reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
//===- RDFLiveness.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Computation of the liveness information from the data-flow graph.
//
// The main functionality of this code is to compute block live-in
// information. With the live-in information in place, the placement
// of kill flags can also be recalculated.
//
// The block live-in calculation is based on the ideas from the following
// publication:
//
// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
// ACM Transactions on Architecture and Code Optimization, Association for
// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
// and Embedded Architectures and Compilers", 8 (4),
// <10.1145/2086696.2086706>. <hal-00647369>
//
#include "RDFLiveness.h"
#include "RDFGraph.h"
#include "RDFRegisters.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
#include <vector>

using namespace llvm;
using namespace rdf;

static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
  cl::Hidden, cl::desc("Maximum recursion level"));

namespace llvm {
namespace rdf {

  raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
    OS << '{';
    for (auto &I : P.Obj) {
      OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
      for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
        OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
        if (++J != E)
          OS << ',';
      }
      OS << '}';
    }
    OS << " }";
    return OS;
  }

} // end namespace rdf
} // end namespace llvm

// The order in the returned sequence is the order of reaching defs in the
// upward traversal: the first def is the closest to the given reference RefA,
// the next one is further up, and so on.
// The list ends at a reaching phi def, or when the reference from RefA is
// covered by the defs in the list (see FullChain).
// This function provides two modes of operation:
// (1) Returning the sequence of reaching defs for a particular reference
// node. This sequence will terminate at the first phi node [1].
// (2) Returning a partial sequence of reaching defs, where the final goal
// is to traverse past phi nodes to the actual defs arising from the code
// itself.
// In mode (2), the register reference for which the search was started
// may be different from the reference node RefA, for which this call was
// made, hence the argument RefRR, which holds the original register.
// Also, some definitions may have already been encountered in a previous
// call that will influence register covering. The register references
// already defined are passed in through DefRRs.
// In mode (1), the "continuation" considerations do not apply, and the
// RefRR is the same as the register in RefA, and the set DefRRs is empty.
//
// [1] It is possible for multiple phi nodes to be included in the returned
// sequence:
//   SubA = phi ...
//   SubB = phi ...
//   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
// However, these phi nodes are independent from one another in terms of
// the data-flow.

NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
      NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
      const RegisterAggr &DefRRs) {
  NodeList RDefs; // Return value.
  SetVector<NodeId> DefQ;
  SetVector<NodeId> Owners;

  // Dead defs will be treated as if they were live, since they are actually
  // on the data-flow path. They cannot be ignored because even though they
  // do not generate meaningful values, they still modify registers.

  // If the reference is undefined, there is nothing to do.
  if (RefA.Addr->getFlags() & NodeAttrs::Undef)
    return RDefs;

  // The initial queue should not have reaching defs for shadows. The
  // whole point of a shadow is that it will have a reaching def that
  // is not aliased to the reaching defs of the related shadows.
  NodeId Start = RefA.Id;
  auto SNA = DFG.addr<RefNode*>(Start);
  if (NodeId RD = SNA.Addr->getReachingDef())
    DefQ.insert(RD);
  if (TopShadows) {
    for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
      if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
        DefQ.insert(RD);
  }

  // Collect all the reaching defs, going up until a phi node is encountered,
  // or there are no more reaching defs. From this set, the actual set of
  // reaching defs will be selected.
  // The traversal upwards must go on until a covering def is encountered.
  // It is possible that a collection of non-covering (individually) defs
  // will be sufficient, but keep going until a covering one is found.
  for (unsigned i = 0; i < DefQ.size(); ++i) {
    auto TA = DFG.addr<DefNode*>(DefQ[i]);
    if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
      continue;
    // Stop at the covering/overwriting def of the initial register reference.
    RegisterRef RR = TA.Addr->getRegRef(DFG);
    if (!DFG.IsPreservingDef(TA))
      if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
        continue;
    // Get the next level of reaching defs. This will include multiple
    // reaching defs for shadows.
    for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
      if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
        DefQ.insert(RD);
  }

