reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Return true if the value is cheaper to scalarize than it is to leave as a
/// vector operation. IsConstantExtractIndex indicates whether we are extracting
/// one known element from a vector constant.
///
/// FIXME: It's possible to create more instructions than previously existed.
static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
  // If we can pick a scalar constant value out of a vector, that is free.
  if (auto *C = dyn_cast<Constant>(V))
    return IsConstantExtractIndex || C->getSplatValue();

  // An insertelement to the same constant index as our extract will simplify
  // to the scalar inserted element. An insertelement to a different constant
  // index is irrelevant to our extract.
  if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
    return IsConstantExtractIndex;

  if (match(V, m_OneUse(m_Load(m_Value()))))
    return true;

  Value *V0, *V1;
  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
        cheapToScalarize(V1, IsConstantExtractIndex))
      return true;

  CmpInst::Predicate UnusedPred;
  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
        cheapToScalarize(V1, IsConstantExtractIndex))
      return true;

  return false;
}

// If we have a PHI node with a vector type that is only used to feed
// itself and be an operand of extractelement at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type.
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
  SmallVector<Instruction *, 2> Extracts;
  // The users we want the PHI to have are:
  // 1) The EI ExtractElement (we already know this)
  // 2) Possibly more ExtractElements with the same index.
  // 3) Another operand, which will feed back into the PHI.
  Instruction *PHIUser = nullptr;
  for (auto U : PN->users()) {
    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
      if (EI.getIndexOperand() == EU->getIndexOperand())
        Extracts.push_back(EU);
      else
        return nullptr;
    } else if (!PHIUser) {
      PHIUser = cast<Instruction>(U);
    } else {
      return nullptr;
    }
  }

  if (!PHIUser)
    return nullptr;

  // Verify that this PHI user has one use, which is the PHI itself,
  // and that it is a binary operation which is cheap to scalarize.
  // otherwise return nullptr.
  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
    return nullptr;

  // Create a scalar PHI node that will replace the vector PHI node
  // just before the current PHI node.
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
  // Scalarize each PHI operand.
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
    Value *PHIInVal = PN->getIncomingValue(i);
    BasicBlock *inBB = PN->getIncomingBlock(i);
    Value *Elt = EI.getIndexOperand();
    // If the operand is the PHI induction variable:
    if (PHIInVal == PHIUser) {
      // Scalarize the binary operation. Its first operand is the
      // scalar PHI, and the second operand is extracted from the other
      // vector operand.
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
      Value *Op = InsertNewInstWith(
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
                                     B0->getOperand(opId)->getName() + ".Elt"),
          *B0);
      Value *newPHIUser = InsertNewInstWith(
          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
                                                scalarPHI, Op, B0), *B0);
      scalarPHI->addIncoming(newPHIUser, inBB);
    } else {
      // Scalarize PHI input:
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
      // Insert the new instruction into the predecessor basic block.
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
      BasicBlock::iterator InsertPos;
      if (pos && !isa<PHINode>(pos)) {
        InsertPos = ++pos->getIterator();
      } else {
        InsertPos = inBB->getFirstInsertionPt();
      }

      InsertNewInstWith(newEI, *InsertPos);

      scalarPHI->addIncoming(newEI, inBB);
    }
  }

  for (auto E : Extracts)
    replaceInstUsesWith(*E, scalarPHI);

  return &EI;
}

static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
                                      InstCombiner::BuilderTy &Builder,
                                      bool IsBigEndian) {
  Value *X;
  uint64_t ExtIndexC;
  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
      !X->getType()->isVectorTy() ||
      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
    return nullptr;

  // If this extractelement is using a bitcast from a vector of the same number
  // of elements, see if we can find the source element from the source vector:
  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
  Type *SrcTy = X->getType();
  Type *DestTy = Ext.getType();
  unsigned NumSrcElts = SrcTy->getVectorNumElements();
  unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
  if (NumSrcElts == NumElts)
    if (Value *Elt = findScalarElement(X, ExtIndexC))
      return new BitCastInst(Elt, DestTy);

  // If the source elements are wider than the destination, try to shift and
  // truncate a subset of scalar bits of an insert op.
  if (NumSrcElts < NumElts) {
    Value *Scalar;
    uint64_t InsIndexC;
    if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
                                  m_ConstantInt(InsIndexC))))
      return nullptr;

    // The extract must be from the subset of vector elements that we inserted
    // into. Example: if we inserted element 1 of a <2 x i64> and we are
    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
    // of elements 4-7 of the bitcasted vector.
    unsigned NarrowingRatio = NumElts / NumSrcElts;
    if (ExtIndexC / NarrowingRatio != InsIndexC)
      return nullptr;

    // We are extracting part of the original scalar. How that scalar is
    // inserted into the vector depends on the endian-ness. Example:
    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
    //                                       +--+--+--+--+--+--+--+--+
    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
    // extelt <4 x i16> V', 3:               |                 |S2|S3|
    //                                       +--+--+--+--+--+--+--+--+
    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
    // In this example, we must right-shift little-endian. Big-endian is just a
    // truncate.
    unsigned Chunk = ExtIndexC % NarrowingRatio;
    if (IsBigEndian)
      Chunk = NarrowingRatio - 1 - Chunk;

    // Bail out if this is an FP vector to FP vector sequence. That would take
    // more instructions than we started with unless there is no shift, and it
    // may not be handled as well in the backend.
    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
    bool NeedDestBitcast = DestTy->isFloatingPointTy();
    if (NeedSrcBitcast && NeedDestBitcast)
      return nullptr;

    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
    unsigned ShAmt = Chunk * DestWidth;

    // TODO: This limitation is more strict than necessary. We could sum the
    // number of new instructions and subtract the number eliminated to know if
    // we can proceed.
    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
      if (NeedSrcBitcast || NeedDestBitcast)
        return nullptr;

    if (NeedSrcBitcast) {
      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
    }

    if (ShAmt) {
      // Bail out if we could end with more instructions than we started with.
      if (!Ext.getVectorOperand()->hasOneUse())
        return nullptr;
      Scalar = Builder.CreateLShr(Scalar, ShAmt);
    }

    if (NeedDestBitcast) {
      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
    }
    return new TruncInst(Scalar, DestTy);
  }

  return nullptr;
}

/// Find elements of V demanded by UserInstr.
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
  unsigned VWidth = V->getType()->getVectorNumElements();

  // Conservatively assume that all elements are needed.
  APInt UsedElts(APInt::getAllOnesValue(VWidth));

  switch (UserInstr->getOpcode()) {
  case Instruction::ExtractElement: {
    ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
    assert(EEI->getVectorOperand() == V);
    ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
    if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
      UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
    }
    break;
  }
  case Instruction::ShuffleVector: {
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
    unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();

    UsedElts = APInt(VWidth, 0);
    for (unsigned i = 0; i < MaskNumElts; i++) {
      unsigned MaskVal = Shuffle->getMaskValue(i);
      if (MaskVal == -1u || MaskVal >= 2 * VWidth)
        continue;
      if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
        UsedElts.setBit(MaskVal);
      if (Shuffle->getOperand(1) == V &&
          ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
        UsedElts.setBit(MaskVal - VWidth);
    }
    break;
  }
  default:
    break;
  }
  return UsedElts;
}

