChainDef))
      return false;
    EndDef = ChainDef;
  }
  auto *MP = cast<MemoryPhi>(EndDef);
  auto ReachableOperandPred = [&](const Use &U) {
    return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
  };
  auto FilteredPhiArgs =
      make_filter_range(MP->operands(), ReachableOperandPred);
  SmallVector<const Value *, 32> OperandList;
  llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
  bool Okay = is_splat(OperandList);
  if (Okay)
    return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
                                  Second);
  return false;
}

// Verify the that the memory equivalence table makes sense relative to the
// congruence classes.  Note that this checking is not perfect, and is currently
// subject to very rare false negatives. It is only useful for
// testing/debugging.
void NewGVN::verifyMemoryCongruency() const {
#ifndef NDEBUG
  // Verify that the memory table equivalence and memory member set match
  for (const auto *CC : CongruenceClasses) {
    if (CC == TOPClass || CC->isDead())
      continue;
    if (CC->getStoreCount() != 0) {
      assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
             "Any class with a store as a leader should have a "
             "representative stored value");
      assert(CC->getMemoryLeader() &&
             "Any congruence class with a store should have a "
             "representative access");
    }

    if (CC->getMemoryLeader())
      assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
             "Representative MemoryAccess does not appear to be reverse "
             "mapped properly");
    for (auto M : CC->memory())
      assert(MemoryAccessToClass.lookup(M) == CC &&
             "Memory member does not appear to be reverse mapped properly");
  }

  // Anything equivalent in the MemoryAccess table should be in the same
  // congruence class.

  // Filter out the unreachable and trivially dead entries, because they may
  // never have been updated if the instructions were not processed.
  auto ReachableAccessPred =
      [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
        bool Result = ReachableBlocks.count(Pair.first->getBlock());
        if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
            MemoryToDFSNum(Pair.first) == 0)
          return false;
        if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
          return !isInstructionTriviallyDead(MemDef->getMemoryInst());

        // We could have phi nodes which operands are all trivially dead,
        // so we don't process them.
        if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
          for (auto &U : MemPHI->incoming_values()) {
            if (auto *I = dyn_cast<Instruction>(&*U)) {
              if (!isInstructionTriviallyDead(I))
                return true;
            }
          }
          return false;
        }

        return true;
      };

  auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
  for (auto KV : Filtered) {
    if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
      auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
      if (FirstMUD && SecondMUD) {
        SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
        assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
                ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
                    ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
               "The instructions for these memory operations should have "
               "been in the same congruence class or reachable through"
               "a single argument phi");
      }
    } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
      // We can only sanely verify that MemoryDefs in the operand list all have
      // the same class.
      auto ReachableOperandPred = [&](const Use &U) {
        return ReachableEdges.count(
                   {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
               isa<MemoryDef>(U);

      };
      // All arguments should in the same class, ignoring unreachable arguments
      auto FilteredPhiArgs =
          make_filter_range(FirstMP->operands(), ReachableOperandPred);
      SmallVector<const CongruenceClass *, 16> PhiOpClasses;
      std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
                     std::back_inserter(PhiOpClasses), [&](const Use &U) {
                       const MemoryDef *MD = cast<MemoryDef>(U);
                       return ValueToClass.lookup(MD->getMemoryInst());
                     });
      assert(is_splat(PhiOpClasses) &&
             "All MemoryPhi arguments should be in the same class");
    }
  }
#endif
}

// Verify that the sparse propagation we did actually found the maximal fixpoint
// We do this by storing the value to class mapping, touching all instructions,
// and redoing the iteration to see if anything changed.
void NewGVN::verifyIterationSettled(Function &F) {
#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
  if (DebugCounter::isCounterSet(VNCounter))
    DebugCounter::setCounterValue(VNCounter, StartingVNCounter);

  // Note that we have to store the actual classes, as we may change existing
  // classes during iteration.  This is because our memory iteration propagation
  // is not perfect, and so may waste a little work.  But it should generate
  // exactly the same congruence classes we have now, with different IDs.
  std::map<const Value *, CongruenceClass> BeforeIteration;

  for (auto &KV : ValueToClass) {
    if (auto *I = dyn_cast<Instruction>(KV.first))
      // Skip unused/dead instructions.
      if (InstrToDFSNum(I) == 0)
        continue;
    BeforeIteration.insert({KV.first, *KV.second});
  }