  // Remove all non-phi defs that are not aliased to RefRR, and collect
  // the owners of the remaining defs.
  SetVector<NodeId> Defs;
  for (NodeId N : DefQ) {
    auto TA = DFG.addr<DefNode*>(N);
    bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
    if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
      continue;
    Defs.insert(TA.Id);
    Owners.insert(TA.Addr->getOwner(DFG).Id);
  }

  // Return the MachineBasicBlock containing a given instruction.
  auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
    if (IA.Addr->getKind() == NodeAttrs::Stmt)
      return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
    assert(IA.Addr->getKind() == NodeAttrs::Phi);
    NodeAddr<PhiNode*> PA = IA;
    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
    return BA.Addr->getCode();
  };
  // Less(A,B) iff instruction A is further down in the dominator tree than B.
  auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
    if (A == B)
      return false;
    auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
    MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
    if (BA != BB)
      return MDT.dominates(BB, BA);
    // They are in the same block.
    bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
    bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
    if (StmtA) {
      if (!StmtB)   // OB is a phi and phis dominate statements.
        return true;
      MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
      MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
      // The order must be linear, so tie-break such equalities.
      if (CA == CB)
        return A < B;
      return MDT.dominates(CB, CA);
    } else {
      // OA is a phi.
      if (StmtB)
        return false;
      // Both are phis. There is no ordering between phis (in terms of
      // the data-flow), so tie-break this via node id comparison.
      return A < B;
    }
  };

  std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
  llvm::sort(Tmp, Less);

  // The vector is a list of instructions, so that defs coming from
  // the same instruction don't need to be artificially ordered.
  // Then, when computing the initial segment, and iterating over an
  // instruction, pick the defs that contribute to the covering (i.e. is
  // not covered by previously added defs). Check the defs individually,
  // i.e. first check each def if is covered or not (without adding them
  // to the tracking set), and then add all the selected ones.

  // The reason for this is this example:
  // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
  // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
  //                     covered if we added A first, and A would be covered
  //                     if we added B first.

  RegisterAggr RRs(DefRRs);

  auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
    return TA.Addr->getKind() == NodeAttrs::Def &&
           Defs.count(TA.Id);
  };
  for (NodeId T : Tmp) {
    if (!FullChain && RRs.hasCoverOf(RefRR))
      break;
    auto TA = DFG.addr<InstrNode*>(T);
    bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
    NodeList Ds;
    for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
      RegisterRef QR = DA.Addr->getRegRef(DFG);
      // Add phi defs even if they are covered by subsequent defs. This is
      // for cases where the reached use is not covered by any of the defs
      // encountered so far: the phi def is needed to expose the liveness
      // of that use to the entry of the block.
      // Example:
      //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
      //   d2<R3>(d1,,u3), ...
      //   ..., u3<D1>(d2)        This use needs to be live on entry.
      if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
        Ds.push_back(DA);
    }
    RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
    for (NodeAddr<DefNode*> DA : Ds) {
      // When collecting a full chain of definitions, do not consider phi
      // defs to actually define a register.
      uint16_t Flags = DA.Addr->getFlags();
      if (!FullChain || !(Flags & NodeAttrs::PhiRef))
        if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
          RRs.insert(DA.Addr->getRegRef(DFG));
    }
  }

  auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
    return DA.Addr->getFlags() & NodeAttrs::Dead;
  };
  RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));

  return RDefs;
}

std::pair<NodeSet,bool>
Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
      NodeSet &Visited, const NodeSet &Defs) {
  return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
}

std::pair<NodeSet,bool>
Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
      NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
  if (Nest > MaxNest)
    return { NodeSet(), false };
  // Collect all defined registers. Do not consider phis to be defining
  // anything, only collect "real" definitions.
  RegisterAggr DefRRs(PRI);
  for (NodeId D : Defs) {
    const auto DA = DFG.addr<const DefNode*>(D);
    if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
      DefRRs.insert(DA.Addr->getRegRef(DFG));
  }

  NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
  if (RDs.empty())
    return { Defs, true };