/// Find union of elements of V demanded by all its users.
/// If it is known by querying findDemandedEltsBySingleUser that
/// no user demands an element of V, then the corresponding bit
/// remains unset in the returned value.
static APInt findDemandedEltsByAllUsers(Value *V) {
  unsigned VWidth = V->getType()->getVectorNumElements();

  APInt UnionUsedElts(VWidth, 0);
  for (const Use &U : V->uses()) {
    if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
      UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
    } else {
      UnionUsedElts = APInt::getAllOnesValue(VWidth);
      break;
    }

    if (UnionUsedElts.isAllOnesValue())
      break;
  }

  return UnionUsedElts;
}

Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
  Value *SrcVec = EI.getVectorOperand();
  Value *Index = EI.getIndexOperand();
  if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
                                            SQ.getWithInstruction(&EI)))
    return replaceInstUsesWith(EI, V);

  // If extracting a specified index from the vector, see if we can recursively
  // find a previously computed scalar that was inserted into the vector.
  auto *IndexC = dyn_cast<ConstantInt>(Index);
  if (IndexC) {
    unsigned NumElts = EI.getVectorOperandType()->getNumElements();

    // InstSimplify should handle cases where the index is invalid.
    if (!IndexC->getValue().ule(NumElts))
      return nullptr;

    // This instruction only demands the single element from the input vector.
    if (NumElts != 1) {
      // If the input vector has a single use, simplify it based on this use
      // property.
      if (SrcVec->hasOneUse()) {
        APInt UndefElts(NumElts, 0);
        APInt DemandedElts(NumElts, 0);
        DemandedElts.setBit(IndexC->getZExtValue());
        if (Value *V =
                SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
          EI.setOperand(0, V);
          return &EI;
        }
      } else {
        // If the input vector has multiple uses, simplify it based on a union
        // of all elements used.
        APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
        if (!DemandedElts.isAllOnesValue()) {
          APInt UndefElts(NumElts, 0);
          if (Value *V = SimplifyDemandedVectorElts(
                  SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
                  true /* AllowMultipleUsers */)) {
            if (V != SrcVec) {
              SrcVec->replaceAllUsesWith(V);
              return &EI;
            }
          }
        }
      }
    }
    if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
      return I;

    // If there's a vector PHI feeding a scalar use through this extractelement
    // instruction, try to scalarize the PHI.
    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
        return ScalarPHI;
  }

  BinaryOperator *BO;
  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
  }

  Value *X, *Y;
  CmpInst::Predicate Pred;
  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
      cheapToScalarize(SrcVec, IndexC)) {
    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
  }

  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
      // Extracting the inserted element?
      if (IE->getOperand(2) == Index)
        return replaceInstUsesWith(EI, IE->getOperand(1));
      // If the inserted and extracted elements are constants, they must not
      // be the same value, extract from the pre-inserted value instead.
      if (isa<Constant>(IE->getOperand(2)) && IndexC) {
        Worklist.AddValue(SrcVec);
        EI.setOperand(0, IE->getOperand(0));
        return &EI;
      }
    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
      // If this is extracting an element from a shufflevector, figure out where
      // it came from and extract from the appropriate input element instead.
      if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
        Value *Src;
        unsigned LHSWidth =
          SVI->getOperand(0)->getType()->getVectorNumElements();

        if (SrcIdx < 0)
          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
        if (SrcIdx < (int)LHSWidth)
          Src = SVI->getOperand(0);
        else {
          SrcIdx -= LHSWidth;
          Src = SVI->getOperand(1);
        }
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
        return ExtractElementInst::Create(Src,
                                          ConstantInt::get(Int32Ty,
                                                           SrcIdx, false));
      }
    } else if (auto *CI = dyn_cast<CastInst>(I)) {
      // Canonicalize extractelement(cast) -> cast(extractelement).
      // Bitcasts can change the number of vector elements, and they cost
      // nothing.
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
        Worklist.AddValue(EE);
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
      }
    }
  }
  return nullptr;
}

/// If V is a shuffle of values that ONLY returns elements from either LHS or
/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                         SmallVectorImpl<Constant*> &Mask) {
  assert(LHS->getType() == RHS->getType() &&
         "Invalid CollectSingleShuffleElements");
  unsigned NumElts = V->getType()->getVectorNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return true;
  }

  if (V == LHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
    return true;
  }

  if (V == RHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
                                      i+NumElts));
    return true;
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (!isa<ConstantInt>(IdxOp))
      return false;
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
      // We can handle this if the vector we are inserting into is
      // transitively ok.
      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
        // If so, update the mask to reflect the inserted undef.
        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
        return true;
      }
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
      if (isa<ConstantInt>(EI->getOperand(1))) {
        unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();

        // This must be extracting from either LHS or RHS.
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
          // We can handle this if the vector we are inserting into is
          // transitively ok.
          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
            // If so, update the mask to reflect the inserted value.
            if (EI->getOperand(0) == LHS) {
              Mask[InsertedIdx % NumElts] =
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx);
            } else {
              assert(EI->getOperand(0) == RHS);
              Mask[InsertedIdx % NumElts] =
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx + NumLHSElts);
            }
            return true;
          }
        }
      }
    }
  }

  return false;
}

/// If we have insertion into a vector that is wider than the vector that we
/// are extracting from, try to widen the source vector to allow a single
/// shufflevector to replace one or more insert/extract pairs.
static void replaceExtractElements(InsertElementInst *InsElt,
                                   ExtractElementInst *ExtElt,
                                   InstCombiner &IC) {
  VectorType *InsVecType = InsElt->getType();
  VectorType *ExtVecType = ExtElt->getVectorOperandType();
  unsigned NumInsElts = InsVecType->getVectorNumElements();
  unsigned NumExtElts = ExtVecType->getVectorNumElements();

  // The inserted-to vector must be wider than the extracted-from vector.
  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
      NumExtElts >= NumInsElts)
    return;

  // Create a shuffle mask to widen the extended-from vector using undefined
  // values. The mask selects all of the values of the original vector followed
  // by as many undefined values as needed to create a vector of the same length
  // as the inserted-to vector.
  SmallVector<Constant *, 16> ExtendMask;
  IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
  for (unsigned i = 0; i < NumExtElts; ++i)
    ExtendMask.push_back(ConstantInt::get(IntType, i));
  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
    ExtendMask.push_back(UndefValue::get(IntType));

  Value *ExtVecOp = ExtElt->getVectorOperand();
  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
                                   ? ExtVecOpInst->getParent()
                                   : ExtElt->getParent();

  // TODO: This restriction matches the basic block check below when creating
  // new extractelement instructions. If that limitation is removed, this one
  // could also be removed. But for now, we just bail out to ensure that we
  // will replace the extractelement instruction that is feeding our
  // insertelement instruction. This allows the insertelement to then be
  // replaced by a shufflevector. If the insertelement is not replaced, we can
  // induce infinite looping because there's an optimization for extractelement
  // that will delete our widening shuffle. This would trigger another attempt
  // here to create that shuffle, and we spin forever.
  if (InsertionBlock != InsElt->getParent())
    return;

  // TODO: This restriction matches the check in visitInsertElementInst() and
  // prevents an infinite loop caused by not turning the extract/insert pair
  // into a shuffle. We really should not need either check, but we're lacking
  // folds for shufflevectors because we're afraid to generate shuffle masks
  // that the backend can't handle.
  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
    return;

  auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
                                        ConstantVector::get(ExtendMask));

