reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass identifies expensive constants to hoist and coalesces them to
// better prepare it for SelectionDAG-based code generation. This works around
// the limitations of the basic-block-at-a-time approach.
//
// First it scans all instructions for integer constants and calculates its
// cost. If the constant can be folded into the instruction (the cost is
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
// consider it expensive and leave it alone. This is the default behavior and
// the default implementation of getIntImmCost will always return TCC_Free.
//
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
// into the instruction and it might be beneficial to hoist the constant.
// Similar constants are coalesced to reduce register pressure and
// materialization code.
//
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
// be live-out of the basic block. Otherwise the constant would be just
// duplicated and each basic block would have its own copy in the SelectionDAG.
// The SelectionDAG recognizes such constants as opaque and doesn't perform
// certain transformations on them, which would create a new expensive constant.
//
// This optimization is only applied to integer constants in instructions and
// simple (this means not nested) constant cast expressions. For example:
// %0 = load i64* inttoptr (i64 big_constant to i64*)
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/ConstantHoisting.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>

using namespace llvm;
using namespace consthoist;

#define DEBUG_TYPE "consthoist"

STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
STATISTIC(NumConstantsRebased, "Number of constants rebased");

static cl::opt<bool> ConstHoistWithBlockFrequency(
    "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
    cl::desc("Enable the use of the block frequency analysis to reduce the "
             "chance to execute const materialization more frequently than "
             "without hoisting."));

static cl::opt<bool> ConstHoistGEP(
    "consthoist-gep", cl::init(false), cl::Hidden,
    cl::desc("Try hoisting constant gep expressions"));

static cl::opt<unsigned>
MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
    cl::desc("Do not rebase if number of dependent constants of a Base is less "
             "than this number."),
    cl::init(0), cl::Hidden);

namespace {

/// The constant hoisting pass.
class ConstantHoistingLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  ConstantHoistingLegacyPass() : FunctionPass(ID) {
    initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &Fn) override;

  StringRef getPassName() const override { return "Constant Hoisting"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    if (ConstHoistWithBlockFrequency)
      AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
  }

private:
  ConstantHoistingPass Impl;
};

} // end anonymous namespace

char ConstantHoistingLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
                      "Constant Hoisting", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
                    "Constant Hoisting", false, false)

FunctionPass *llvm::createConstantHoistingPass() {
  return new ConstantHoistingLegacyPass();
}

/// Perform the constant hoisting optimization for the given function.
bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
  if (skipFunction(Fn))
    return false;

  LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
  LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');

  bool MadeChange =
      Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
                   getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
                   ConstHoistWithBlockFrequency
                       ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
                       : nullptr,
                   Fn.getEntryBlock(),
                   &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());

  if (MadeChange) {
    LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
                      << Fn.getName() << '\n');
    LLVM_DEBUG(dbgs() << Fn);
  }
  LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");

  return MadeChange;
}

/// Find the constant materialization insertion point.
Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
                                                   unsigned Idx) const {
  // If the operand is a cast instruction, then we have to materialize the
  // constant before the cast instruction.
  if (Idx != ~0U) {
    Value *Opnd = Inst->getOperand(Idx);
    if (auto CastInst = dyn_cast<Instruction>(Opnd))
      if (CastInst->isCast())
        return CastInst;
  }

  // The simple and common case. This also includes constant expressions.
  if (!isa<PHINode>(Inst) && !Inst->isEHPad())
    return Inst;

  // We can't insert directly before a phi node or an eh pad. Insert before
  // the terminator of the incoming or dominating block.
  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
  if (Idx != ~0U && isa<PHINode>(Inst))
    return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();