  TouchedInstructions.set();
  TouchedInstructions.reset(0);
  iterateTouchedInstructions();
  DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
      EqualClasses;
  for (const auto &KV : ValueToClass) {
    if (auto *I = dyn_cast<Instruction>(KV.first))
      // Skip unused/dead instructions.
      if (InstrToDFSNum(I) == 0)
        continue;
    // We could sink these uses, but i think this adds a bit of clarity here as
    // to what we are comparing.
    auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
    auto *AfterCC = KV.second;
    // Note that the classes can't change at this point, so we memoize the set
    // that are equal.
    if (!EqualClasses.count({BeforeCC, AfterCC})) {
      assert(BeforeCC->isEquivalentTo(AfterCC) &&
             "Value number changed after main loop completed!");
      EqualClasses.insert({BeforeCC, AfterCC});
    }
  }
#endif
}

// Verify that for each store expression in the expression to class mapping,
// only the latest appears, and multiple ones do not appear.
// Because loads do not use the stored value when doing equality with stores,
// if we don't erase the old store expressions from the table, a load can find
// a no-longer valid StoreExpression.
void NewGVN::verifyStoreExpressions() const {
#ifndef NDEBUG
  // This is the only use of this, and it's not worth defining a complicated
  // densemapinfo hash/equality function for it.
  std::set<
      std::pair<const Value *,
                std::tuple<const Value *, const CongruenceClass *, Value *>>>
      StoreExpressionSet;
  for (const auto &KV : ExpressionToClass) {
    if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
      // Make sure a version that will conflict with loads is not already there
      auto Res = StoreExpressionSet.insert(
          {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
                                              SE->getStoredValue())});
      bool Okay = Res.second;
      // It's okay to have the same expression already in there if it is
      // identical in nature.
      // This can happen when the leader of the stored value changes over time.
      if (!Okay)
        Okay = (std::get<1>(Res.first->second) == KV.second) &&
               (lookupOperandLeader(std::get<2>(Res.first->second)) ==
                lookupOperandLeader(SE->getStoredValue()));
      assert(Okay && "Stored expression conflict exists in expression table");
      auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
      assert(ValueExpr && ValueExpr->equals(*SE) &&
             "StoreExpression in ExpressionToClass is not latest "
             "StoreExpression for value");
    }
  }
#endif
}

// This is the main value numbering loop, it iterates over the initial touched
// instruction set, propagating value numbers, marking things touched, etc,
// until the set of touched instructions is completely empty.
void NewGVN::iterateTouchedInstructions() {
  unsigned int Iterations = 0;
  // Figure out where touchedinstructions starts
  int FirstInstr = TouchedInstructions.find_first();
  // Nothing set, nothing to iterate, just return.
  if (FirstInstr == -1)
    return;
  const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
  while (TouchedInstructions.any()) {
    ++Iterations;
    // Walk through all the instructions in all the blocks in RPO.
    // TODO: As we hit a new block, we should push and pop equalities into a
    // table lookupOperandLeader can use, to catch things PredicateInfo
    // might miss, like edge-only equivalences.
    for (unsigned InstrNum : TouchedInstructions.set_bits()) {

      // This instruction was found to be dead. We don't bother looking
      // at it again.
      if (InstrNum == 0) {
        TouchedInstructions.reset(InstrNum);
        continue;
      }

      Value *V = InstrFromDFSNum(InstrNum);
      const BasicBlock *CurrBlock = getBlockForValue(V);

      // If we hit a new block, do reachability processing.
      if (CurrBlock != LastBlock) {
        LastBlock = CurrBlock;
        bool BlockReachable = ReachableBlocks.count(CurrBlock);
        const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);

        // If it's not reachable, erase any touched instructions and move on.
        if (!BlockReachable) {
          TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
          LLVM_DEBUG(dbgs() << "Skipping instructions in block "
                            << getBlockName(CurrBlock)
                            << " because it is unreachable\n");
          continue;
        }
        updateProcessedCount(CurrBlock);
      }
      // Reset after processing (because we may mark ourselves as touched when
      // we propagate equalities).
      TouchedInstructions.reset(InstrNum);

      if (auto *MP = dyn_cast<MemoryPhi>(V)) {
        LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
        valueNumberMemoryPhi(MP);
      } else if (auto *I = dyn_cast<Instruction>(V)) {
        valueNumberInstruction(I);
      } else {
        llvm_unreachable("Should have been a MemoryPhi or Instruction");
      }
      updateProcessedCount(V);
    }
  }
  NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
}

// This is the main transformation entry point.
bool NewGVN::runGVN() {
  if (DebugCounter::isCounterSet(VNCounter))
    StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
  bool Changed = false;
  NumFuncArgs = F.arg_size();
  MSSAWalker = MSSA->getWalker();
  SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();