  // Make a copy of the preexisting definitions and add the newly found ones.
  NodeSet TmpDefs = Defs;
  for (NodeAddr<NodeBase*> R : RDs)
    TmpDefs.insert(R.Id);

  NodeSet Result = Defs;

  for (NodeAddr<DefNode*> DA : RDs) {
    Result.insert(DA.Id);
    if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
      continue;
    NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
    if (Visited.count(PA.Id))
      continue;
    Visited.insert(PA.Id);
    // Go over all phi uses and get the reaching defs for each use.
    for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
      const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
                                                Nest+1, MaxNest);
      if (!T.second)
        return { T.first, false };
      Result.insert(T.first.begin(), T.first.end());
    }
  }

  return { Result, true };
}

/// Find the nearest ref node aliased to RefRR, going upwards in the data
/// flow, starting from the instruction immediately preceding Inst.
NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
      NodeAddr<InstrNode*> IA) {
  NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
  NodeList Ins = BA.Addr->members(DFG);
  NodeId FindId = IA.Id;
  auto E = Ins.rend();
  auto B = std::find_if(Ins.rbegin(), E,
                        [FindId] (const NodeAddr<InstrNode*> T) {
                          return T.Id == FindId;
                        });
  // Do not scan IA (which is what B would point to).
  if (B != E)
    ++B;

  do {
    // Process the range of instructions from B to E.
    for (NodeAddr<InstrNode*> I : make_range(B, E)) {
      NodeList Refs = I.Addr->members(DFG);
      NodeAddr<RefNode*> Clob, Use;
      // Scan all the refs in I aliased to RefRR, and return the one that
      // is the closest to the output of I, i.e. def > clobber > use.
      for (NodeAddr<RefNode*> R : Refs) {
        if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
          continue;
        if (DFG.IsDef(R)) {
          // If it's a non-clobbering def, just return it.
          if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
            return R;
          Clob = R;
        } else {
          Use = R;
        }
      }
      if (Clob.Id != 0)
        return Clob;
      if (Use.Id != 0)
        return Use;
    }

    // Go up to the immediate dominator, if any.
    MachineBasicBlock *BB = BA.Addr->getCode();
    BA = NodeAddr<BlockNode*>();
    if (MachineDomTreeNode *N = MDT.getNode(BB)) {
      if ((N = N->getIDom()))
        BA = DFG.findBlock(N->getBlock());
    }
    if (!BA.Id)
      break;

    Ins = BA.Addr->members(DFG);
    B = Ins.rbegin();
    E = Ins.rend();
  } while (true);

  return NodeAddr<RefNode*>();
}

NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
      NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
  NodeSet Uses;

  // If the original register is already covered by all the intervening
  // defs, no more uses can be reached.
  if (DefRRs.hasCoverOf(RefRR))
    return Uses;

  // Add all directly reached uses.
  // If the def is dead, it does not provide a value for any use.
  bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
  NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
  while (U != 0) {
    auto UA = DFG.addr<UseNode*>(U);
    if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
      RegisterRef UR = UA.Addr->getRegRef(DFG);
      if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
        Uses.insert(U);
    }
    U = UA.Addr->getSibling();
  }

  // Traverse all reached defs. This time dead defs cannot be ignored.
  for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
    auto DA = DFG.addr<DefNode*>(D);
    NextD = DA.Addr->getSibling();
    RegisterRef DR = DA.Addr->getRegRef(DFG);
    // If this def is already covered, it cannot reach anything new.
    // Similarly, skip it if it is not aliased to the interesting register.
    if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
      continue;
    NodeSet T;
    if (DFG.IsPreservingDef(DA)) {
      // If it is a preserving def, do not update the set of intervening defs.
      T = getAllReachedUses(RefRR, DA, DefRRs);
    } else {
      RegisterAggr NewDefRRs = DefRRs;
      NewDefRRs.insert(DR);
      T = getAllReachedUses(RefRR, DA, NewDefRRs);
    }
    Uses.insert(T.begin(), T.end());
  }
  return Uses;
}

void Liveness::computePhiInfo() {
  RealUseMap.clear();

  NodeList Phis;
  NodeAddr<FuncNode*> FA = DFG.getFunc();
  NodeList Blocks = FA.Addr->members(DFG);
  for (NodeAddr<BlockNode*> BA : Blocks) {
    auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    Phis.insert(Phis.end(), Ps.begin(), Ps.end());
  }

  // phi use -> (map: reaching phi -> set of registers defined in between)
  std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
  std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
  std::map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.

