reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file provides internal interfaces used to implement the InstCombine.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>

#define DEBUG_TYPE "instcombine"

using namespace llvm::PatternMatch;

namespace llvm {

class APInt;
class AssumptionCache;
class BlockFrequencyInfo;
class DataLayout;
class DominatorTree;
class GEPOperator;
class GlobalVariable;
class LoopInfo;
class OptimizationRemarkEmitter;
class ProfileSummaryInfo;
class TargetLibraryInfo;
class User;

/// Assign a complexity or rank value to LLVM Values. This is used to reduce
/// the amount of pattern matching needed for compares and commutative
/// instructions. For example, if we have:
///   icmp ugt X, Constant
/// or
///   xor (add X, Constant), cast Z
///
/// We do not have to consider the commuted variants of these patterns because
/// canonicalization based on complexity guarantees the above ordering.
///
/// This routine maps IR values to various complexity ranks:
///   0 -> undef
///   1 -> Constants
///   2 -> Other non-instructions
///   3 -> Arguments
///   4 -> Cast and (f)neg/not instructions
///   5 -> Other instructions
static inline unsigned getComplexity(Value *V) {
  if (isa<Instruction>(V)) {
    if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
        match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
      return 4;
    return 5;
  }
  if (isa<Argument>(V))
    return 3;
  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}

/// Predicate canonicalization reduces the number of patterns that need to be
/// matched by other transforms. For example, we may swap the operands of a
/// conditional branch or select to create a compare with a canonical (inverted)
/// predicate which is then more likely to be matched with other values.
static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
  switch (Pred) {
  case CmpInst::ICMP_NE:
  case CmpInst::ICMP_ULE:
  case CmpInst::ICMP_SLE:
  case CmpInst::ICMP_UGE:
  case CmpInst::ICMP_SGE:
  // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_OGE:
    return false;
  default:
    return true;
  }
}

/// Given an exploded icmp instruction, return true if the comparison only
/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
/// result of the comparison is true when the input value is signed.
inline bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
                           bool &TrueIfSigned) {
  switch (Pred) {
  case ICmpInst::ICMP_SLT: // True if LHS s< 0
    TrueIfSigned = true;
    return RHS.isNullValue();
  case ICmpInst::ICMP_SLE: // True if LHS s<= -1
    TrueIfSigned = true;
    return RHS.isAllOnesValue();
  case ICmpInst::ICMP_SGT: // True if LHS s> -1
    TrueIfSigned = false;
    return RHS.isAllOnesValue();
  case ICmpInst::ICMP_SGE: // True if LHS s>= 0
    TrueIfSigned = false;
    return RHS.isNullValue();
  case ICmpInst::ICMP_UGT:
    // True if LHS u> RHS and RHS == sign-bit-mask - 1
    TrueIfSigned = true;
    return RHS.isMaxSignedValue();
  case ICmpInst::ICMP_UGE:
    // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
    TrueIfSigned = true;
    return RHS.isMinSignedValue();
  case ICmpInst::ICMP_ULT:
    // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
    TrueIfSigned = false;
    return RHS.isMinSignedValue();
  case ICmpInst::ICMP_ULE:
    // True if LHS u<= RHS and RHS == sign-bit-mask - 1
    TrueIfSigned = false;
    return RHS.isMaxSignedValue();
  default:
    return false;
  }
}

llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C);

/// Return the source operand of a potentially bitcasted value while optionally
/// checking if it has one use. If there is no bitcast or the one use check is
/// not met, return the input value itself.
static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
  if (auto *BitCast = dyn_cast<BitCastInst>(V))
    if (!OneUseOnly || BitCast->hasOneUse())
      return BitCast->getOperand(0);

  // V is not a bitcast or V has more than one use and OneUseOnly is true.
  return V;
}

/// Add one to a Constant
static inline Constant *AddOne(Constant *C) {
  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}

/// Subtract one from a Constant
static inline Constant *SubOne(Constant *C) {
  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}