  // Count number of instructions for sizing of hash tables, and come
  // up with a global dfs numbering for instructions.
  unsigned ICount = 1;
  // Add an empty instruction to account for the fact that we start at 1
  DFSToInstr.emplace_back(nullptr);
  // Note: We want ideal RPO traversal of the blocks, which is not quite the
  // same as dominator tree order, particularly with regard whether backedges
  // get visited first or second, given a block with multiple successors.
  // If we visit in the wrong order, we will end up performing N times as many
  // iterations.
  // The dominator tree does guarantee that, for a given dom tree node, it's
  // parent must occur before it in the RPO ordering. Thus, we only need to sort
  // the siblings.
  ReversePostOrderTraversal<Function *> RPOT(&F);
  unsigned Counter = 0;
  for (auto &B : RPOT) {
    auto *Node = DT->getNode(B);
    assert(Node && "RPO and Dominator tree should have same reachability");
    RPOOrdering[Node] = ++Counter;
  }
  // Sort dominator tree children arrays into RPO.
  for (auto &B : RPOT) {
    auto *Node = DT->getNode(B);
    if (Node->getChildren().size() > 1)
      llvm::sort(Node->begin(), Node->end(),
                 [&](const DomTreeNode *A, const DomTreeNode *B) {
                   return RPOOrdering[A] < RPOOrdering[B];
                 });
  }

  // Now a standard depth first ordering of the domtree is equivalent to RPO.
  for (auto DTN : depth_first(DT->getRootNode())) {
    BasicBlock *B = DTN->getBlock();
    const auto &BlockRange = assignDFSNumbers(B, ICount);
    BlockInstRange.insert({B, BlockRange});
    ICount += BlockRange.second - BlockRange.first;
  }
  initializeCongruenceClasses(F);

  TouchedInstructions.resize(ICount);
  // Ensure we don't end up resizing the expressionToClass map, as
  // that can be quite expensive. At most, we have one expression per
  // instruction.
  ExpressionToClass.reserve(ICount);

  // Initialize the touched instructions to include the entry block.
  const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
  TouchedInstructions.set(InstRange.first, InstRange.second);
  LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
                    << " marked reachable\n");
  ReachableBlocks.insert(&F.getEntryBlock());

  iterateTouchedInstructions();
  verifyMemoryCongruency();
  verifyIterationSettled(F);
  verifyStoreExpressions();

  Changed |= eliminateInstructions(F);

  // Delete all instructions marked for deletion.
  for (Instruction *ToErase : InstructionsToErase) {
    if (!ToErase->use_empty())
      ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));

    assert(ToErase->getParent() &&
           "BB containing ToErase deleted unexpectedly!");
    ToErase->eraseFromParent();
  }
  Changed |= !InstructionsToErase.empty();

  // Delete all unreachable blocks.
  auto UnreachableBlockPred = [&](const BasicBlock &BB) {
    return !ReachableBlocks.count(&BB);
  };

  for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
    LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
                      << " is unreachable\n");
    deleteInstructionsInBlock(&BB);
    Changed = true;
  }

  cleanupTables();
  return Changed;
}

struct NewGVN::ValueDFS {
  int DFSIn = 0;
  int DFSOut = 0;
  int LocalNum = 0;

  // Only one of Def and U will be set.
  // The bool in the Def tells us whether the Def is the stored value of a
  // store.
  PointerIntPair<Value *, 1, bool> Def;
  Use *U = nullptr;

  bool operator<(const ValueDFS &Other) const {
    // It's not enough that any given field be less than - we have sets
    // of fields that need to be evaluated together to give a proper ordering.
    // For example, if you have;
    // DFS (1, 3)
    // Val 0
    // DFS (1, 2)
    // Val 50
    // We want the second to be less than the first, but if we just go field
    // by field, we will get to Val 0 < Val 50 and say the first is less than
    // the second. We only want it to be less than if the DFS orders are equal.
    //
    // Each LLVM instruction only produces one value, and thus the lowest-level
    // differentiator that really matters for the stack (and what we use as as a
    // replacement) is the local dfs number.
    // Everything else in the structure is instruction level, and only affects
    // the order in which we will replace operands of a given instruction.
    //
    // For a given instruction (IE things with equal dfsin, dfsout, localnum),
    // the order of replacement of uses does not matter.
    // IE given,
    //  a = 5
    //  b = a + a
    // When you hit b, you will have two valuedfs with the same dfsin, out, and
    // localnum.
    // The .val will be the same as well.
    // The .u's will be different.
    // You will replace both, and it does not matter what order you replace them
    // in (IE whether you replace operand 2, then operand 1, or operand 1, then
    // operand 2).
    // Similarly for the case of same dfsin, dfsout, localnum, but different
    // .val's
    //  a = 5
    //  b  = 6
    //  c = a + b
    // in c, we will a valuedfs for a, and one for b,with everything the same
    // but .val  and .u.
    // It does not matter what order we replace these operands in.
    // You will always end up with the same IR, and this is guaranteed.
    return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
           std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
                    Other.U);
  }
};