  // Go over all phis.
  for (NodeAddr<PhiNode*> PhiA : Phis) {
    // Go over all defs and collect the reached uses that are non-phi uses
    // (i.e. the "real uses").
    RefMap &RealUses = RealUseMap[PhiA.Id];
    NodeList PhiRefs = PhiA.Addr->members(DFG);

    // Have a work queue of defs whose reached uses need to be found.
    // For each def, add to the queue all reached (non-phi) defs.
    SetVector<NodeId> DefQ;
    NodeSet PhiDefs;
    RegisterAggr DRs(PRI);
    for (NodeAddr<RefNode*> R : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Def>(R))
        continue;
      DRs.insert(R.Addr->getRegRef(DFG));
      DefQ.insert(R.Id);
      PhiDefs.insert(R.Id);
    }
    PhiDRs.insert(std::make_pair(PhiA.Id, DRs));

    // Collect the super-set of all possible reached uses. This set will
    // contain all uses reached from this phi, either directly from the
    // phi defs, or (recursively) via non-phi defs reached by the phi defs.
    // This set of uses will later be trimmed to only contain these uses that
    // are actually reached by the phi defs.
    for (unsigned i = 0; i < DefQ.size(); ++i) {
      NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
      // Visit all reached uses. Phi defs should not really have the "dead"
      // flag set, but check it anyway for consistency.
      bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
      NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
      while (UN != 0) {
        NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
        uint16_t F = A.Addr->getFlags();
        if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
          RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
          RealUses[R.Reg].insert({A.Id,R.Mask});
        }
        UN = A.Addr->getSibling();
      }
      // Visit all reached defs, and add them to the queue. These defs may
      // override some of the uses collected here, but that will be handled
      // later.
      NodeId DN = DA.Addr->getReachedDef();
      while (DN != 0) {
        NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
        for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
          uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
          // Must traverse the reached-def chain. Consider:
          //   def(D0) -> def(R0) -> def(R0) -> use(D0)
          // The reachable use of D0 passes through a def of R0.
          if (!(Flags & NodeAttrs::PhiRef))
            DefQ.insert(T.Id);
        }
        DN = A.Addr->getSibling();
      }
    }
    // Filter out these uses that appear to be reachable, but really
    // are not. For example:
    //
    // R1:0 =          d1
    //      = R1:0     u2     Reached by d1.
    //   R0 =          d3
    //      = R1:0     u4     Still reached by d1: indirectly through
    //                        the def d3.
    //   R1 =          d5
    //      = R1:0     u6     Not reached by d1 (covered collectively
    //                        by d3 and d5), but following reached
    //                        defs and uses from d1 will lead here.
    for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
      // For each reached register UI->first, there is a set UI->second, of
      // uses of it. For each such use, check if it is reached by this phi,
      // i.e. check if the set of its reaching uses intersects the set of
      // this phi's defs.
      NodeRefSet Uses = UI->second;
      UI->second.clear();
      for (std::pair<NodeId,LaneBitmask> I : Uses) {
        auto UA = DFG.addr<UseNode*>(I.first);
        // Undef flag is checked above.
        assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
        RegisterRef R(UI->first, I.second);
        // Calculate the exposed part of the reached use.
        RegisterAggr Covered(PRI);
        for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
          if (PhiDefs.count(DA.Id))
            break;
          Covered.insert(DA.Addr->getRegRef(DFG));
        }
        if (RegisterRef RC = Covered.clearIn(R)) {
          // We are updating the map for register UI->first, so we need
          // to map RC to be expressed in terms of that register.
          RegisterRef S = PRI.mapTo(RC, UI->first);
          UI->second.insert({I.first, S.Mask});
        }
      }
      UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
    }