/// Return true if the specified value is free to invert (apply ~ to).
/// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
/// is true, work under the assumption that the caller intends to remove all
/// uses of V and only keep uses of ~V.
///
/// See also: canFreelyInvertAllUsersOf()
static inline bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
  // ~(~(X)) -> X.
  if (match(V, m_Not(m_Value())))
    return true;

  // Constants can be considered to be not'ed values.
  if (match(V, m_AnyIntegralConstant()))
    return true;

  // Compares can be inverted if all of their uses are being modified to use the
  // ~V.
  if (isa<CmpInst>(V))
    return WillInvertAllUses;

  // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
  // - Constant) - A` if we are willing to invert all of the uses.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
    if (BO->getOpcode() == Instruction::Add ||
        BO->getOpcode() == Instruction::Sub)
      if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
        return WillInvertAllUses;

  // Selects with invertible operands are freely invertible
  if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
    return WillInvertAllUses;

  return false;
}

/// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
///
/// See also: isFreeToInvert()
static inline bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
  // Look at every user of V.
  for (User *U : V->users()) {
    if (U == IgnoredUser)
      continue; // Don't consider this user.

    auto *I = cast<Instruction>(U);
    switch (I->getOpcode()) {
    case Instruction::Select:
    case Instruction::Br:
      break; // Free to invert by swapping true/false values/destinations.
    case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring it.
      if (!match(I, m_Not(m_Value())))
        return false; // Not a 'not'.
      break;
    default:
      return false; // Don't know, likely not freely invertible.
    }
    // So far all users were free to invert...
  }
  return true; // Can freely invert all users!
}

/// Some binary operators require special handling to avoid poison and undefined
/// behavior. If a constant vector has undef elements, replace those undefs with
/// identity constants if possible because those are always safe to execute.
/// If no identity constant exists, replace undef with some other safe constant.
static inline Constant *getSafeVectorConstantForBinop(
      BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
  assert(In->getType()->isVectorTy() && "Not expecting scalars here");

  Type *EltTy = In->getType()->getVectorElementType();
  auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
  if (!SafeC) {
    // TODO: Should this be available as a constant utility function? It is
    // similar to getBinOpAbsorber().
    if (IsRHSConstant) {
      switch (Opcode) {
      case Instruction::SRem: // X % 1 = 0
      case Instruction::URem: // X %u 1 = 0
        SafeC = ConstantInt::get(EltTy, 1);
        break;
      case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
        SafeC = ConstantFP::get(EltTy, 1.0);
        break;
      default:
        llvm_unreachable("Only rem opcodes have no identity constant for RHS");
      }
    } else {
      switch (Opcode) {
      case Instruction::Shl:  // 0 << X = 0
      case Instruction::LShr: // 0 >>u X = 0
      case Instruction::AShr: // 0 >> X = 0
      case Instruction::SDiv: // 0 / X = 0
      case Instruction::UDiv: // 0 /u X = 0
      case Instruction::SRem: // 0 % X = 0
      case Instruction::URem: // 0 %u X = 0
      case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
      case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
      case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
      case Instruction::FRem: // 0.0 % X = 0
        SafeC = Constant::getNullValue(EltTy);
        break;
      default:
        llvm_unreachable("Expected to find identity constant for opcode");
      }
    }
  }
  assert(SafeC && "Must have safe constant for binop");
  unsigned NumElts = In->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> Out(NumElts);
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *C = In->getAggregateElement(i);
    Out[i] = isa<UndefValue>(C) ? SafeC : C;
  }
  return ConstantVector::get(Out);
}

/// The core instruction combiner logic.
///
/// This class provides both the logic to recursively visit instructions and
/// combine them.
class LLVM_LIBRARY_VISIBILITY InstCombiner
    : public InstVisitor<InstCombiner, Instruction *> {
  // FIXME: These members shouldn't be public.
public:
  /// A worklist of the instructions that need to be simplified.
  InstCombineWorklist &Worklist;

  /// An IRBuilder that automatically inserts new instructions into the
  /// worklist.
  using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
  BuilderTy &Builder;

private:
  // Mode in which we are running the combiner.
  const bool MinimizeSize;

  /// Enable combines that trigger rarely but are costly in compiletime.
  const bool ExpensiveCombines;