  // Insert the new shuffle after the vector operand of the extract is defined
  // (as long as it's not a PHI) or at the start of the basic block of the
  // extract, so any subsequent extracts in the same basic block can use it.
  // TODO: Insert before the earliest ExtractElementInst that is replaced.
  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
    WideVec->insertAfter(ExtVecOpInst);
  else
    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());

  // Replace extracts from the original narrow vector with extracts from the new
  // wide vector.
  for (User *U : ExtVecOp->users()) {
    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
    if (!OldExt || OldExt->getParent() != WideVec->getParent())
      continue;
    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
    NewExt->insertAfter(OldExt);
    IC.replaceInstUsesWith(*OldExt, NewExt);
  }
}

/// We are building a shuffle to create V, which is a sequence of insertelement,
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
/// not rely on the second vector source. Return a std::pair containing the
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
/// parameter as required.
///
/// Note: we intentionally don't try to fold earlier shuffles since they have
/// often been chosen carefully to be efficiently implementable on the target.
using ShuffleOps = std::pair<Value *, Value *>;

static ShuffleOps collectShuffleElements(Value *V,
                                         SmallVectorImpl<Constant *> &Mask,
                                         Value *PermittedRHS,
                                         InstCombiner &IC) {
  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
  unsigned NumElts = V->getType()->getVectorNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return std::make_pair(
        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
  }

  if (isa<ConstantAggregateZero>(V)) {
    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
    return std::make_pair(V, nullptr);
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
        unsigned ExtractedIdx =
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

        // Either the extracted from or inserted into vector must be RHSVec,
        // otherwise we'd end up with a shuffle of three inputs.
        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
          Value *RHS = EI->getOperand(0);
          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
          assert(LR.second == nullptr || LR.second == RHS);

          if (LR.first->getType() != RHS->getType()) {
            // Although we are giving up for now, see if we can create extracts
            // that match the inserts for another round of combining.
            replaceExtractElements(IEI, EI, IC);

            // We tried our best, but we can't find anything compatible with RHS
            // further up the chain. Return a trivial shuffle.
            for (unsigned i = 0; i < NumElts; ++i)
              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
            return std::make_pair(V, nullptr);
          }

          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
          Mask[InsertedIdx % NumElts] =
            ConstantInt::get(Type::getInt32Ty(V->getContext()),
                             NumLHSElts+ExtractedIdx);
          return std::make_pair(LR.first, RHS);
        }

        if (VecOp == PermittedRHS) {
          // We've gone as far as we can: anything on the other side of the
          // extractelement will already have been converted into a shuffle.
          unsigned NumLHSElts =
              EI->getOperand(0)->getType()->getVectorNumElements();
          for (unsigned i = 0; i != NumElts; ++i)
            Mask.push_back(ConstantInt::get(
                Type::getInt32Ty(V->getContext()),
                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
          return std::make_pair(EI->getOperand(0), PermittedRHS);
        }

        // If this insertelement is a chain that comes from exactly these two
        // vectors, return the vector and the effective shuffle.
        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
                                         Mask))
          return std::make_pair(EI->getOperand(0), PermittedRHS);
      }
    }
  }

  // Otherwise, we can't do anything fancy. Return an identity vector.
  for (unsigned i = 0; i != NumElts; ++i)
    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
  return std::make_pair(V, nullptr);
}

/// Try to find redundant insertvalue instructions, like the following ones:
///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
/// Here the second instruction inserts values at the same indices, as the
/// first one, making the first one redundant.
/// It should be transformed to:
///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
  bool IsRedundant = false;
  ArrayRef<unsigned int> FirstIndices = I.getIndices();

  // If there is a chain of insertvalue instructions (each of them except the
  // last one has only one use and it's another insertvalue insn from this
  // chain), check if any of the 'children' uses the same indices as the first
  // instruction. In this case, the first one is redundant.
  Value *V = &I;
  unsigned Depth = 0;
  while (V->hasOneUse() && Depth < 10) {
    User *U = V->user_back();
    auto UserInsInst = dyn_cast<InsertValueInst>(U);
    if (!UserInsInst || U->getOperand(0) != V)
      break;
    if (UserInsInst->getIndices() == FirstIndices) {
      IsRedundant = true;
      break;
    }
    V = UserInsInst;
    Depth++;
  }

  if (IsRedundant)
    return replaceInstUsesWith(I, I.getOperand(0));
  return nullptr;
}

static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
  int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
  int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();

  // A vector select does not change the size of the operands.
  if (MaskSize != VecSize)
    return false;

  // Each mask element must be undefined or choose a vector element from one of
  // the source operands without crossing vector lanes.
  for (int i = 0; i != MaskSize; ++i) {
    int Elt = Shuf.getMaskValue(i);
    if (Elt != -1 && Elt != i && Elt != i + VecSize)
      return false;
  }

  return true;
}

/// Turn a chain of inserts that splats a value into an insert + shuffle:
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
/// shufflevector(insertelt(X, %k, 0), undef, zero)
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
  // We are interested in the last insert in a chain. So if this insert has a
  // single user and that user is an insert, bail.
  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
    return nullptr;

  auto *VecTy = cast<VectorType>(InsElt.getType());
  unsigned NumElements = VecTy->getNumElements();

  // Do not try to do this for a one-element vector, since that's a nop,
  // and will cause an inf-loop.
  if (NumElements == 1)
    return nullptr;

  Value *SplatVal = InsElt.getOperand(1);
  InsertElementInst *CurrIE = &InsElt;
  SmallVector<bool, 16> ElementPresent(NumElements, false);
  InsertElementInst *FirstIE = nullptr;

  // Walk the chain backwards, keeping track of which indices we inserted into,
  // until we hit something that isn't an insert of the splatted value.
  while (CurrIE) {
    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
    if (!Idx || CurrIE->getOperand(1) != SplatVal)
      return nullptr;

    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
    // Check none of the intermediate steps have any additional uses, except
    // for the root insertelement instruction, which can be re-used, if it
    // inserts at position 0.
    if (CurrIE != &InsElt &&
        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
      return nullptr;

    ElementPresent[Idx->getZExtValue()] = true;
    FirstIE = CurrIE;
    CurrIE = NextIE;
  }

  // If this is just a single insertelement (not a sequence), we are done.
  if (FirstIE == &InsElt)
    return nullptr;

  // If we are not inserting into an undef vector, make sure we've seen an
  // insert into every element.
  // TODO: If the base vector is not undef, it might be better to create a splat
  //       and then a select-shuffle (blend) with the base vector.
  if (!isa<UndefValue>(FirstIE->getOperand(0)))
    if (any_of(ElementPresent, [](bool Present) { return !Present; }))
      return nullptr;

  // Create the insert + shuffle.
  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
  UndefValue *UndefVec = UndefValue::get(VecTy);
  Constant *Zero = ConstantInt::get(Int32Ty, 0);
  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
    FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);

  // Splat from element 0, but replace absent elements with undef in the mask.
  SmallVector<Constant *, 16> Mask(NumElements, Zero);
  for (unsigned i = 0; i != NumElements; ++i)
    if (!ElementPresent[i])
      Mask[i] = UndefValue::get(Int32Ty);

  return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
}

/// Try to fold an insert element into an existing splat shuffle by changing
/// the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is a canonical splat shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !Shuf->isZeroEltSplat())
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if the splat shuffle's input is the same as this insert's scalar op.
  Value *X = InsElt.getOperand(1);
  Value *Op0 = Shuf->getOperand(0);
  if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
    return nullptr;