    // If this phi reaches some "real" uses, add it to the queue for upward
    // propagation.
    if (!RealUses.empty())
      PhiUQ.push_back(PhiA.Id);

    // Go over all phi uses and check if the reaching def is another phi.
    // Collect the phis that are among the reaching defs of these uses.
    // While traversing the list of reaching defs for each phi use, accumulate
    // the set of registers defined between this phi (PhiA) and the owner phi
    // of the reaching def.
    NodeSet SeenUses;

    for (auto I : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
        continue;
      NodeAddr<PhiUseNode*> PUA = I;
      if (PUA.Addr->getReachingDef() == 0)
        continue;

      RegisterRef UR = PUA.Addr->getRegRef(DFG);
      NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
      RegisterAggr DefRRs(PRI);

      for (NodeAddr<DefNode*> D : Ds) {
        if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
          NodeId RP = D.Addr->getOwner(DFG).Id;
          std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
          auto F = M.find(RP);
          if (F == M.end())
            M.insert(std::make_pair(RP, DefRRs));
          else
            F->second.insert(DefRRs);
        }
        DefRRs.insert(D.Addr->getRegRef(DFG));
      }

      for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
        SeenUses.insert(T.Id);
    }
  }

  if (Trace) {
    dbgs() << "Phi-up-to-phi map with intervening defs:\n";
    for (auto I : PhiUp) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
      for (auto R : I.second)
        dbgs() << ' ' << Print<NodeId>(R.first, DFG)
               << Print<RegisterAggr>(R.second, DFG);
      dbgs() << " }\n";
    }
  }

  // Propagate the reached registers up in the phi chain.
  //
  // The following type of situation needs careful handling:
  //
  //   phi d1<R1:0>  (1)
  //        |
  //   ... d2<R1>
  //        |
  //   phi u3<R1:0>  (2)
  //        |
  //   ... u4<R1>
  //
  // The phi node (2) defines a register pair R1:0, and reaches a "real"
  // use u4 of just R1. The same phi node is also known to reach (upwards)
  // the phi node (1). However, the use u4 is not reached by phi (1),
  // because of the intervening definition d2 of R1. The data flow between
  // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
  //
  // When propagating uses up the phi chains, get the all reaching defs
  // for a given phi use, and traverse the list until the propagated ref
  // is covered, or until reaching the final phi. Only assume that the
  // reference reaches the phi in the latter case.

  for (unsigned i = 0; i < PhiUQ.size(); ++i) {
    auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
    NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
    RefMap &RUM = RealUseMap[PA.Id];

    for (NodeAddr<UseNode*> UA : PUs) {
      std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
      RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
      for (const std::pair<NodeId,RegisterAggr> &P : PUM) {
        bool Changed = false;
        const RegisterAggr &MidDefs = P.second;

        // Collect the set PropUp of uses that are reached by the current
        // phi PA, and are not covered by any intervening def between the
        // currently visited use UA and the upward phi P.

        if (MidDefs.hasCoverOf(UR))
          continue;

        // General algorithm:
        //   for each (R,U) : U is use node of R, U is reached by PA
        //     if MidDefs does not cover (R,U)
        //       then add (R-MidDefs,U) to RealUseMap[P]
        //
        for (const std::pair<RegisterId,NodeRefSet> &T : RUM) {
          RegisterRef R(T.first);
          // The current phi (PA) could be a phi for a regmask. It could
          // reach a whole variety of uses that are not related to the
          // specific upward phi (P.first).
          const RegisterAggr &DRs = PhiDRs.at(P.first);
          if (!DRs.hasAliasOf(R))
            continue;
          R = PRI.mapTo(DRs.intersectWith(R), T.first);
          for (std::pair<NodeId,LaneBitmask> V : T.second) {
            LaneBitmask M = R.Mask & V.second;
            if (M.none())
              continue;
            if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
              NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
              Changed |= RS.insert({V.first,SS.Mask}).second;
            }
          }
        }