// This function converts the set of members for a congruence class from values,
// to sets of defs and uses with associated DFS info.  The total number of
// reachable uses for each value is stored in UseCount, and instructions that
// seem
// dead (have no non-dead uses) are stored in ProbablyDead.
void NewGVN::convertClassToDFSOrdered(
    const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
    DenseMap<const Value *, unsigned int> &UseCounts,
    SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
  for (auto D : Dense) {
    // First add the value.
    BasicBlock *BB = getBlockForValue(D);
    // Constants are handled prior to ever calling this function, so
    // we should only be left with instructions as members.
    assert(BB && "Should have figured out a basic block for value");
    ValueDFS VDDef;
    DomTreeNode *DomNode = DT->getNode(BB);
    VDDef.DFSIn = DomNode->getDFSNumIn();
    VDDef.DFSOut = DomNode->getDFSNumOut();
    // If it's a store, use the leader of the value operand, if it's always
    // available, or the value operand.  TODO: We could do dominance checks to
    // find a dominating leader, but not worth it ATM.
    if (auto *SI = dyn_cast<StoreInst>(D)) {
      auto Leader = lookupOperandLeader(SI->getValueOperand());
      if (alwaysAvailable(Leader)) {
        VDDef.Def.setPointer(Leader);
      } else {
        VDDef.Def.setPointer(SI->getValueOperand());
        VDDef.Def.setInt(true);
      }
    } else {
      VDDef.Def.setPointer(D);
    }
    assert(isa<Instruction>(D) &&
           "The dense set member should always be an instruction");
    Instruction *Def = cast<Instruction>(D);
    VDDef.LocalNum = InstrToDFSNum(D);
    DFSOrderedSet.push_back(VDDef);
    // If there is a phi node equivalent, add it
    if (auto *PN = RealToTemp.lookup(Def)) {
      auto *PHIE =
          dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
      if (PHIE) {
        VDDef.Def.setInt(false);
        VDDef.Def.setPointer(PN);
        VDDef.LocalNum = 0;
        DFSOrderedSet.push_back(VDDef);
      }
    }

    unsigned int UseCount = 0;
    // Now add the uses.
    for (auto &U : Def->uses()) {
      if (auto *I = dyn_cast<Instruction>(U.getUser())) {
        // Don't try to replace into dead uses
        if (InstructionsToErase.count(I))
          continue;
        ValueDFS VDUse;
        // Put the phi node uses in the incoming block.
        BasicBlock *IBlock;
        if (auto *P = dyn_cast<PHINode>(I)) {
          IBlock = P->getIncomingBlock(U);
          // Make phi node users appear last in the incoming block
          // they are from.
          VDUse.LocalNum = InstrDFS.size() + 1;
        } else {
          IBlock = getBlockForValue(I);
          VDUse.LocalNum = InstrToDFSNum(I);
        }

        // Skip uses in unreachable blocks, as we're going
        // to delete them.
        if (ReachableBlocks.count(IBlock) == 0)
          continue;

        DomTreeNode *DomNode = DT->getNode(IBlock);
        VDUse.DFSIn = DomNode->getDFSNumIn();
        VDUse.DFSOut = DomNode->getDFSNumOut();
        VDUse.U = &U;
        ++UseCount;
        DFSOrderedSet.emplace_back(VDUse);
      }
    }

    // If there are no uses, it's probably dead (but it may have side-effects,
    // so not definitely dead. Otherwise, store the number of uses so we can
    // track if it becomes dead later).
    if (UseCount == 0)
      ProbablyDead.insert(Def);
    else
      UseCounts[Def] = UseCount;
  }
}

// This function converts the set of members for a congruence class from values,
// to the set of defs for loads and stores, with associated DFS info.
void NewGVN::convertClassToLoadsAndStores(
    const CongruenceClass &Dense,
    SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
  for (auto D : Dense) {
    if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
      continue;

    BasicBlock *BB = getBlockForValue(D);
    ValueDFS VD;
    DomTreeNode *DomNode = DT->getNode(BB);
    VD.DFSIn = DomNode->getDFSNumIn();
    VD.DFSOut = DomNode->getDFSNumOut();
    VD.Def.setPointer(D);