  // Replace the shuffle mask element at the index of this insert with a zero.
  // For example:
  // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
  //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
  Constant *Zero = ConstantInt::getNullValue(I32Ty);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);

  Constant *NewMask = ConstantVector::get(NewMaskVec);
  return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
}

/// Try to fold an extract+insert element into an existing identity shuffle by
/// changing the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is an identity shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
      !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if this insert's scalar op is extracted from the identity shuffle's
  // input vector.
  Value *Scalar = InsElt.getOperand(1);
  Value *X = Shuf->getOperand(0);
  if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
    return nullptr;

  // Replace the shuffle mask element at the index of this extract+insert with
  // that same index value.
  // For example:
  // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
  Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
  Constant *OldMask = Shuf->getMask();
  for (unsigned i = 0; i != NumMaskElts; ++i) {
    if (i != IdxC) {
      // All mask elements besides the inserted element remain the same.
      NewMaskVec[i] = OldMask->getAggregateElement(i);
    } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
      // If the mask element was already set, there's nothing to do
      // (demanded elements analysis may unset it later).
      return nullptr;
    } else {
      assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
             "Unexpected shuffle mask element for identity shuffle");
      NewMaskVec[i] = NewMaskEltC;
    }
  }

  Constant *NewMask = ConstantVector::get(NewMaskVec);
  return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
}

/// If we have an insertelement instruction feeding into another insertelement
/// and the 2nd is inserting a constant into the vector, canonicalize that
/// constant insertion before the insertion of a variable:
///
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
///
/// This has the potential of eliminating the 2nd insertelement instruction
/// via constant folding of the scalar constant into a vector constant.
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
                                     InstCombiner::BuilderTy &Builder) {
  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
  if (!InsElt1 || !InsElt1->hasOneUse())
    return nullptr;

  Value *X, *Y;
  Constant *ScalarC;
  ConstantInt *IdxC1, *IdxC2;
  if (match(InsElt1->getOperand(0), m_Value(X)) &&
      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
  }

  return nullptr;
}

/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
/// --> shufflevector X, CVec', Mask'
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
  // Bail out if the parent has more than one use. In that case, we'd be
  // replacing the insertelt with a shuffle, and that's not a clear win.
  if (!Inst || !Inst->hasOneUse())
    return nullptr;
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
    // The shuffle must have a constant vector operand. The insertelt must have
    // a constant scalar being inserted at a constant position in the vector.
    Constant *ShufConstVec, *InsEltScalar;
    uint64_t InsEltIndex;
    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
      return nullptr;

    // Adding an element to an arbitrary shuffle could be expensive, but a
    // shuffle that selects elements from vectors without crossing lanes is
    // assumed cheap.
    // If we're just adding a constant into that shuffle, it will still be
    // cheap.
    if (!isShuffleEquivalentToSelect(*Shuf))
      return nullptr;

    // From the above 'select' check, we know that the mask has the same number
    // of elements as the vector input operands. We also know that each constant
    // input element is used in its lane and can not be used more than once by
    // the shuffle. Therefore, replace the constant in the shuffle's constant
    // vector with the insertelt constant. Replace the constant in the shuffle's
    // mask vector with the insertelt index plus the length of the vector
    // (because the constant vector operand of a shuffle is always the 2nd
    // operand).
    Constant *Mask = Shuf->getMask();
    unsigned NumElts = Mask->getType()->getVectorNumElements();
    SmallVector<Constant *, 16> NewShufElts(NumElts);
    SmallVector<Constant *, 16> NewMaskElts(NumElts);
    for (unsigned I = 0; I != NumElts; ++I) {
      if (I == InsEltIndex) {
        NewShufElts[I] = InsEltScalar;
        Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
        NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
      } else {
        // Copy over the existing values.
        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
        NewMaskElts[I] = Mask->getAggregateElement(I);
      }
    }

    // Create new operands for a shuffle that includes the constant of the
    // original insertelt. The old shuffle will be dead now.
    return new ShuffleVectorInst(Shuf->getOperand(0),
                                 ConstantVector::get(NewShufElts),
                                 ConstantVector::get(NewMaskElts));
  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
    // Transform sequences of insertelements ops with constant data/indexes into
    // a single shuffle op.
    unsigned NumElts = InsElt.getType()->getNumElements();

    uint64_t InsertIdx[2];
    Constant *Val[2];
    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
        !match(IEI->getOperand(1), m_Constant(Val[1])))
      return nullptr;
    SmallVector<Constant *, 16> Values(NumElts);
    SmallVector<Constant *, 16> Mask(NumElts);
    auto ValI = std::begin(Val);
    // Generate new constant vector and mask.
    // We have 2 values/masks from the insertelements instructions. Insert them
    // into new value/mask vectors.
    for (uint64_t I : InsertIdx) {
      if (!Values[I]) {
        assert(!Mask[I]);
        Values[I] = *ValI;
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
                                   NumElts + I);
      }
      ++ValI;
    }
    // Remaining values are filled with 'undef' values.
    for (unsigned I = 0; I < NumElts; ++I) {
      if (!Values[I]) {
        assert(!Mask[I]);
        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
      }
    }
    // Create new operands for a shuffle that includes the constant of the
    // original insertelt.
    return new ShuffleVectorInst(IEI->getOperand(0),
                                 ConstantVector::get(Values),
                                 ConstantVector::get(Mask));
  }
  return nullptr;
}

Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
  Value *VecOp    = IE.getOperand(0);
  Value *ScalarOp = IE.getOperand(1);
  Value *IdxOp    = IE.getOperand(2);

  if (auto *V = SimplifyInsertElementInst(
          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
    return replaceInstUsesWith(IE, V);

  // If the vector and scalar are both bitcast from the same element type, do
  // the insert in that source type followed by bitcast.
  Value *VecSrc, *ScalarSrc;
  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
      VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
    return new BitCastInst(NewInsElt, IE.getType());
  }

  // If the inserted element was extracted from some other vector and both
  // indexes are valid constants, try to turn this into a shuffle.
  uint64_t InsertedIdx, ExtractedIdx;
  Value *ExtVecOp;
  if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
      match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
                                       m_ConstantInt(ExtractedIdx))) &&
      ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
    // TODO: Looking at the user(s) to determine if this insert is a
    // fold-to-shuffle opportunity does not match the usual instcombine
    // constraints. We should decide if the transform is worthy based only
    // on this instruction and its operands, but that may not work currently.
    //
    // Here, we are trying to avoid creating shuffles before reaching
    // the end of a chain of extract-insert pairs. This is complicated because
    // we do not generally form arbitrary shuffle masks in instcombine
    // (because those may codegen poorly), but collectShuffleElements() does
    // exactly that.
    //
    // The rules for determining what is an acceptable target-independent
    // shuffle mask are fuzzy because they evolve based on the backend's
    // capabilities and real-world impact.
    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
      if (!Insert.hasOneUse())
        return true;
      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
      if (!InsertUser)
        return true;
      return false;
    };

    // Try to form a shuffle from a chain of extract-insert ops.
    if (isShuffleRootCandidate(IE)) {
      SmallVector<Constant*, 16> Mask;
      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);