        if (Changed)
          PhiUQ.push_back(P.first);
      }
    }
  }

  if (Trace) {
    dbgs() << "Real use map:\n";
    for (auto I : RealUseMap) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG);
      NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
      NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
      if (!Ds.empty()) {
        RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
        dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
      } else {
        dbgs() << "<noreg>";
      }
      dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
    }
  }
}

void Liveness::computeLiveIns() {
  // Populate the node-to-block map. This speeds up the calculations
  // significantly.
  NBMap.clear();
  for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
    MachineBasicBlock *BB = BA.Addr->getCode();
    for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
      for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
        NBMap.insert(std::make_pair(RA.Id, BB));
      NBMap.insert(std::make_pair(IA.Id, BB));
    }
  }

  MachineFunction &MF = DFG.getMF();

  // Compute IDF first, then the inverse.
  decltype(IIDF) IDF;
  for (MachineBasicBlock &B : MF) {
    auto F1 = MDF.find(&B);
    if (F1 == MDF.end())
      continue;
    SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
    for (unsigned i = 0; i < IDFB.size(); ++i) {
      auto F2 = MDF.find(IDFB[i]);
      if (F2 != MDF.end())
        IDFB.insert(F2->second.begin(), F2->second.end());
    }
    // Add B to the IDF(B). This will put B in the IIDF(B).
    IDFB.insert(&B);
    IDF[&B].insert(IDFB.begin(), IDFB.end());
  }

  for (auto I : IDF)
    for (auto S : I.second)
      IIDF[S].insert(I.first);

  computePhiInfo();

  NodeAddr<FuncNode*> FA = DFG.getFunc();
  NodeList Blocks = FA.Addr->members(DFG);

  // Build the phi live-on-entry map.
  for (NodeAddr<BlockNode*> BA : Blocks) {
    MachineBasicBlock *MB = BA.Addr->getCode();
    RefMap &LON = PhiLON[MB];
    for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
      for (const RefMap::value_type &S : RealUseMap[P.Id])
        LON[S.first].insert(S.second.begin(), S.second.end());
  }

  if (Trace) {
    dbgs() << "Phi live-on-entry map:\n";
    for (auto &I : PhiLON)
      dbgs() << "block #" << I.first->getNumber() << " -> "
             << Print<RefMap>(I.second, DFG) << '\n';
  }

  // Build the phi live-on-exit map. Each phi node has some set of reached
  // "real" uses. Propagate this set backwards into the block predecessors
  // through the reaching defs of the corresponding phi uses.
  for (NodeAddr<BlockNode*> BA : Blocks) {
    NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    for (NodeAddr<PhiNode*> PA : Phis) {
      RefMap &RUs = RealUseMap[PA.Id];
      if (RUs.empty())
        continue;

      NodeSet SeenUses;
      for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
        if (!SeenUses.insert(U.Id).second)
          continue;
        NodeAddr<PhiUseNode*> PUA = U;
        if (PUA.Addr->getReachingDef() == 0)
          continue;

        // Each phi has some set (possibly empty) of reached "real" uses,
        // that is, uses that are part of the compiled program. Such a use
        // may be located in some farther block, but following a chain of
        // reaching defs will eventually lead to this phi.
        // Any chain of reaching defs may fork at a phi node, but there
        // will be a path upwards that will lead to this phi. Now, this
        // chain will need to fork at this phi, since some of the reached
        // uses may have definitions joining in from multiple predecessors.
        // For each reached "real" use, identify the set of reaching defs
        // coming from each predecessor P, and add them to PhiLOX[P].
        //
        auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
        RefMap &LOX = PhiLOX[PrA.Addr->getCode()];

        for (const std::pair<RegisterId,NodeRefSet> &RS : RUs) {
          // We need to visit each individual use.
          for (std::pair<NodeId,LaneBitmask> P : RS.second) {
            // Create a register ref corresponding to the use, and find
            // all reaching defs starting from the phi use, and treating
            // all related shadows as a single use cluster.
            RegisterRef S(RS.first, P.second);
            NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
            for (NodeAddr<DefNode*> D : Ds) {
              // Calculate the mask corresponding to the visited def.
              RegisterAggr TA(PRI);
              TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
              LaneBitmask TM = TA.makeRegRef().Mask;
              LOX[S.Reg].insert({D.Id, TM});
            }
          }
        }