  // This must be an EH pad. Iterate over immediate dominators until we find a
  // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
  // and terminators.
  auto IDom = DT->getNode(Inst->getParent())->getIDom();
  while (IDom->getBlock()->isEHPad()) {
    assert(Entry != IDom->getBlock() && "eh pad in entry block");
    IDom = IDom->getIDom();
  }

  return IDom->getBlock()->getTerminator();
}

/// Given \p BBs as input, find another set of BBs which collectively
/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
/// set found in \p BBs.
static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
                                 BasicBlock *Entry,
                                 SetVector<BasicBlock *> &BBs) {
  assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
  // Nodes on the current path to the root.
  SmallPtrSet<BasicBlock *, 8> Path;
  // Candidates includes any block 'BB' in set 'BBs' that is not strictly
  // dominated by any other blocks in set 'BBs', and all nodes in the path
  // in the dominator tree from Entry to 'BB'.
  SmallPtrSet<BasicBlock *, 16> Candidates;
  for (auto BB : BBs) {
    // Ignore unreachable basic blocks.
    if (!DT.isReachableFromEntry(BB))
      continue;
    Path.clear();
    // Walk up the dominator tree until Entry or another BB in BBs
    // is reached. Insert the nodes on the way to the Path.
    BasicBlock *Node = BB;
    // The "Path" is a candidate path to be added into Candidates set.
    bool isCandidate = false;
    do {
      Path.insert(Node);
      if (Node == Entry || Candidates.count(Node)) {
        isCandidate = true;
        break;
      }
      assert(DT.getNode(Node)->getIDom() &&
             "Entry doens't dominate current Node");
      Node = DT.getNode(Node)->getIDom()->getBlock();
    } while (!BBs.count(Node));

    // If isCandidate is false, Node is another Block in BBs dominating
    // current 'BB'. Drop the nodes on the Path.
    if (!isCandidate)
      continue;

    // Add nodes on the Path into Candidates.
    Candidates.insert(Path.begin(), Path.end());
  }

  // Sort the nodes in Candidates in top-down order and save the nodes
  // in Orders.
  unsigned Idx = 0;
  SmallVector<BasicBlock *, 16> Orders;
  Orders.push_back(Entry);
  while (Idx != Orders.size()) {
    BasicBlock *Node = Orders[Idx++];
    for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
      if (Candidates.count(ChildDomNode->getBlock()))
        Orders.push_back(ChildDomNode->getBlock());
    }
  }

  // Visit Orders in bottom-up order.
  using InsertPtsCostPair =
      std::pair<SetVector<BasicBlock *>, BlockFrequency>;

  // InsertPtsMap is a map from a BB to the best insertion points for the
  // subtree of BB (subtree not including the BB itself).
  DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
  InsertPtsMap.reserve(Orders.size() + 1);
  for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
    BasicBlock *Node = *RIt;
    bool NodeInBBs = BBs.count(Node);
    auto &InsertPts = InsertPtsMap[Node].first;
    BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;

    // Return the optimal insert points in BBs.
    if (Node == Entry) {
      BBs.clear();
      if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
        BBs.insert(Entry);
      else
        BBs.insert(InsertPts.begin(), InsertPts.end());
      break;
    }

    BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
    // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
    // will update its parent's ParentInsertPts and ParentPtsFreq.
    auto &ParentInsertPts = InsertPtsMap[Parent].first;
    BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
    // Choose to insert in Node or in subtree of Node.
    // Don't hoist to EHPad because we may not find a proper place to insert
    // in EHPad.
    // If the total frequency of InsertPts is the same as the frequency of the
    // target Node, and InsertPts contains more than one nodes, choose hoisting
    // to reduce code size.
    if (NodeInBBs ||
        (!Node->isEHPad() &&
         (InsertPtsFreq > BFI.getBlockFreq(Node) ||
          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
      ParentInsertPts.insert(Node);
      ParentPtsFreq += BFI.getBlockFreq(Node);
    } else {
      ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
      ParentPtsFreq += InsertPtsFreq;
    }
  }
}