    // If it's an instruction, use the real local dfs number.
    if (auto *I = dyn_cast<Instruction>(D))
      VD.LocalNum = InstrToDFSNum(I);
    else
      llvm_unreachable("Should have been an instruction");

    LoadsAndStores.emplace_back(VD);
  }
}

static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
  patchReplacementInstruction(I, Repl);
  I->replaceAllUsesWith(Repl);
}

void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
  LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
  ++NumGVNBlocksDeleted;

  // Delete the instructions backwards, as it has a reduced likelihood of having
  // to update as many def-use and use-def chains. Start after the terminator.
  auto StartPoint = BB->rbegin();
  ++StartPoint;
  // Note that we explicitly recalculate BB->rend() on each iteration,
  // as it may change when we remove the first instruction.
  for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
    Instruction &Inst = *I++;
    if (!Inst.use_empty())
      Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
    if (isa<LandingPadInst>(Inst))
      continue;

    Inst.eraseFromParent();
    ++NumGVNInstrDeleted;
  }
  // Now insert something that simplifycfg will turn into an unreachable.
  Type *Int8Ty = Type::getInt8Ty(BB->getContext());
  new StoreInst(UndefValue::get(Int8Ty),
                Constant::getNullValue(Int8Ty->getPointerTo()),
                BB->getTerminator());
}

void NewGVN::markInstructionForDeletion(Instruction *I) {
  LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
  InstructionsToErase.insert(I);
}

void NewGVN::replaceInstruction(Instruction *I, Value *V) {
  LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
  patchAndReplaceAllUsesWith(I, V);
  // We save the actual erasing to avoid invalidating memory
  // dependencies until we are done with everything.
  markInstructionForDeletion(I);
}

namespace {

// This is a stack that contains both the value and dfs info of where
// that value is valid.
class ValueDFSStack {
public:
  Value *back() const { return ValueStack.back(); }
  std::pair<int, int> dfs_back() const { return DFSStack.back(); }

  void push_back(Value *V, int DFSIn, int DFSOut) {
    ValueStack.emplace_back(V);
    DFSStack.emplace_back(DFSIn, DFSOut);
  }

  bool empty() const { return DFSStack.empty(); }

  bool isInScope(int DFSIn, int DFSOut) const {
    if (empty())
      return false;
    return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
  }

  void popUntilDFSScope(int DFSIn, int DFSOut) {

    // These two should always be in sync at this point.
    assert(ValueStack.size() == DFSStack.size() &&
           "Mismatch between ValueStack and DFSStack");
    while (
        !DFSStack.empty() &&
        !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
      DFSStack.pop_back();
      ValueStack.pop_back();
    }
  }

private:
  SmallVector<Value *, 8> ValueStack;
  SmallVector<std::pair<int, int>, 8> DFSStack;
};

} // end anonymous namespace

// Given an expression, get the congruence class for it.
CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
  if (auto *VE = dyn_cast<VariableExpression>(E))
    return ValueToClass.lookup(VE->getVariableValue());
  else if (isa<DeadExpression>(E))
    return TOPClass;
  return ExpressionToClass.lookup(E);
}

// Given a value and a basic block we are trying to see if it is available in,
// see if the value has a leader available in that block.
Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
                                  const Instruction *OrigInst,
                                  const BasicBlock *BB) const {
  // It would already be constant if we could make it constant
  if (auto *CE = dyn_cast<ConstantExpression>(E))
    return CE->getConstantValue();
  if (auto *VE = dyn_cast<VariableExpression>(E)) {
    auto *V = VE->getVariableValue();
    if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
      return VE->getVariableValue();
  }

  auto *CC = getClassForExpression(E);
  if (!CC)
    return nullptr;
  if (alwaysAvailable(CC->getLeader()))
    return CC->getLeader();

  for (auto Member : *CC) {
    auto *MemberInst = dyn_cast<Instruction>(Member);
    if (MemberInst == OrigInst)
      continue;
    // Anything that isn't an instruction is always available.
    if (!MemberInst)
      return Member;
    if (DT->dominates(getBlockForValue(MemberInst), BB))
      return Member;
  }
  return nullptr;
}

bool NewGVN::eliminateInstructions(Function &F) {
  // This is a non-standard eliminator. The normal way to eliminate is
  // to walk the dominator tree in order, keeping track of available
  // values, and eliminating them.  However, this is mildly
  // pointless. It requires doing lookups on every instruction,
  // regardless of whether we will ever eliminate it.  For
  // instructions part of most singleton congruence classes, we know we
  // will never eliminate them.