      // The proposed shuffle may be trivial, in which case we shouldn't
      // perform the combine.
      if (LR.first != &IE && LR.second != &IE) {
        // We now have a shuffle of LHS, RHS, Mask.
        if (LR.second == nullptr)
          LR.second = UndefValue::get(LR.first->getType());
        return new ShuffleVectorInst(LR.first, LR.second,
                                     ConstantVector::get(Mask));
      }
    }
  }

  unsigned VWidth = VecOp->getType()->getVectorNumElements();
  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
    if (V != &IE)
      return replaceInstUsesWith(IE, V);
    return &IE;
  }

  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
    return Shuf;

  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
    return NewInsElt;

  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
    return Broadcast;

  if (Instruction *Splat = foldInsEltIntoSplat(IE))
    return Splat;

  if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
    return IdentityShuf;

  return nullptr;
}

/// Return true if we can evaluate the specified expression tree if the vector
/// elements were shuffled in a different order.
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
                                unsigned Depth = 5) {
  // We can always reorder the elements of a constant.
  if (isa<Constant>(V))
    return true;

  // We won't reorder vector arguments. No IPO here.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Two users may expect different orders of the elements. Don't try it.
  if (!I->hasOneUse())
    return false;

  if (Depth == 0) return false;

  switch (I->getOpcode()) {
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      // Propagating an undefined shuffle mask element to integer div/rem is not
      // allowed because those opcodes can create immediate undefined behavior
      // from an undefined element in an operand.
      if (llvm::any_of(Mask, [](int M){ return M == -1; }))
        return false;
      LLVM_FALLTHROUGH;
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::FDiv:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::GetElementPtr: {
      // Bail out if we would create longer vector ops. We could allow creating
      // longer vector ops, but that may result in more expensive codegen.
      Type *ITy = I->getType();
      if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
        return false;
      for (Value *Operand : I->operands()) {
        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
          return false;
      }
      return true;
    }
    case Instruction::InsertElement: {
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
      if (!CI) return false;
      int ElementNumber = CI->getLimitedValue();

      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
      // can't put an element into multiple indices.
      bool SeenOnce = false;
      for (int i = 0, e = Mask.size(); i != e; ++i) {
        if (Mask[i] == ElementNumber) {
          if (SeenOnce)
            return false;
          SeenOnce = true;
        }
      }
      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
    }
  }
  return false;
}

/// Rebuild a new instruction just like 'I' but with the new operands given.
/// In the event of type mismatch, the type of the operands is correct.
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
  // We don't want to use the IRBuilder here because we want the replacement
  // instructions to appear next to 'I', not the builder's insertion point.
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      BinaryOperator *BO = cast<BinaryOperator>(I);
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
      BinaryOperator *New =
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
                                 NewOps[0], NewOps[1], "", BO);
      if (isa<OverflowingBinaryOperator>(BO)) {
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
      }
      if (isa<PossiblyExactOperator>(BO)) {
        New->setIsExact(BO->isExact());
      }
      if (isa<FPMathOperator>(BO))
        New->copyFastMathFlags(I);
      return New;
    }
    case Instruction::ICmp:
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::FCmp:
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt: {
      // It's possible that the mask has a different number of elements from
      // the original cast. We recompute the destination type to match the mask.
      Type *DestTy =
          VectorType::get(I->getType()->getScalarType(),
                          NewOps[0]->getType()->getVectorNumElements());
      assert(NewOps.size() == 1 && "cast with #ops != 1");
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
                              "", I);
    }
    case Instruction::GetElementPtr: {
      Value *Ptr = NewOps[0];
      ArrayRef<Value*> Idx = NewOps.slice(1);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
      return GEP;
    }
  }
  llvm_unreachable("failed to rebuild vector instructions");
}

static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
  // Mask.size() does not need to be equal to the number of vector elements.

  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
  Type *EltTy = V->getType()->getScalarType();
  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
  if (isa<UndefValue>(V))
    return UndefValue::get(VectorType::get(EltTy, Mask.size()));

  if (isa<ConstantAggregateZero>(V))
    return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));

  if (Constant *C = dyn_cast<Constant>(V)) {
    SmallVector<Constant *, 16> MaskValues;
    for (int i = 0, e = Mask.size(); i != e; ++i) {
      if (Mask[i] == -1)
        MaskValues.push_back(UndefValue::get(I32Ty));
      else
        MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
    }
    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
                                          ConstantVector::get(MaskValues));
  }

  Instruction *I = cast<Instruction>(V);
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::Select:
    case Instruction::GetElementPtr: {
      SmallVector<Value*, 8> NewOps;
      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        Value *V;
        // Recursively call evaluateInDifferentElementOrder on vector arguments
        // as well. E.g. GetElementPtr may have scalar operands even if the
        // return value is a vector, so we need to examine the operand type.
        if (I->getOperand(i)->getType()->isVectorTy())
          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
        else
          V = I->getOperand(i);
        NewOps.push_back(V);
        NeedsRebuild |= (V != I->getOperand(i));
      }
      if (NeedsRebuild) {
        return buildNew(I, NewOps);
      }
      return I;
    }
    case Instruction::InsertElement: {
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();

      // The insertelement was inserting at Element. Figure out which element
      // that becomes after shuffling. The answer is guaranteed to be unique
      // by CanEvaluateShuffled.
      bool Found = false;
      int Index = 0;
      for (int e = Mask.size(); Index != e; ++Index) {
        if (Mask[Index] == Element) {
          Found = true;
          break;
        }
      }

      // If element is not in Mask, no need to handle the operand 1 (element to
      // be inserted). Just evaluate values in operand 0 according to Mask.
      if (!Found)
        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);

      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
      return InsertElementInst::Create(V, I->getOperand(1),
                                       ConstantInt::get(I32Ty, Index), "", I);
    }
  }
  llvm_unreachable("failed to reorder elements of vector instruction!");
}

static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
                                  bool &isLHSID, bool &isRHSID) {
  isLHSID = isRHSID = true;

  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] < 0) continue;  // Ignore undef values.
    // Is this an identity shuffle of the LHS value?
    isLHSID &= (Mask[i] == (int)i);

    // Is this an identity shuffle of the RHS value?
    isRHSID &= (Mask[i]-e == i);
  }
}

// Returns true if the shuffle is extracting a contiguous range of values from
// LHS, for example:
//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
//   Shuffles to:  |EE|FF|GG|HH|
//                 +--+--+--+--+
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
                                       SmallVector<int, 16> &Mask) {
  unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
  unsigned MaskElems = Mask.size();
  unsigned BegIdx = Mask.front();
  unsigned EndIdx = Mask.back();
  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
    return false;
  for (unsigned I = 0; I != MaskElems; ++I)
    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
      return false;
  return true;
}

/// These are the ingredients in an alternate form binary operator as described
/// below.
struct BinopElts {
  BinaryOperator::BinaryOps Opcode;
  Value *Op0;
  Value *Op1;
  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
            Value *V0 = nullptr, Value *V1 = nullptr) :
      Opcode(Opc), Op0(V0), Op1(V1) {}
  operator bool() const { return Opcode != 0; }
};