/// Find an insertion point that dominates all uses.
SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
    const ConstantInfo &ConstInfo) const {
  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
  // Collect all basic blocks.
  SetVector<BasicBlock *> BBs;
  SetVector<Instruction *> InsertPts;
  for (auto const &RCI : ConstInfo.RebasedConstants)
    for (auto const &U : RCI.Uses)
      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());

  if (BBs.count(Entry)) {
    InsertPts.insert(&Entry->front());
    return InsertPts;
  }

  if (BFI) {
    findBestInsertionSet(*DT, *BFI, Entry, BBs);
    for (auto BB : BBs) {
      BasicBlock::iterator InsertPt = BB->begin();
      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
        ;
      InsertPts.insert(&*InsertPt);
    }
    return InsertPts;
  }

  while (BBs.size() >= 2) {
    BasicBlock *BB, *BB1, *BB2;
    BB1 = BBs.pop_back_val();
    BB2 = BBs.pop_back_val();
    BB = DT->findNearestCommonDominator(BB1, BB2);
    if (BB == Entry) {
      InsertPts.insert(&Entry->front());
      return InsertPts;
    }
    BBs.insert(BB);
  }
  assert((BBs.size() == 1) && "Expected only one element.");
  Instruction &FirstInst = (*BBs.begin())->front();
  InsertPts.insert(findMatInsertPt(&FirstInst));
  return InsertPts;
}

/// Record constant integer ConstInt for instruction Inst at operand
/// index Idx.
///
/// The operand at index Idx is not necessarily the constant integer itself. It
/// could also be a cast instruction or a constant expression that uses the
/// constant integer.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
    ConstantInt *ConstInt) {
  unsigned Cost;
  // Ask the target about the cost of materializing the constant for the given
  // instruction and operand index.
  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
    Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
                              ConstInt->getValue(), ConstInt->getType());
  else
    Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
                              ConstInt->getType());

  // Ignore cheap integer constants.
  if (Cost > TargetTransformInfo::TCC_Basic) {
    ConstCandMapType::iterator Itr;
    bool Inserted;
    ConstPtrUnionType Cand = ConstInt;
    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
    if (Inserted) {
      ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
      Itr->second = ConstIntCandVec.size() - 1;
    }
    ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost);
    LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
                   << "Collect constant " << *ConstInt << " from " << *Inst
                   << " with cost " << Cost << '\n';
               else dbgs() << "Collect constant " << *ConstInt
                           << " indirectly from " << *Inst << " via "
                           << *Inst->getOperand(Idx) << " with cost " << Cost
                           << '\n';);
  }
}

/// Record constant GEP expression for instruction Inst at operand index Idx.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
    ConstantExpr *ConstExpr) {
  // TODO: Handle vector GEPs
  if (ConstExpr->getType()->isVectorTy())
    return;

  GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
  if (!BaseGV)
    return;

  // Get offset from the base GV.
  PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
  IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
  APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
  auto *GEPO = cast<GEPOperator>(ConstExpr);
  if (!GEPO->accumulateConstantOffset(*DL, Offset))
    return;

  if (!Offset.isIntN(32))
    return;

  // A constant GEP expression that has a GlobalVariable as base pointer is
  // usually lowered to a load from constant pool. Such operation is unlikely
  // to be cheaper than compute it by <Base + Offset>, which can be lowered to
  // an ADD instruction or folded into Load/Store instruction.
  int Cost = TTI->getIntImmCost(Instruction::Add, 1, Offset, PtrIntTy);
  ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
  ConstCandMapType::iterator Itr;
  bool Inserted;
  ConstPtrUnionType Cand = ConstExpr;
  std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
  if (Inserted) {
    ExprCandVec.push_back(ConstantCandidate(
        ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
        ConstExpr));
    Itr->second = ExprCandVec.size() - 1;
  }
  ExprCandVec[Itr->second].addUser(Inst, Idx, Cost);
}

/// Check the operand for instruction Inst at index Idx.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
  Value *Opnd = Inst->getOperand(Idx);