  AliasAnalysis *AA;

  // Required analyses.
  AssumptionCache &AC;
  TargetLibraryInfo &TLI;
  DominatorTree &DT;
  const DataLayout &DL;
  const SimplifyQuery SQ;
  OptimizationRemarkEmitter &ORE;
  BlockFrequencyInfo *BFI;
  ProfileSummaryInfo *PSI;

  // Optional analyses. When non-null, these can both be used to do better
  // combining and will be updated to reflect any changes.
  LoopInfo *LI;

  bool MadeIRChange = false;

public:
  InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
               bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
               AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
               OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
               ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
      : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
        ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
        DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}

  /// Run the combiner over the entire worklist until it is empty.
  ///
  /// \returns true if the IR is changed.
  bool run();

  AssumptionCache &getAssumptionCache() const { return AC; }

  const DataLayout &getDataLayout() const { return DL; }

  DominatorTree &getDominatorTree() const { return DT; }

  LoopInfo *getLoopInfo() const { return LI; }

  TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }

  // Visitation implementation - Implement instruction combining for different
  // instruction types.  The semantics are as follows:
  // Return Value:
  //    null        - No change was made
  //     I          - Change was made, I is still valid, I may be dead though
  //   otherwise    - Change was made, replace I with returned instruction
  //
  Instruction *visitFNeg(UnaryOperator &I);
  Instruction *visitAdd(BinaryOperator &I);
  Instruction *visitFAdd(BinaryOperator &I);
  Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
  Instruction *visitSub(BinaryOperator &I);
  Instruction *visitFSub(BinaryOperator &I);
  Instruction *visitMul(BinaryOperator &I);
  Instruction *visitFMul(BinaryOperator &I);
  Instruction *visitURem(BinaryOperator &I);
  Instruction *visitSRem(BinaryOperator &I);
  Instruction *visitFRem(BinaryOperator &I);
  bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
  Instruction *commonRemTransforms(BinaryOperator &I);
  Instruction *commonIRemTransforms(BinaryOperator &I);
  Instruction *commonDivTransforms(BinaryOperator &I);
  Instruction *commonIDivTransforms(BinaryOperator &I);
  Instruction *visitUDiv(BinaryOperator &I);
  Instruction *visitSDiv(BinaryOperator &I);
  Instruction *visitFDiv(BinaryOperator &I);
  Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
  Instruction *visitAnd(BinaryOperator &I);
  Instruction *visitOr(BinaryOperator &I);
  Instruction *visitXor(BinaryOperator &I);
  Instruction *visitShl(BinaryOperator &I);
  Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
      BinaryOperator *Sh0, const SimplifyQuery &SQ,
      bool AnalyzeForSignBitExtraction = false);
  Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
      BinaryOperator &I);
  Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
      BinaryOperator &OldAShr);
  Instruction *visitAShr(BinaryOperator &I);
  Instruction *visitLShr(BinaryOperator &I);
  Instruction *commonShiftTransforms(BinaryOperator &I);
  Instruction *visitFCmpInst(FCmpInst &I);
  Instruction *visitICmpInst(ICmpInst &I);
  Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
                                   BinaryOperator &I);
  Instruction *commonCastTransforms(CastInst &CI);
  Instruction *commonPointerCastTransforms(CastInst &CI);
  Instruction *visitTrunc(TruncInst &CI);
  Instruction *visitZExt(ZExtInst &CI);
  Instruction *visitSExt(SExtInst &CI);
  Instruction *visitFPTrunc(FPTruncInst &CI);
  Instruction *visitFPExt(CastInst &CI);
  Instruction *visitFPToUI(FPToUIInst &FI);
  Instruction *visitFPToSI(FPToSIInst &FI);
  Instruction *visitUIToFP(CastInst &CI);
  Instruction *visitSIToFP(CastInst &CI);
  Instruction *visitPtrToInt(PtrToIntInst &CI);
  Instruction *visitIntToPtr(IntToPtrInst &CI);
  Instruction *visitBitCast(BitCastInst &CI);
  Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
  Instruction *FoldItoFPtoI(Instruction &FI);
  Instruction *visitSelectInst(SelectInst &SI);
  Instruction *visitCallInst(CallInst &CI);
  Instruction *visitInvokeInst(InvokeInst &II);
  Instruction *visitCallBrInst(CallBrInst &CBI);