/// Binops may be transformed into binops with different opcodes and operands.
/// Reverse the usual canonicalization to enable folds with the non-canonical
/// form of the binop. If a transform is possible, return the elements of the
/// new binop. If not, return invalid elements.
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
  Type *Ty = BO->getType();
  switch (BO->getOpcode()) {
    case Instruction::Shl: {
      // shl X, C --> mul X, (1 << C)
      Constant *C;
      if (match(BO1, m_Constant(C))) {
        Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
        return { Instruction::Mul, BO0, ShlOne };
      }
      break;
    }
    case Instruction::Or: {
      // or X, C --> add X, C (when X and C have no common bits set)
      const APInt *C;
      if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
        return { Instruction::Add, BO0, BO1 };
      break;
    }
    default:
      break;
  }
  return {};
}

static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");

  // Are we shuffling together some value and that same value after it has been
  // modified by a binop with a constant?
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *C;
  bool Op0IsBinop;
  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
    Op0IsBinop = true;
  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
    Op0IsBinop = false;
  else
    return nullptr;

  // The identity constant for a binop leaves a variable operand unchanged. For
  // a vector, this is a splat of something like 0, -1, or 1.
  // If there's no identity constant for this binop, we're done.
  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
  if (!IdC)
    return nullptr;

  // Shuffle identity constants into the lanes that return the original value.
  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
  // The existing binop constant vector remains in the same operand position.
  Constant *Mask = Shuf.getMask();
  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
                                ConstantExpr::getShuffleVector(IdC, C, Mask);

  bool MightCreatePoisonOrUB =
      Mask->containsUndefElement() &&
      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
  if (MightCreatePoisonOrUB)
    NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);

  // shuf (bop X, C), X, M --> bop X, C'
  // shuf X, (bop X, C), M --> bop X, C'
  Value *X = Op0IsBinop ? Op1 : Op0;
  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
  NewBO->copyIRFlags(BO);

  // An undef shuffle mask element may propagate as an undef constant element in
  // the new binop. That would produce poison where the original code might not.
  // If we already made a safe constant, then there's no danger.
  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// If we have an insert of a scalar to a non-zero element of an undefined
/// vector and then shuffle that value, that's the same as inserting to the zero
/// element and shuffling. Splatting from the zero element is recognized as the
/// canonical form of splat.
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
                                            InstCombiner::BuilderTy &Builder) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *Mask = Shuf.getMask();
  Value *X;
  uint64_t IndexC;

  // Match a shuffle that is a splat to a non-zero element.
  if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
                                           m_ConstantInt(IndexC)))) ||
      !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
    return nullptr;

  // Insert into element 0 of an undef vector.
  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
  Constant *Zero = Builder.getInt32(0);
  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);

  // Splat from element 0. Any mask element that is undefined remains undefined.
  // For example:
  // shuf (inselt undef, X, 2), undef, <2,2,undef>
  //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
  unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    if (isa<UndefValue>(Mask->getAggregateElement(i)))
      NewMask[i] = Mask->getAggregateElement(i);

  return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
}

/// Try to fold shuffles that are the equivalent of a vector select.
static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
                                      InstCombiner::BuilderTy &Builder,
                                      const DataLayout &DL) {
  if (!Shuf.isSelect())
    return nullptr;

  // Canonicalize to choose from operand 0 first.
  unsigned NumElts = Shuf.getType()->getVectorNumElements();
  if (Shuf.getMaskValue(0) >= (int)NumElts) {
    // TODO: Can we assert that both operands of a shuffle-select are not undef
    // (otherwise, it would have been folded by instsimplify?
    Shuf.commute();
    return &Shuf;
  }

  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
    return I;

  BinaryOperator *B0, *B1;
  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
      !match(Shuf.getOperand(1), m_BinOp(B1)))
    return nullptr;

  Value *X, *Y;
  Constant *C0, *C1;
  bool ConstantsAreOp1;
  if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
      match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
    ConstantsAreOp1 = true;
  else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
           match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
    ConstantsAreOp1 = false;
  else
    return nullptr;

  // We need matching binops to fold the lanes together.
  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
  bool DropNSW = false;
  if (ConstantsAreOp1 && Opc0 != Opc1) {
    // TODO: We drop "nsw" if shift is converted into multiply because it may
    // not be correct when the shift amount is BitWidth - 1. We could examine
    // each vector element to determine if it is safe to keep that flag.
    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
      DropNSW = true;
    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
      Opc0 = AltB0.Opcode;
      C0 = cast<Constant>(AltB0.Op1);
    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
      Opc1 = AltB1.Opcode;
      C1 = cast<Constant>(AltB1.Op1);
    }
  }

  if (Opc0 != Opc1)
    return nullptr;

  // The opcodes must be the same. Use a new name to make that clear.
  BinaryOperator::BinaryOps BOpc = Opc0;

  // Select the constant elements needed for the single binop.
  Constant *Mask = Shuf.getMask();
  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);

  // We are moving a binop after a shuffle. When a shuffle has an undefined
  // mask element, the result is undefined, but it is not poison or undefined
  // behavior. That is not necessarily true for div/rem/shift.
  bool MightCreatePoisonOrUB =
      Mask->containsUndefElement() &&
      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
  if (MightCreatePoisonOrUB)
    NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);

  Value *V;
  if (X == Y) {
    // Remove a binop and the shuffle by rearranging the constant:
    // shuffle (op V, C0), (op V, C1), M --> op V, C'
    // shuffle (op C0, V), (op C1, V), M --> op C', V
    V = X;
  } else {
    // If there are 2 different variable operands, we must create a new shuffle
    // (select) first, so check uses to ensure that we don't end up with more
    // instructions than we started with.
    if (!B0->hasOneUse() && !B1->hasOneUse())
      return nullptr;

    // If we use the original shuffle mask and op1 is *variable*, we would be
    // putting an undef into operand 1 of div/rem/shift. This is either UB or
    // poison. We do not have to guard against UB when *constants* are op1
    // because safe constants guarantee that we do not overflow sdiv/srem (and
    // there's no danger for other opcodes).
    // TODO: To allow this case, create a new shuffle mask with no undefs.
    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
      return nullptr;

    // Note: In general, we do not create new shuffles in InstCombine because we
    // do not know if a target can lower an arbitrary shuffle optimally. In this
    // case, the shuffle uses the existing mask, so there is no additional risk.

    // Select the variable vectors first, then perform the binop:
    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
    V = Builder.CreateShuffleVector(X, Y, Mask);
  }

  Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
                                         BinaryOperator::Create(BOpc, NewC, V);

  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
  // 1. If we changed an opcode, poison conditions might have changed.
  // 2. If the shuffle had undef mask elements, the new binop might have undefs
  //    where the original code did not. But if we already made a safe constant,
  //    then there's no danger.
  NewBO->copyIRFlags(B0);
  NewBO->andIRFlags(B1);
  if (DropNSW)
    NewBO->setHasNoSignedWrap(false);
  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
/// narrowing (concatenating with undef and extracting back to the original
/// length). This allows replacing the wide select with a narrow select.
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
                                       InstCombiner::BuilderTy &Builder) {
  // This must be a narrowing identity shuffle. It extracts the 1st N elements
  // of the 1st vector operand of a shuffle.
  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
    return nullptr;

  // The vector being shuffled must be a vector select that we can eliminate.
  // TODO: The one-use requirement could be eased if X and/or Y are constants.
  Value *Cond, *X, *Y;
  if (!match(Shuf.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
    return nullptr;

  // We need a narrow condition value. It must be extended with undef elements
  // and have the same number of elements as this shuffle.
  unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
  Value *NarrowCond;
  if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
                                            m_Constant()))) ||
      NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
    return nullptr;