  // Visit constant integers.
  if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
    collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    return;
  }

  // Visit cast instructions that have constant integers.
  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    // Only visit cast instructions, which have been skipped. All other
    // instructions should have already been visited.
    if (!CastInst->isCast())
      return;

    if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
      // Pretend the constant is directly used by the instruction and ignore
      // the cast instruction.
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
      return;
    }
  }

  // Visit constant expressions that have constant integers.
  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    // Handle constant gep expressions.
    if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);

    // Only visit constant cast expressions.
    if (!ConstExpr->isCast())
      return;

    if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
      // Pretend the constant is directly used by the instruction and ignore
      // the constant expression.
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
      return;
    }
  }
}

/// Scan the instruction for expensive integer constants and record them
/// in the constant candidate vector.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst) {
  // Skip all cast instructions. They are visited indirectly later on.
  if (Inst->isCast())
    return;

  // Scan all operands.
  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
    // The cost of materializing the constants (defined in
    // `TargetTransformInfo::getIntImmCost`) for instructions which only take
    // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
    // it's safe for us to collect constant candidates from all IntrinsicInsts.
    if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
      collectConstantCandidates(ConstCandMap, Inst, Idx);
    }
  } // end of for all operands
}

/// Collect all integer constants in the function that cannot be folded
/// into an instruction itself.
void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
  ConstCandMapType ConstCandMap;
  for (BasicBlock &BB : Fn)
    for (Instruction &Inst : BB)
      collectConstantCandidates(ConstCandMap, &Inst);
}

// This helper function is necessary to deal with values that have different
// bit widths (APInt Operator- does not like that). If the value cannot be
// represented in uint64 we return an "empty" APInt. This is then interpreted
// as the value is not in range.
static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
  Optional<APInt> Res = None;
  unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
                V1.getBitWidth() : V2.getBitWidth();
  uint64_t LimVal1 = V1.getLimitedValue();
  uint64_t LimVal2 = V2.getLimitedValue();

  if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
    return Res;

  uint64_t Diff = LimVal1 - LimVal2;
  return APInt(BW, Diff, true);
}

// From a list of constants, one needs to picked as the base and the other
// constants will be transformed into an offset from that base constant. The
// question is which we can pick best? For example, consider these constants
// and their number of uses:
//
//  Constants| 2 | 4 | 12 | 42 |
//  NumUses  | 3 | 2 |  8 |  7 |
//
// Selecting constant 12 because it has the most uses will generate negative
// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
// offsets lead to less optimal code generation, then there might be better
// solutions. Suppose immediates in the range of 0..35 are most optimally
// supported by the architecture, then selecting constant 2 is most optimal
// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
// selecting the base constant the range of the offsets is a very important
// factor too that we take into account here. This algorithm calculates a total
// costs for selecting a constant as the base and substract the costs if
// immediates are out of range. It has quadratic complexity, so we call this
// function only when we're optimising for size and there are less than 100
// constants, we fall back to the straightforward algorithm otherwise
// which does not do all the offset calculations.
unsigned
ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
                                           ConstCandVecType::iterator E,
                                           ConstCandVecType::iterator &MaxCostItr) {
  unsigned NumUses = 0;

  bool OptForSize = Entry->getParent()->hasOptSize() ||
                    llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI);
  if (!OptForSize || std::distance(S,E) > 100) {
    for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
      NumUses += ConstCand->Uses.size();
      if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
        MaxCostItr = ConstCand;
    }
    return NumUses;
  }

  LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
  int MaxCost = -1;
  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    auto Value = ConstCand->ConstInt->getValue();
    Type *Ty = ConstCand->ConstInt->getType();
    int Cost = 0;
    NumUses += ConstCand->Uses.size();
    LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
                      << "\n");

    for (auto User : ConstCand->Uses) {
      unsigned Opcode = User.Inst->getOpcode();
      unsigned OpndIdx = User.OpndIdx;
      Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
      LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");

      for (auto C2 = S; C2 != E; ++C2) {
        Optional<APInt> Diff = calculateOffsetDiff(
                                   C2->ConstInt->getValue(),
                                   ConstCand->ConstInt->getValue());
        if (Diff) {
          const int ImmCosts =
            TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
          Cost -= ImmCosts;
          LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
                            << "has penalty: " << ImmCosts << "\n"
                            << "Adjusted cost: " << Cost << "\n");
        }
      }
    }
    LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
    if (Cost > MaxCost) {
      MaxCost = Cost;
      MaxCostItr = ConstCand;
      LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
                        << "\n");
    }
  }
  return NumUses;
}

/// Find the base constant within the given range and rebase all other
/// constants with respect to the base constant.
void ConstantHoistingPass::findAndMakeBaseConstant(
    ConstCandVecType::iterator S, ConstCandVecType::iterator E,
    SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
  auto MaxCostItr = S;
  unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);

  // Don't hoist constants that have only one use.
  if (NumUses <= 1)
    return;

  ConstantInt *ConstInt = MaxCostItr->ConstInt;
  ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
  ConstantInfo ConstInfo;
  ConstInfo.BaseInt = ConstInt;
  ConstInfo.BaseExpr = ConstExpr;
  Type *Ty = ConstInt->getType();

  // Rebase the constants with respect to the base constant.
  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
    Type *ConstTy =
        ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
    ConstInfo.RebasedConstants.push_back(
      RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
  }
  ConstInfoVec.push_back(std::move(ConstInfo));
}

/// Finds and combines constant candidates that can be easily
/// rematerialized with an add from a common base constant.
void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
  // If BaseGV is nullptr, find base among candidate constant integers;
  // Otherwise find base among constant GEPs that share the same BaseGV.
  ConstCandVecType &ConstCandVec = BaseGV ?
      ConstGEPCandMap[BaseGV] : ConstIntCandVec;
  ConstInfoVecType &ConstInfoVec = BaseGV ?
      ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;

  // Sort the constants by value and type. This invalidates the mapping!
  llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
                                     const ConstantCandidate &RHS) {
    if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
      return LHS.ConstInt->getType()->getBitWidth() <
             RHS.ConstInt->getType()->getBitWidth();
    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
  });

  // Simple linear scan through the sorted constant candidate vector for viable
  // merge candidates.
  auto MinValItr = ConstCandVec.begin();
  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
       CC != E; ++CC) {
    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
      Type *MemUseValTy = nullptr;
      for (auto &U : CC->Uses) {
        auto *UI = U.Inst;
        if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
          MemUseValTy = LI->getType();
          break;
        } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
          // Make sure the constant is used as pointer operand of the StoreInst.
          if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
            MemUseValTy = SI->getValueOperand()->getType();
            break;
          }
        }
      }

      // Check if the constant is in range of an add with immediate.
      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
      if ((Diff.getBitWidth() <= 64) &&
          TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
          // Check if Diff can be used as offset in addressing mode of the user
          // memory instruction.
          (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
           /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
           /*HasBaseReg*/true, /*Scale*/0)))
        continue;
    }
    // We either have now a different constant type or the constant is not in
    // range of an add with immediate anymore.
    findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
    // Start a new base constant search.
    MinValItr = CC;
  }
  // Finalize the last base constant search.
  findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
}

/// Updates the operand at Idx in instruction Inst with the result of
///        instruction Mat. If the instruction is a PHI node then special
///        handling for duplicate values form the same incoming basic block is
///        required.
/// \return The update will always succeed, but the return value indicated if
///         Mat was used for the update or not.
static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
  if (auto PHI = dyn_cast<PHINode>(Inst)) {
    // Check if any previous operand of the PHI node has the same incoming basic
    // block. This is a very odd case that happens when the incoming basic block
    // has a switch statement. In this case use the same value as the previous
    // operand(s), otherwise we will fail verification due to different values.
    // The values are actually the same, but the variable names are different
    // and the verifier doesn't like that.
    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
    for (unsigned i = 0; i < Idx; ++i) {
      if (PHI->getIncomingBlock(i) == IncomingBB) {
        Value *IncomingVal = PHI->getIncomingValue(i);
        Inst->setOperand(Idx, IncomingVal);
        return false;
      }
    }
  }