        for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
          SeenUses.insert(T.Id);
      }  // for U : phi uses
    }  // for P : Phis
  }  // for B : Blocks

  if (Trace) {
    dbgs() << "Phi live-on-exit map:\n";
    for (auto &I : PhiLOX)
      dbgs() << "block #" << I.first->getNumber() << " -> "
             << Print<RefMap>(I.second, DFG) << '\n';
  }

  RefMap LiveIn;
  traverse(&MF.front(), LiveIn);

  // Add function live-ins to the live-in set of the function entry block.
  LiveMap[&MF.front()].insert(DFG.getLiveIns());

  if (Trace) {
    // Dump the liveness map
    for (MachineBasicBlock &B : MF) {
      std::vector<RegisterRef> LV;
      for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
        LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
      llvm::sort(LV);
      dbgs() << printMBBReference(B) << "\t rec = {";
      for (auto I : LV)
        dbgs() << ' ' << Print<RegisterRef>(I, DFG);
      dbgs() << " }\n";
      //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';

      LV.clear();
      const RegisterAggr &LG = LiveMap[&B];
      for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
        LV.push_back(*I);
      llvm::sort(LV);
      dbgs() << "\tcomp = {";
      for (auto I : LV)
        dbgs() << ' ' << Print<RegisterRef>(I, DFG);
      dbgs() << " }\n";

    }
  }
}

void Liveness::resetLiveIns() {
  for (auto &B : DFG.getMF()) {
    // Remove all live-ins.
    std::vector<unsigned> T;
    for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
      T.push_back(I->PhysReg);
    for (auto I : T)
      B.removeLiveIn(I);
    // Add the newly computed live-ins.
    const RegisterAggr &LiveIns = LiveMap[&B];
    for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
      RegisterRef R = *I;
      B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
    }
  }
}

void Liveness::resetKills() {
  for (auto &B : DFG.getMF())
    resetKills(&B);
}

void Liveness::resetKills(MachineBasicBlock *B) {
  auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
    for (auto I : B->liveins()) {
      MCSubRegIndexIterator S(I.PhysReg, &TRI);
      if (!S.isValid()) {
        LV.set(I.PhysReg);
        continue;
      }
      do {
        LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
        if ((M & I.LaneMask).any())
          LV.set(S.getSubReg());
        ++S;
      } while (S.isValid());
    }
  };

  BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
  CopyLiveIns(B, LiveIn);
  for (auto SI : B->successors())
    CopyLiveIns(SI, Live);

  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
    MachineInstr *MI = &*I;
    if (MI->isDebugInstr())
      continue;

    MI->clearKillInfo();
    for (auto &Op : MI->operands()) {
      // An implicit def of a super-register may not necessarily start a
      // live range of it, since an implicit use could be used to keep parts
      // of it live. Instead of analyzing the implicit operands, ignore
      // implicit defs.
      if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
        continue;
      Register R = Op.getReg();
      if (!Register::isPhysicalRegister(R))
        continue;
      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
        Live.reset(*SR);
    }
    for (auto &Op : MI->operands()) {
      if (!Op.isReg() || !Op.isUse() || Op.isUndef())
        continue;
      Register R = Op.getReg();
      if (!Register::isPhysicalRegister(R))
        continue;
      bool IsLive = false;
      for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
        if (!Live[*AR])
          continue;
        IsLive = true;
        break;
      }
      if (!IsLive)
        Op.setIsKill(true);
      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
        Live.set(*SR);
    }
  }
}

// Helper function to obtain the basic block containing the reaching def
// of the given use.
MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
  auto F = NBMap.find(RN);
  if (F != NBMap.end())
    return F->second;
  llvm_unreachable("Node id not in map");
}

void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
  // The LiveIn map, for each (physical) register, contains the set of live
  // reaching defs of that register that are live on entry to the associated
  // block.