  // Instead, this eliminator looks at the congruence classes directly, sorts
  // them into a DFS ordering of the dominator tree, and then we just
  // perform elimination straight on the sets by walking the congruence
  // class member uses in order, and eliminate the ones dominated by the
  // last member.   This is worst case O(E log E) where E = number of
  // instructions in a single congruence class.  In theory, this is all
  // instructions.   In practice, it is much faster, as most instructions are
  // either in singleton congruence classes or can't possibly be eliminated
  // anyway (if there are no overlapping DFS ranges in class).
  // When we find something not dominated, it becomes the new leader
  // for elimination purposes.
  // TODO: If we wanted to be faster, We could remove any members with no
  // overlapping ranges while sorting, as we will never eliminate anything
  // with those members, as they don't dominate anything else in our set.

  bool AnythingReplaced = false;

  // Since we are going to walk the domtree anyway, and we can't guarantee the
  // DFS numbers are updated, we compute some ourselves.
  DT->updateDFSNumbers();

  // Go through all of our phi nodes, and kill the arguments associated with
  // unreachable edges.
  auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
    for (auto &Operand : PHI->incoming_values())
      if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
        LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
                          << " for block "
                          << getBlockName(PHI->getIncomingBlock(Operand))
                          << " with undef due to it being unreachable\n");
        Operand.set(UndefValue::get(PHI->getType()));
      }
  };
  // Replace unreachable phi arguments.
  // At this point, RevisitOnReachabilityChange only contains:
  //
  // 1. PHIs
  // 2. Temporaries that will convert to PHIs
  // 3. Operations that are affected by an unreachable edge but do not fit into
  // 1 or 2 (rare).
  // So it is a slight overshoot of what we want. We could make it exact by
  // using two SparseBitVectors per block.
  DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
  for (auto &KV : ReachableEdges)
    ReachablePredCount[KV.getEnd()]++;
  for (auto &BBPair : RevisitOnReachabilityChange) {
    for (auto InstNum : BBPair.second) {
      auto *Inst = InstrFromDFSNum(InstNum);
      auto *PHI = dyn_cast<PHINode>(Inst);
      PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
      if (!PHI)
        continue;
      auto *BB = BBPair.first;
      if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
        ReplaceUnreachablePHIArgs(PHI, BB);
    }
  }

  // Map to store the use counts
  DenseMap<const Value *, unsigned int> UseCounts;
  for (auto *CC : reverse(CongruenceClasses)) {
    LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
                      << "\n");
    // Track the equivalent store info so we can decide whether to try
    // dead store elimination.
    SmallVector<ValueDFS, 8> PossibleDeadStores;
    SmallPtrSet<Instruction *, 8> ProbablyDead;
    if (CC->isDead() || CC->empty())
      continue;
    // Everything still in the TOP class is unreachable or dead.
    if (CC == TOPClass) {
      for (auto M : *CC) {
        auto *VTE = ValueToExpression.lookup(M);
        if (VTE && isa<DeadExpression>(VTE))
          markInstructionForDeletion(cast<Instruction>(M));
        assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
                InstructionsToErase.count(cast<Instruction>(M))) &&
               "Everything in TOP should be unreachable or dead at this "
               "point");
      }
      continue;
    }

    assert(CC->getLeader() && "We should have had a leader");
    // If this is a leader that is always available, and it's a
    // constant or has no equivalences, just replace everything with
    // it. We then update the congruence class with whatever members
    // are left.
    Value *Leader =
        CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
    if (alwaysAvailable(Leader)) {
      CongruenceClass::MemberSet MembersLeft;
      for (auto M : *CC) {
        Value *Member = M;
        // Void things have no uses we can replace.
        if (Member == Leader || !isa<Instruction>(Member) ||
            Member->getType()->isVoidTy()) {
          MembersLeft.insert(Member);
          continue;
        }
        LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
                          << *Member << "\n");
        auto *I = cast<Instruction>(Member);
        assert(Leader != I && "About to accidentally remove our leader");
        replaceInstruction(I, Leader);
        AnythingReplaced = true;
      }
      CC->swap(MembersLeft);
    } else {
      // If this is a singleton, we can skip it.
      if (CC->size() != 1 || RealToTemp.count(Leader)) {
        // This is a stack because equality replacement/etc may place
        // constants in the middle of the member list, and we want to use
        // those constant values in preference to the current leader, over
        // the scope of those constants.
        ValueDFSStack EliminationStack;

        // Convert the members to DFS ordered sets and then merge them.
        SmallVector<ValueDFS, 8> DFSOrderedSet;
        convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);