  Inst->setOperand(Idx, Mat);
  return true;
}

/// Emit materialization code for all rebased constants and update their
/// users.
void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
                                             Constant *Offset,
                                             Type *Ty,
                                             const ConstantUser &ConstUser) {
  Instruction *Mat = Base;

  // The same offset can be dereferenced to different types in nested struct.
  if (!Offset && Ty && Ty != Base->getType())
    Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);

  if (Offset) {
    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
                                               ConstUser.OpndIdx);
    if (Ty) {
      // Constant being rebased is a ConstantExpr.
      PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
          cast<PointerType>(Ty)->getAddressSpace());
      Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
      Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
          Offset, "mat_gep", InsertionPt);
      Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
    } else
      // Constant being rebased is a ConstantInt.
      Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
                                 "const_mat", InsertionPt);

    LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
                      << " + " << *Offset << ") in BB "
                      << Mat->getParent()->getName() << '\n'
                      << *Mat << '\n');
    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
  }
  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);

  // Visit constant integer.
  if (isa<ConstantInt>(Opnd)) {
    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
      Mat->eraseFromParent();
    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    return;
  }

  // Visit cast instruction.
  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    assert(CastInst->isCast() && "Expected an cast instruction!");
    // Check if we already have visited this cast instruction before to avoid
    // unnecessary cloning.
    Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
    if (!ClonedCastInst) {
      ClonedCastInst = CastInst->clone();
      ClonedCastInst->setOperand(0, Mat);
      ClonedCastInst->insertAfter(CastInst);
      // Use the same debug location as the original cast instruction.
      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
      LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
                        << "To               : " << *ClonedCastInst << '\n');
    }

    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    return;
  }

  // Visit constant expression.
  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
      // Operand is a ConstantGEP, replace it.
      updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
      return;
    }

    // Aside from constant GEPs, only constant cast expressions are collected.
    assert(ConstExpr->isCast() && "ConstExpr should be a cast");
    Instruction *ConstExprInst = ConstExpr->getAsInstruction();
    ConstExprInst->setOperand(0, Mat);
    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
                                                ConstUser.OpndIdx));

    // Use the same debug location as the instruction we are about to update.
    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());

    LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
                      << "From              : " << *ConstExpr << '\n');
    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
      ConstExprInst->eraseFromParent();
      if (Offset)
        Mat->eraseFromParent();
    }
    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    return;
  }
}

/// Hoist and hide the base constant behind a bitcast and emit
/// materialization code for derived constants.
bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
  bool MadeChange = false;
  SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
      BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
  for (auto const &ConstInfo : ConstInfoVec) {
    SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
    // We can have an empty set if the function contains unreachable blocks.
    if (IPSet.empty())
      continue;

    unsigned UsesNum = 0;
    unsigned ReBasesNum = 0;
    unsigned NotRebasedNum = 0;
    for (Instruction *IP : IPSet) {
      // First, collect constants depending on this IP of the base.
      unsigned Uses = 0;
      using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
      SmallVector<RebasedUse, 4> ToBeRebased;
      for (auto const &RCI : ConstInfo.RebasedConstants) {
        for (auto const &U : RCI.Uses) {
          Uses++;
          BasicBlock *OrigMatInsertBB =
              findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
          // If Base constant is to be inserted in multiple places,
          // generate rebase for U using the Base dominating U.
          if (IPSet.size() == 1 ||
              DT->dominates(IP->getParent(), OrigMatInsertBB))
            ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
        }
      }
      UsesNum = Uses;