  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
  Value *Undef = UndefValue::get(X->getType());
  Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
  Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
}

/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
    return nullptr;

  Value *X, *Y;
  Constant *Mask;
  if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
    return nullptr;

  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
  // then combining may result in worse codegen.
  if (!Op0->hasOneUse())
    return nullptr;

  // We are extracting a subvector from a shuffle. Remove excess elements from
  // the 1st shuffle mask to eliminate the extract.
  //
  // This transform is conservatively limited to identity extracts because we do
  // not allow arbitrary shuffle mask creation as a target-independent transform
  // (because we can't guarantee that will lower efficiently).
  //
  // If the extracting shuffle has an undef mask element, it transfers to the
  // new shuffle mask. Otherwise, copy the original mask element. Example:
  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
  //   shuf X, Y, <C0, undef, C2, undef>
  unsigned NumElts = Shuf.getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMask(NumElts);
  assert(NumElts < Mask->getType()->getVectorNumElements() &&
         "Identity with extract must have less elements than its inputs");

  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
    Constant *MaskElt = Mask->getAggregateElement(i);
    NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
  }
  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}

/// Try to replace a shuffle with an insertelement.
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
  SmallVector<int, 16> Mask = Shuf.getShuffleMask();

  // The shuffle must not change vector sizes.
  // TODO: This restriction could be removed if the insert has only one use
  //       (because the transform would require a new length-changing shuffle).
  int NumElts = Mask.size();
  if (NumElts != (int)(V0->getType()->getVectorNumElements()))
    return nullptr;

  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
    // We need an insertelement with a constant index.
    if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
                                   m_ConstantInt(IndexC))))
      return false;

    // Test the shuffle mask to see if it splices the inserted scalar into the
    // operand 1 vector of the shuffle.
    int NewInsIndex = -1;
    for (int i = 0; i != NumElts; ++i) {
      // Ignore undef mask elements.
      if (Mask[i] == -1)
        continue;

      // The shuffle takes elements of operand 1 without lane changes.
      if (Mask[i] == NumElts + i)
        continue;

      // The shuffle must choose the inserted scalar exactly once.
      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
        return false;

      // The shuffle is placing the inserted scalar into element i.
      NewInsIndex = i;
    }

    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");

    // Index is updated to the potentially translated insertion lane.
    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
    return true;
  };

  // If the shuffle is unnecessary, insert the scalar operand directly into
  // operand 1 of the shuffle. Example:
  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
  Value *Scalar;
  ConstantInt *IndexC;
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  // Try again after commuting shuffle. Example:
  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
  std::swap(V0, V1);
  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  return nullptr;
}

static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
  // Match the operands as identity with padding (also known as concatenation
  // with undef) shuffles of the same source type. The backend is expected to
  // recreate these concatenations from a shuffle of narrow operands.
  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
    return nullptr;

  // We limit this transform to power-of-2 types because we expect that the
  // backend can convert the simplified IR patterns to identical nodes as the
  // original IR.
  // TODO: If we can verify the same behavior for arbitrary types, the
  //       power-of-2 checks can be removed.
  Value *X = Shuffle0->getOperand(0);
  Value *Y = Shuffle1->getOperand(0);
  if (X->getType() != Y->getType() ||
      !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
      !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
      !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
      isa<UndefValue>(X) || isa<UndefValue>(Y))
    return nullptr;
  assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
         isa<UndefValue>(Shuffle1->getOperand(1)) &&
         "Unexpected operand for identity shuffle");

  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
  // operands directly by adjusting the shuffle mask to account for the narrower
  // types:
  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
  int NarrowElts = X->getType()->getVectorNumElements();
  int WideElts = Shuffle0->getType()->getVectorNumElements();
  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");

  Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
  SmallVector<int, 16> Mask = Shuf.getShuffleMask();
  SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
  for (int i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] == -1)
      continue;

    // If this shuffle is choosing an undef element from 1 of the sources, that
    // element is undef.
    if (Mask[i] < WideElts) {
      if (Shuffle0->getMaskValue(Mask[i]) == -1)
        continue;
    } else {
      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
        continue;
    }

    // If this shuffle is choosing from the 1st narrow op, the mask element is
    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
    // element is offset down to adjust for the narrow vector widths.
    if (Mask[i] < WideElts) {
      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
      NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
    } else {
      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
      NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
    }
  }
  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}

Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  Value *LHS = SVI.getOperand(0);
  Value *RHS = SVI.getOperand(1);
  if (auto *V = SimplifyShuffleVectorInst(
          LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
    return replaceInstUsesWith(SVI, V);

  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
  unsigned VWidth = SVI.getType()->getVectorNumElements();
  unsigned LHSWidth = LHS->getType()->getVectorNumElements();
  SmallVector<int, 16> Mask = SVI.getShuffleMask();
  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
  if (LHS == RHS || isa<UndefValue>(LHS)) {
    // Remap any references to RHS to use LHS.
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
      if (Mask[i] < 0) {
        Elts.push_back(UndefValue::get(Int32Ty));
        continue;
      }

      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
        Mask[i] = -1;     // Turn into undef.
        Elts.push_back(UndefValue::get(Int32Ty));
      } else {
        Mask[i] = Mask[i] % e;  // Force to LHS.
        Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
      }
    }
    SVI.setOperand(0, SVI.getOperand(1));
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
    SVI.setOperand(2, ConstantVector::get(Elts));
    return &SVI;
  }

  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
    return I;

  if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
    return I;

  if (Instruction *I = narrowVectorSelect(SVI, Builder))
    return I;

  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
    if (V != &SVI)
      return replaceInstUsesWith(SVI, V);
    return &SVI;
  }

  if (Instruction *I = foldIdentityExtractShuffle(SVI))
    return I;

  // These transforms have the potential to lose undef knowledge, so they are
  // intentionally placed after SimplifyDemandedVectorElts().
  if (Instruction *I = foldShuffleWithInsert(SVI))
    return I;
  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
    return I;

  if (VWidth == LHSWidth) {
    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
    bool isLHSID, isRHSID;
    recognizeIdentityMask(Mask, isLHSID, isRHSID);

    // Eliminate identity shuffles.
    if (isLHSID) return replaceInstUsesWith(SVI, LHS);
    if (isRHSID) return replaceInstUsesWith(SVI, RHS);
  }

  if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
    return replaceInstUsesWith(SVI, V);
  }