  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
  Instruction *visitPHINode(PHINode &PN);
  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
  Instruction *visitAllocaInst(AllocaInst &AI);
  Instruction *visitAllocSite(Instruction &FI);
  Instruction *visitFree(CallInst &FI);
  Instruction *visitLoadInst(LoadInst &LI);
  Instruction *visitStoreInst(StoreInst &SI);
  Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
  Instruction *visitBranchInst(BranchInst &BI);
  Instruction *visitFenceInst(FenceInst &FI);
  Instruction *visitSwitchInst(SwitchInst &SI);
  Instruction *visitReturnInst(ReturnInst &RI);
  Instruction *visitInsertValueInst(InsertValueInst &IV);
  Instruction *visitInsertElementInst(InsertElementInst &IE);
  Instruction *visitExtractElementInst(ExtractElementInst &EI);
  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
  Instruction *visitExtractValueInst(ExtractValueInst &EV);
  Instruction *visitLandingPadInst(LandingPadInst &LI);
  Instruction *visitVAStartInst(VAStartInst &I);
  Instruction *visitVACopyInst(VACopyInst &I);

  /// Specify what to return for unhandled instructions.
  Instruction *visitInstruction(Instruction &I) { return nullptr; }

  /// True when DB dominates all uses of DI except UI.
  /// UI must be in the same block as DI.
  /// The routine checks that the DI parent and DB are different.
  bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
                        const BasicBlock *DB) const;

  /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
  bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
                                 const unsigned SIOpd);

  /// Try to replace instruction \p I with value \p V which are pointers
  /// in different address space.
  /// \return true if successful.
  bool replacePointer(Instruction &I, Value *V);

private:
  bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
  bool shouldChangeType(Type *From, Type *To) const;
  Value *dyn_castNegVal(Value *V) const;
  Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
                            SmallVectorImpl<Value *> &NewIndices);

  /// Classify whether a cast is worth optimizing.
  ///
  /// This is a helper to decide whether the simplification of
  /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
  ///
  /// \param CI The cast we are interested in.
  ///
  /// \return true if this cast actually results in any code being generated and
  /// if it cannot already be eliminated by some other transformation.
  bool shouldOptimizeCast(CastInst *CI);

  /// Try to optimize a sequence of instructions checking if an operation
  /// on LHS and RHS overflows.
  ///
  /// If this overflow check is done via one of the overflow check intrinsics,
  /// then CtxI has to be the call instruction calling that intrinsic.  If this
  /// overflow check is done by arithmetic followed by a compare, then CtxI has
  /// to be the arithmetic instruction.
  ///
  /// If a simplification is possible, stores the simplified result of the
  /// operation in OperationResult and result of the overflow check in
  /// OverflowResult, and return true.  If no simplification is possible,
  /// returns false.
  bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
                             Value *LHS, Value *RHS,
                             Instruction &CtxI, Value *&OperationResult,
                             Constant *&OverflowResult);

  Instruction *visitCallBase(CallBase &Call);
  Instruction *tryOptimizeCall(CallInst *CI);
  bool transformConstExprCastCall(CallBase &Call);
  Instruction *transformCallThroughTrampoline(CallBase &Call,
                                              IntrinsicInst &Tramp);

  Value *simplifyMaskedLoad(IntrinsicInst &II);
  Instruction *simplifyMaskedStore(IntrinsicInst &II);
  Instruction *simplifyMaskedGather(IntrinsicInst &II);
  Instruction *simplifyMaskedScatter(IntrinsicInst &II);
  