      // If only few constants depend on this IP of base, skip rebasing,
      // assuming the base and the rebased have the same materialization cost.
      if (ToBeRebased.size() < MinNumOfDependentToRebase) {
        NotRebasedNum += ToBeRebased.size();
        continue;
      }

      // Emit an instance of the base at this IP.
      Instruction *Base = nullptr;
      // Hoist and hide the base constant behind a bitcast.
      if (ConstInfo.BaseExpr) {
        assert(BaseGV && "A base constant expression must have an base GV");
        Type *Ty = ConstInfo.BaseExpr->getType();
        Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
      } else {
        IntegerType *Ty = ConstInfo.BaseInt->getType();
        Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
      }

      Base->setDebugLoc(IP->getDebugLoc());

      LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
                        << ") to BB " << IP->getParent()->getName() << '\n'
                        << *Base << '\n');

      // Emit materialization code for rebased constants depending on this IP.
      for (auto const &R : ToBeRebased) {
        Constant *Off = std::get<0>(R);
        Type *Ty = std::get<1>(R);
        ConstantUser U = std::get<2>(R);
        emitBaseConstants(Base, Off, Ty, U);
        ReBasesNum++;
        // Use the same debug location as the last user of the constant.
        Base->setDebugLoc(DILocation::getMergedLocation(
            Base->getDebugLoc(), U.Inst->getDebugLoc()));
      }
      assert(!Base->use_empty() && "The use list is empty!?");
      assert(isa<Instruction>(Base->user_back()) &&
             "All uses should be instructions.");
    }
    (void)UsesNum;
    (void)ReBasesNum;
    (void)NotRebasedNum;
    // Expect all uses are rebased after rebase is done.
    assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
           "Not all uses are rebased");

    NumConstantsHoisted++;

    // Base constant is also included in ConstInfo.RebasedConstants, so
    // deduct 1 from ConstInfo.RebasedConstants.size().
    NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;

    MadeChange = true;
  }
  return MadeChange;
}

/// Check all cast instructions we made a copy of and remove them if they
/// have no more users.
void ConstantHoistingPass::deleteDeadCastInst() const {
  for (auto const &I : ClonedCastMap)
    if (I.first->use_empty())
      I.first->eraseFromParent();
}

/// Optimize expensive integer constants in the given function.
bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
                                   DominatorTree &DT, BlockFrequencyInfo *BFI,
                                   BasicBlock &Entry, ProfileSummaryInfo *PSI) {
  this->TTI = &TTI;
  this->DT = &DT;
  this->BFI = BFI;
  this->DL = &Fn.getParent()->getDataLayout();
  this->Ctx = &Fn.getContext();
  this->Entry = &Entry;
  this->PSI = PSI;
  // Collect all constant candidates.
  collectConstantCandidates(Fn);

  // Combine constants that can be easily materialized with an add from a common
  // base constant.
  if (!ConstIntCandVec.empty())
    findBaseConstants(nullptr);
  for (auto &MapEntry : ConstGEPCandMap)
    if (!MapEntry.second.empty())
      findBaseConstants(MapEntry.first);

  // Finally hoist the base constant and emit materialization code for dependent
  // constants.
  bool MadeChange = false;
  if (!ConstIntInfoVec.empty())
    MadeChange = emitBaseConstants(nullptr);
  for (auto MapEntry : ConstGEPInfoMap)
    if (!MapEntry.second.empty())
      MadeChange |= emitBaseConstants(MapEntry.first);


  // Cleanup dead instructions.
  deleteDeadCastInst();

  cleanup();

  return MadeChange;
}

PreservedAnalyses ConstantHoistingPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto BFI = ConstHoistWithBlockFrequency
                 ? &AM.getResult<BlockFrequencyAnalysis>(F)
                 : nullptr;
  auto &MAM = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
  auto *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}