  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
  // a non-vector type. We can instead bitcast the original vector followed by
  // an extract of the desired element:
  //
  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
  //   %1 = bitcast <4 x i8> %sroa to i32
  // Becomes:
  //   %bc = bitcast <16 x i8> %in to <4 x i32>
  //   %ext = extractelement <4 x i32> %bc, i32 0
  //
  // If the shuffle is extracting a contiguous range of values from the input
  // vector then each use which is a bitcast of the extracted size can be
  // replaced. This will work if the vector types are compatible, and the begin
  // index is aligned to a value in the casted vector type. If the begin index
  // isn't aligned then we can shuffle the original vector (keeping the same
  // vector type) before extracting.
  //
  // This code will bail out if the target type is fundamentally incompatible
  // with vectors of the source type.
  //
  // Example of <16 x i8>, target type i32:
  // Index range [4,8):         v-----------v Will work.
  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
  //     <4 x i32>: |           |           |           |           |
  //                +-----------+-----------+-----------+-----------+
  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
  // Target type i40:           ^--------------^ Won't work, bail.
  bool MadeChange = false;
  if (isShuffleExtractingFromLHS(SVI, Mask)) {
    Value *V = LHS;
    unsigned MaskElems = Mask.size();
    VectorType *SrcTy = cast<VectorType>(V->getType());
    unsigned VecBitWidth = SrcTy->getBitWidth();
    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
    unsigned SrcNumElems = SrcTy->getNumElements();
    SmallVector<BitCastInst *, 8> BCs;
    DenseMap<Type *, Value *> NewBCs;
    for (User *U : SVI.users())
      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
        if (!BC->use_empty())
          // Only visit bitcasts that weren't previously handled.
          BCs.push_back(BC);
    for (BitCastInst *BC : BCs) {
      unsigned BegIdx = Mask.front();
      Type *TgtTy = BC->getDestTy();
      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
      if (!TgtElemBitWidth)
        continue;
      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
      if (!VecBitWidthsEqual)
        continue;
      if (!VectorType::isValidElementType(TgtTy))
        continue;
      VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
      if (!BegIsAligned) {
        // Shuffle the input so [0,NumElements) contains the output, and
        // [NumElems,SrcNumElems) is undef.
        SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
                                                UndefValue::get(Int32Ty));
        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
          ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
                                        ConstantVector::get(ShuffleMask),
                                        SVI.getName() + ".extract");
        BegIdx = 0;
      }
      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
      assert(SrcElemsPerTgtElem);
      BegIdx /= SrcElemsPerTgtElem;
      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
      auto *NewBC =
          BCAlreadyExists
              ? NewBCs[CastSrcTy]
              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
      if (!BCAlreadyExists)
        NewBCs[CastSrcTy] = NewBC;
      auto *Ext = Builder.CreateExtractElement(
          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
      // The shufflevector isn't being replaced: the bitcast that used it
      // is. InstCombine will visit the newly-created instructions.
      replaceInstUsesWith(*BC, Ext);
      MadeChange = true;
    }
  }

  // If the LHS is a shufflevector itself, see if we can combine it with this
  // one without producing an unusual shuffle.
  // Cases that might be simplified:
  // 1.
  // x1=shuffle(v1,v2,mask1)
  //  x=shuffle(x1,undef,mask)
  //        ==>
  //  x=shuffle(v1,undef,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
  // 2.
  // x1=shuffle(v1,undef,mask1)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == mask1.size()
  //        ==>
  //  x=shuffle(v1,x2,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
  // 3.
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v2.size() == mask2.size()
  //        ==>
  //  x=shuffle(x1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
  // 4.
  // x1=shuffle(v1,undef,mask1)
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == v2.size()
  //        ==>
  //  x=shuffle(v1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
  //
  // Here we are really conservative:
  // we are absolutely afraid of producing a shuffle mask not in the input
  // program, because the code gen may not be smart enough to turn a merged
  // shuffle into two specific shuffles: it may produce worse code.  As such,
  // we only merge two shuffles if the result is either a splat or one of the
  // input shuffle masks.  In this case, merging the shuffles just removes
  // one instruction, which we know is safe.  This is good for things like
  // turning: (splat(splat)) -> splat, or
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
  if (LHSShuffle)
    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
      LHSShuffle = nullptr;
  if (RHSShuffle)
    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
      RHSShuffle = nullptr;
  if (!LHSShuffle && !RHSShuffle)
    return MadeChange ? &SVI : nullptr;

  Value* LHSOp0 = nullptr;
  Value* LHSOp1 = nullptr;
  Value* RHSOp0 = nullptr;
  unsigned LHSOp0Width = 0;
  unsigned RHSOp0Width = 0;
  if (LHSShuffle) {
    LHSOp0 = LHSShuffle->getOperand(0);
    LHSOp1 = LHSShuffle->getOperand(1);
    LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
  }
  if (RHSShuffle) {
    RHSOp0 = RHSShuffle->getOperand(0);
    RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
  }
  Value* newLHS = LHS;
  Value* newRHS = RHS;
  if (LHSShuffle) {
    // case 1
    if (isa<UndefValue>(RHS)) {
      newLHS = LHSOp0;
      newRHS = LHSOp1;
    }
    // case 2 or 4
    else if (LHSOp0Width == LHSWidth) {
      newLHS = LHSOp0;
    }
  }
  // case 3 or 4
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
    newRHS = RHSOp0;
  }
  // case 4
  if (LHSOp0 == RHSOp0) {
    newLHS = LHSOp0;
    newRHS = nullptr;
  }

  if (newLHS == LHS && newRHS == RHS)
    return MadeChange ? &SVI : nullptr;

  SmallVector<int, 16> LHSMask;
  SmallVector<int, 16> RHSMask;
  if (newLHS != LHS)
    LHSMask = LHSShuffle->getShuffleMask();
  if (RHSShuffle && newRHS != RHS)
    RHSMask = RHSShuffle->getShuffleMask();

  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
  SmallVector<int, 16> newMask;
  bool isSplat = true;
  int SplatElt = -1;
  // Create a new mask for the new ShuffleVectorInst so that the new
  // ShuffleVectorInst is equivalent to the original one.
  for (unsigned i = 0; i < VWidth; ++i) {
    int eltMask;
    if (Mask[i] < 0) {
      // This element is an undef value.
      eltMask = -1;
    } else if (Mask[i] < (int)LHSWidth) {
      // This element is from left hand side vector operand.
      //
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
      // new mask value for the element.
      if (newLHS != LHS) {
        eltMask = LHSMask[Mask[i]];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
          eltMask = -1;
      } else
        eltMask = Mask[i];
    } else {
      // This element is from right hand side vector operand
      //
      // If the value selected is an undef value, explicitly specify it
      // with a -1 mask value. (case 1)
      if (isa<UndefValue>(RHS))
        eltMask = -1;
      // If RHS is going to be replaced (case 3 or 4), calculate the
      // new mask value for the element.
      else if (newRHS != RHS) {
        eltMask = RHSMask[Mask[i]-LHSWidth];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)RHSOp0Width) {
          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
                 && "should have been check above");
          eltMask = -1;
        }
      } else
        eltMask = Mask[i]-LHSWidth;

      // If LHS's width is changed, shift the mask value accordingly.
      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
      // If newRHS == newLHS, we want to remap any references from newRHS to
      // newLHS so that we can properly identify splats that may occur due to
      // obfuscation across the two vectors.
      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
        eltMask += newLHSWidth;
    }

    // Check if this could still be a splat.
    if (eltMask >= 0) {
      if (SplatElt >= 0 && SplatElt != eltMask)
        isSplat = false;
      SplatElt = eltMask;
    }

    newMask.push_back(eltMask);
  }

  // If the result mask is equal to one of the original shuffle masks,
  // or is a splat, do the replacement.
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
      if (newMask[i] < 0) {
        Elts.push_back(UndefValue::get(Int32Ty));
      } else {
        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
      }
    }
    if (!newRHS)
      newRHS = UndefValue::get(newLHS->getType());
    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
  }

  // If the result mask is an identity, replace uses of this instruction with
  // corresponding argument.
  bool isLHSID, isRHSID;
  recognizeIdentityMask(newMask, isLHSID, isRHSID);
  if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
  if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);

  return MadeChange ? &SVI : nullptr;
}