  /// Transform (zext icmp) to bitwise / integer operations in order to
  /// eliminate it.
  ///
  /// \param ICI The icmp of the (zext icmp) pair we are interested in.
  /// \parem CI The zext of the (zext icmp) pair we are interested in.
  /// \param DoTransform Pass false to just test whether the given (zext icmp)
  /// would be transformed. Pass true to actually perform the transformation.
  ///
  /// \return null if the transformation cannot be performed. If the
  /// transformation can be performed the new instruction that replaces the
  /// (zext icmp) pair will be returned (if \p DoTransform is false the
  /// unmodified \p ICI will be returned in this case).
  Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
                                 bool DoTransform = true);

  Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);

  bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
                                const Instruction &CxtI) const {
    return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
                                  const Instruction &CxtI) const {
    return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
                          const Instruction &CxtI, bool IsSigned) const {
    return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
                    : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
  }

  bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
                                const Instruction &CxtI) const {
    return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
                                  const Instruction &CxtI) const {
    return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowSub(const Value *LHS, const Value *RHS,
                          const Instruction &CxtI, bool IsSigned) const {
    return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
                    : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
  }

  bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
                                const Instruction &CxtI) const {
    return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
                                  const Instruction &CxtI) const {
    return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowMul(const Value *LHS, const Value *RHS,
                          const Instruction &CxtI, bool IsSigned) const {
    return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
                    : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
  }

  bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
                       const Value *RHS, const Instruction &CxtI,
                       bool IsSigned) const {
    switch (Opcode) {
    case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
    case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
    case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
    default: llvm_unreachable("Unexpected opcode for overflow query");
    }
  }

  Value *EmitGEPOffset(User *GEP);
  Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
  Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
  Instruction *narrowBinOp(TruncInst &Trunc);
  Instruction *narrowMaskedBinOp(BinaryOperator &And);
  Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
  Instruction *narrowRotate(TruncInst &Trunc);
  Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
  Instruction *matchSAddSubSat(SelectInst &MinMax1);

  /// Determine if a pair of casts can be replaced by a single cast.
  ///
  /// \param CI1 The first of a pair of casts.
  /// \param CI2 The second of a pair of casts.
  ///
  /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
  /// Instruction::CastOps value for a cast that can replace the pair, casting
  /// CI1->getSrcTy() to CI2->getDstTy().
  ///
  /// \see CastInst::isEliminableCastPair
  Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
                                            const CastInst *CI2);

  Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
  Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
  Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &I);

  /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
  /// NOTE: Unlike most of instcombine, this returns a Value which should
  /// already be inserted into the function.
  Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);

  Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
                                       bool JoinedByAnd, Instruction &CxtI);
  Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
  Value *getSelectCondition(Value *A, Value *B);

  Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);

public:
  /// Inserts an instruction \p New before instruction \p Old
  ///
  /// Also adds the new instruction to the worklist and returns \p New so that
  /// it is suitable for use as the return from the visitation patterns.
  Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    assert(New && !New->getParent() &&
           "New instruction already inserted into a basic block!");
    BasicBlock *BB = Old.getParent();
    BB->getInstList().insert(Old.getIterator(), New); // Insert inst
    Worklist.Add(New);
    return New;
  }

  /// Same as InsertNewInstBefore, but also sets the debug loc.
  Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    New->setDebugLoc(Old.getDebugLoc());
    return InsertNewInstBefore(New, Old);
  }

  /// A combiner-aware RAUW-like routine.
  ///
  /// This method is to be used when an instruction is found to be dead,
  /// replaceable with another preexisting expression. Here we add all uses of
  /// I to the worklist, replace all uses of I with the new value, then return
  /// I, so that the inst combiner will know that I was modified.
  Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
    // If there are no uses to replace, then we return nullptr to indicate that
    // no changes were made to the program.
    if (I.use_empty()) return nullptr;

    Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.