        // Sort the whole thing.
        llvm::sort(DFSOrderedSet);
        for (auto &VD : DFSOrderedSet) {
          int MemberDFSIn = VD.DFSIn;
          int MemberDFSOut = VD.DFSOut;
          Value *Def = VD.Def.getPointer();
          bool FromStore = VD.Def.getInt();
          Use *U = VD.U;
          // We ignore void things because we can't get a value from them.
          if (Def && Def->getType()->isVoidTy())
            continue;
          auto *DefInst = dyn_cast_or_null<Instruction>(Def);
          if (DefInst && AllTempInstructions.count(DefInst)) {
            auto *PN = cast<PHINode>(DefInst);

            // If this is a value phi and that's the expression we used, insert
            // it into the program
            // remove from temp instruction list.
            AllTempInstructions.erase(PN);
            auto *DefBlock = getBlockForValue(Def);
            LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
                              << " into block "
                              << getBlockName(getBlockForValue(Def)) << "\n");
            PN->insertBefore(&DefBlock->front());
            Def = PN;
            NumGVNPHIOfOpsEliminations++;
          }

          if (EliminationStack.empty()) {
            LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
          } else {
            LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
                              << EliminationStack.dfs_back().first << ","
                              << EliminationStack.dfs_back().second << ")\n");
          }

          LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
                            << MemberDFSOut << ")\n");
          // First, we see if we are out of scope or empty.  If so,
          // and there equivalences, we try to replace the top of
          // stack with equivalences (if it's on the stack, it must
          // not have been eliminated yet).
          // Then we synchronize to our current scope, by
          // popping until we are back within a DFS scope that
          // dominates the current member.
          // Then, what happens depends on a few factors
          // If the stack is now empty, we need to push
          // If we have a constant or a local equivalence we want to
          // start using, we also push.
          // Otherwise, we walk along, processing members who are
          // dominated by this scope, and eliminate them.
          bool ShouldPush = Def && EliminationStack.empty();
          bool OutOfScope =
              !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);

          if (OutOfScope || ShouldPush) {
            // Sync to our current scope.
            EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
            bool ShouldPush = Def && EliminationStack.empty();
            if (ShouldPush) {
              EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
            }
          }

          // Skip the Def's, we only want to eliminate on their uses.  But mark
          // dominated defs as dead.
          if (Def) {
            // For anything in this case, what and how we value number
            // guarantees that any side-effets that would have occurred (ie
            // throwing, etc) can be proven to either still occur (because it's
            // dominated by something that has the same side-effects), or never
            // occur.  Otherwise, we would not have been able to prove it value
            // equivalent to something else. For these things, we can just mark
            // it all dead.  Note that this is different from the "ProbablyDead"
            // set, which may not be dominated by anything, and thus, are only
            // easy to prove dead if they are also side-effect free. Note that
            // because stores are put in terms of the stored value, we skip
            // stored values here. If the stored value is really dead, it will
            // still be marked for deletion when we process it in its own class.
            if (!EliminationStack.empty() && Def != EliminationStack.back() &&
                isa<Instruction>(Def) && !FromStore)
              markInstructionForDeletion(cast<Instruction>(Def));
            continue;
          }
          // At this point, we know it is a Use we are trying to possibly
          // replace.

          assert(isa<Instruction>(U->get()) &&
                 "Current def should have been an instruction");
          assert(isa<Instruction>(U->getUser()) &&
                 "Current user should have been an instruction");

          // If the thing we are replacing into is already marked to be dead,
          // this use is dead.  Note that this is true regardless of whether
          // we have anything dominating the use or not.  We do this here
          // because we are already walking all the uses anyway.
          Instruction *InstUse = cast<Instruction>(U->getUser());
          if (InstructionsToErase.count(InstUse)) {
            auto &UseCount = UseCounts[U->get()];
            if (--UseCount == 0) {
              ProbablyDead.insert(cast<Instruction>(U->get()));
            }
          }

          // If we get to this point, and the stack is empty we must have a use
          // with nothing we can use to eliminate this use, so just skip it.
          if (EliminationStack.empty())
            continue;

          Value *DominatingLeader = EliminationStack.back();

          auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
          bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
          if (isSSACopy)
            DominatingLeader = II->getOperand(0);

          // Don't replace our existing users with ourselves.
          if (U->get() == DominatingLeader)
            continue;
          LLVM_DEBUG(dbgs()
                     << "Found replacement " << *DominatingLeader << " for "
                     << *U->get() << " in " << *(U->getUser()) << "\n");