    // If we are replacing the instruction with itself, this must be in a
    // segment of unreachable code, so just clobber the instruction.
    if (&I == V)
      V = UndefValue::get(I.getType());

    LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
                      << "    with " << *V << '\n');

    I.replaceAllUsesWith(V);
    return &I;
  }

  /// Creates a result tuple for an overflow intrinsic \p II with a given
  /// \p Result and a constant \p Overflow value.
  Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
                                   Constant *Overflow) {
    Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
    StructType *ST = cast<StructType>(II->getType());
    Constant *Struct = ConstantStruct::get(ST, V);
    return InsertValueInst::Create(Struct, Result, 0);
  }

  /// Create and insert the idiom we use to indicate a block is unreachable
  /// without having to rewrite the CFG from within InstCombine.
  void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
    auto &Ctx = InsertAt->getContext();
    new StoreInst(ConstantInt::getTrue(Ctx),
                  UndefValue::get(Type::getInt1PtrTy(Ctx)),
                  InsertAt);
  }


  /// Combiner aware instruction erasure.
  ///
  /// When dealing with an instruction that has side effects or produces a void
  /// value, we can't rely on DCE to delete the instruction. Instead, visit
  /// methods should return the value returned by this function.
  Instruction *eraseInstFromFunction(Instruction &I) {
    LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
    assert(I.use_empty() && "Cannot erase instruction that is used!");
    salvageDebugInfo(I);

    // Make sure that we reprocess all operands now that we reduced their
    // use counts.
    if (I.getNumOperands() < 8) {
      for (Use &Operand : I.operands())
        if (auto *Inst = dyn_cast<Instruction>(Operand))
          Worklist.Add(Inst);
    }
    Worklist.Remove(&I);
    I.eraseFromParent();
    MadeIRChange = true;
    return nullptr; // Don't do anything with FI
  }

  void computeKnownBits(const Value *V, KnownBits &Known,
                        unsigned Depth, const Instruction *CxtI) const {
    llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
  }

  KnownBits computeKnownBits(const Value *V, unsigned Depth,
                             const Instruction *CxtI) const {
    return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
  }

  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
                              unsigned Depth = 0,
                              const Instruction *CxtI = nullptr) {
    return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
  }

  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
                         const Instruction *CxtI = nullptr) const {
    return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
  }

  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
                              const Instruction *CxtI = nullptr) const {
    return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
                                               const Value *RHS,
                                               const Instruction *CxtI) const {
    return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForSignedMul(const Value *LHS,
                                             const Value *RHS,
                                             const Instruction *CxtI) const {
    return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
                                               const Value *RHS,
                                               const Instruction *CxtI) const {
    return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForSignedAdd(const Value *LHS,
                                             const Value *RHS,
                                             const Instruction *CxtI) const {
    return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
                                               const Value *RHS,
                                               const Instruction *CxtI) const {
    return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
                                             const Instruction *CxtI) const {
    return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflow(
      Instruction::BinaryOps BinaryOp, bool IsSigned,
      Value *LHS, Value *RHS, Instruction *CxtI) const;

  /// Maximum size of array considered when transforming.
  uint64_t MaxArraySizeForCombine = 0;

private:
  /// Performs a few simplifications for operators which are associative
  /// or commutative.
  bool SimplifyAssociativeOrCommutative(BinaryOperator &I);

  /// Tries to simplify binary operations which some other binary
  /// operation distributes over.
  ///
  /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
  /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
  /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
  /// value, or null if it didn't simplify.
  Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);

  /// Tries to simplify add operations using the definition of remainder.
  ///
  /// The definition of remainder is X % C = X - (X / C ) * C. The add
  /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
  /// X % (C0 * C1)
  Value *SimplifyAddWithRemainder(BinaryOperator &I);

  // Binary Op helper for select operations where the expression can be
  // efficiently reorganized.
  Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
                                        Value *RHS);

  /// This tries to simplify binary operations by factorizing out common terms
  /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
  Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
                          Value *, Value *, Value *);

  /// Match a select chain which produces one of three values based on whether
  /// the LHS is less than, equal to, or greater than RHS respectively.
  /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
  /// Equal and Greater values are saved in the matching process and returned to
  /// the caller.
  bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
                               ConstantInt *&Less, ConstantInt *&Equal,
                               ConstantInt *&Greater);

  /// Attempts to replace V with a simpler value based on the demanded
  /// bits.
  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
                                 unsigned Depth, Instruction *CxtI);
  bool SimplifyDemandedBits(Instruction *I, unsigned Op,
                            const APInt &DemandedMask, KnownBits &Known,
                            unsigned Depth = 0);