          // If we replaced something in an instruction, handle the patching of
          // metadata.  Skip this if we are replacing predicateinfo with its
          // original operand, as we already know we can just drop it.
          auto *ReplacedInst = cast<Instruction>(U->get());
          auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
          if (!PI || DominatingLeader != PI->OriginalOp)
            patchReplacementInstruction(ReplacedInst, DominatingLeader);
          U->set(DominatingLeader);
          // This is now a use of the dominating leader, which means if the
          // dominating leader was dead, it's now live!
          auto &LeaderUseCount = UseCounts[DominatingLeader];
          // It's about to be alive again.
          if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
            ProbablyDead.erase(cast<Instruction>(DominatingLeader));
          // For copy instructions, we use their operand as a leader,
          // which means we remove a user of the copy and it may become dead.
          if (isSSACopy) {
            unsigned &IIUseCount = UseCounts[II];
            if (--IIUseCount == 0)
              ProbablyDead.insert(II);
          }
          ++LeaderUseCount;
          AnythingReplaced = true;
        }
      }
    }

    // At this point, anything still in the ProbablyDead set is actually dead if
    // would be trivially dead.
    for (auto *I : ProbablyDead)
      if (wouldInstructionBeTriviallyDead(I))
        markInstructionForDeletion(I);

    // Cleanup the congruence class.
    CongruenceClass::MemberSet MembersLeft;
    for (auto *Member : *CC)
      if (!isa<Instruction>(Member) ||
          !InstructionsToErase.count(cast<Instruction>(Member)))
        MembersLeft.insert(Member);
    CC->swap(MembersLeft);

    // If we have possible dead stores to look at, try to eliminate them.
    if (CC->getStoreCount() > 0) {
      convertClassToLoadsAndStores(*CC, PossibleDeadStores);
      llvm::sort(PossibleDeadStores);
      ValueDFSStack EliminationStack;
      for (auto &VD : PossibleDeadStores) {
        int MemberDFSIn = VD.DFSIn;
        int MemberDFSOut = VD.DFSOut;
        Instruction *Member = cast<Instruction>(VD.Def.getPointer());
        if (EliminationStack.empty() ||
            !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
          // Sync to our current scope.
          EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
          if (EliminationStack.empty()) {
            EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
            continue;
          }
        }
        // We already did load elimination, so nothing to do here.
        if (isa<LoadInst>(Member))
          continue;
        assert(!EliminationStack.empty());
        Instruction *Leader = cast<Instruction>(EliminationStack.back());
        (void)Leader;
        assert(DT->dominates(Leader->getParent(), Member->getParent()));
        // Member is dominater by Leader, and thus dead
        LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
                          << " that is dominated by " << *Leader << "\n");
        markInstructionForDeletion(Member);
        CC->erase(Member);
        ++NumGVNDeadStores;
      }
    }
  }
  return AnythingReplaced;
}

// This function provides global ranking of operations so that we can place them
// in a canonical order.  Note that rank alone is not necessarily enough for a
// complete ordering, as constants all have the same rank.  However, generally,
// we will simplify an operation with all constants so that it doesn't matter
// what order they appear in.
unsigned int NewGVN::getRank(const Value *V) const {
  // Prefer constants to undef to anything else
  // Undef is a constant, have to check it first.
  // Prefer smaller constants to constantexprs
  if (isa<ConstantExpr>(V))
    return 2;
  if (isa<UndefValue>(V))
    return 1;
  if (isa<Constant>(V))
    return 0;
  else if (auto *A = dyn_cast<Argument>(V))
    return 3 + A->getArgNo();

  // Need to shift the instruction DFS by number of arguments + 3 to account for
  // the constant and argument ranking above.
  unsigned Result = InstrToDFSNum(V);
  if (Result > 0)
    return 4 + NumFuncArgs + Result;
  // Unreachable or something else, just return a really large number.
  return ~0;
}

// This is a function that says whether two commutative operations should
// have their order swapped when canonicalizing.
bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
  // Because we only care about a total ordering, and don't rewrite expressions
  // in this order, we order by rank, which will give a strict weak ordering to
  // everything but constants, and then we order by pointer address.
  return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
}

namespace {

class NewGVNLegacyPass : public FunctionPass {
public:
  // Pass identification, replacement for typeid.
  static char ID;

  NewGVNLegacyPass() : FunctionPass(ID) {
    initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

private:
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

bool NewGVNLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;
  return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
                &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
                &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
                &getAnalysis<AAResultsWrapperPass>().getAAResults(),
                &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
                F.getParent()->getDataLayout())
      .runGVN();
}

char NewGVNLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
                    false)

// createGVNPass - The public interface to this file.
FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }

PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
  // Apparently the order in which we get these results matter for
  // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
  // the same order here, just in case.
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
  bool Changed =
      NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
          .runGVN();
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}