  /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
  /// bits. It also tries to handle simplifications that can be done based on
  /// DemandedMask, but without modifying the Instruction.
  Value *SimplifyMultipleUseDemandedBits(Instruction *I,
                                         const APInt &DemandedMask,
                                         KnownBits &Known,
                                         unsigned Depth, Instruction *CxtI);

  /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
  /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
  Value *simplifyShrShlDemandedBits(
      Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
      const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);

  /// Tries to simplify operands to an integer instruction based on its
  /// demanded bits.
  bool SimplifyDemandedInstructionBits(Instruction &Inst);

  Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
                                               APInt DemandedElts,
                                               int DmaskIdx = -1);

  Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
                                    APInt &UndefElts, unsigned Depth = 0,
                                    bool AllowMultipleUsers = false);

  /// Canonicalize the position of binops relative to shufflevector.
  Instruction *foldVectorBinop(BinaryOperator &Inst);

  /// Given a binary operator, cast instruction, or select which has a PHI node
  /// as operand #0, see if we can fold the instruction into the PHI (which is
  /// only possible if all operands to the PHI are constants).
  Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);

  /// Given an instruction with a select as one operand and a constant as the
  /// other operand, try to fold the binary operator into the select arguments.
  /// This also works for Cast instructions, which obviously do not have a
  /// second operand.
  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);

  /// This is a convenience wrapper function for the above two functions.
  Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);

  Instruction *foldAddWithConstant(BinaryOperator &Add);

  /// Try to rotate an operation below a PHI node, using PHI nodes for
  /// its operands.
  Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);

  /// If an integer typed PHI has only one use which is an IntToPtr operation,
  /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
  /// insert a new pointer typed PHI and replace the original one.
  Instruction *FoldIntegerTypedPHI(PHINode &PN);

  /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
  /// folded operation.
  void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);

  Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
                           ICmpInst::Predicate Cond, Instruction &I);
  Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
                             const Value *Other);
  Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
                                            GlobalVariable *GV, CmpInst &ICI,
                                            ConstantInt *AndCst = nullptr);
  Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
                                    Constant *RHSC);
  Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
                                  ICmpInst::Predicate Pred);
  Instruction *foldICmpWithCastOp(ICmpInst &ICI);

  Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
  Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
  Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
  Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
  Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
  Instruction *foldICmpEquality(ICmpInst &Cmp);
  Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
  Instruction *foldSignBitTest(ICmpInst &I);
  Instruction *foldICmpWithZero(ICmpInst &Cmp);

  Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);

  Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
                                      ConstantInt *C);
  Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
                                     const APInt &C);
  Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
                                   const APInt &C);
  Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
                                   const APInt &C);
  Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
                                  const APInt &C);
  Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
                                   const APInt &C);
  Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
                                   const APInt &C);
  Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
                                   const APInt &C);
  Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
                                    const APInt &C);
  Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
                                    const APInt &C);
  Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
                                   const APInt &C);
  Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
                                   const APInt &C);
  Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
                                   const APInt &C);
  Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
                                     const APInt &C1);
  Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
                                const APInt &C1, const APInt &C2);
  Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
                                     const APInt &C2);
  Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
                                     const APInt &C2);

  Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
                                                 BinaryOperator *BO,
                                                 const APInt &C);
  Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
                                             const APInt &C);
  Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
                                               const APInt &C);

  // Helpers of visitSelectInst().
  Instruction *foldSelectExtConst(SelectInst &Sel);
  Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
  Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
  Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
                            Value *A, Value *B, Instruction &Outer,
                            SelectPatternFlavor SPF2, Value *C);
  Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);

  Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
                        ConstantInt *AndRHS, BinaryOperator &TheAnd);

  Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
                         bool isSigned, bool Inside);
  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
  bool mergeStoreIntoSuccessor(StoreInst &SI);

  /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
  /// If so, return the equivalent bswap intrinsic.
  Instruction *matchBSwap(BinaryOperator &Or);

  Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
  Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);

  Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);

  /// Returns a value X such that Val = X * Scale, or null if none.
  ///
  /// If the multiplication is known not to overflow then NoSignedWrap is set.
  Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};

} // end namespace llvm

#undef DEBUG_TYPE

#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H