  // The summary of the traversal algorithm:
  //
  // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
  // and (U \in IDF(B) or B dom U).
  //
  // for (C : children) {
  //   LU = {}
  //   traverse(C, LU)
  //   LiveUses += LU
  // }
  //
  // LiveUses -= Defs(B);
  // LiveUses += UpwardExposedUses(B);
  // for (C : IIDF[B])
  //   for (U : LiveUses)
  //     if (Rdef(U) dom C)
  //       C.addLiveIn(U)
  //

  // Go up the dominator tree (depth-first).
  MachineDomTreeNode *N = MDT.getNode(B);
  for (auto I : *N) {
    RefMap L;
    MachineBasicBlock *SB = I->getBlock();
    traverse(SB, L);

    for (auto S : L)
      LiveIn[S.first].insert(S.second.begin(), S.second.end());
  }

  if (Trace) {
    dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
           << " after recursion into: {";
    for (auto I : *N)
      dbgs() << ' ' << I->getBlock()->getNumber();
    dbgs() << " }\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // Add reaching defs of phi uses that are live on exit from this block.
  RefMap &PUs = PhiLOX[B];
  for (auto &S : PUs)
    LiveIn[S.first].insert(S.second.begin(), S.second.end());

  if (Trace) {
    dbgs() << "after LOX\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // The LiveIn map at this point has all defs that are live-on-exit from B,
  // as if they were live-on-entry to B. First, we need to filter out all
  // defs that are present in this block. Then we will add reaching defs of
  // all upward-exposed uses.

  // To filter out the defs, first make a copy of LiveIn, and then re-populate
  // LiveIn with the defs that should remain.
  RefMap LiveInCopy = LiveIn;
  LiveIn.clear();

  for (const std::pair<RegisterId,NodeRefSet> &LE : LiveInCopy) {
    RegisterRef LRef(LE.first);
    NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
    const NodeRefSet &OldDefs = LE.second;
    for (NodeRef OR : OldDefs) {
      // R is a def node that was live-on-exit
      auto DA = DFG.addr<DefNode*>(OR.first);
      NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
      NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
      if (B != BA.Addr->getCode()) {
        // Defs from a different block need to be preserved. Defs from this
        // block will need to be processed further, except for phi defs, the
        // liveness of which is handled through the PhiLON/PhiLOX maps.
        NewDefs.insert(OR);
        continue;
      }

      // Defs from this block need to stop the liveness from being
      // propagated upwards. This only applies to non-preserving defs,
      // and to the parts of the register actually covered by those defs.
      // (Note that phi defs should always be preserving.)
      RegisterAggr RRs(PRI);
      LRef.Mask = OR.second;

      if (!DFG.IsPreservingDef(DA)) {
        assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
        // DA is a non-phi def that is live-on-exit from this block, and
        // that is also located in this block. LRef is a register ref
        // whose use this def reaches. If DA covers LRef, then no part
        // of LRef is exposed upwards.A
        if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
          continue;
      }

      // DA itself was not sufficient to cover LRef. In general, it is
      // the last in a chain of aliased defs before the exit from this block.
      // There could be other defs in this block that are a part of that
      // chain. Check that now: accumulate the registers from these defs,
      // and if they all together cover LRef, it is not live-on-entry.
      for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
        // DefNode -> InstrNode -> BlockNode.
        NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
        NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
        // Reaching defs are ordered in the upward direction.
        if (BTA.Addr->getCode() != B) {
          // We have reached past the beginning of B, and the accumulated
          // registers are not covering LRef. The first def from the
          // upward chain will be live.
          // Subtract all accumulated defs (RRs) from LRef.
          RegisterRef T = RRs.clearIn(LRef);
          assert(T);
          NewDefs.insert({TA.Id,T.Mask});
          break;
        }

        // TA is in B. Only add this def to the accumulated cover if it is
        // not preserving.
        if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
          RRs.insert(TA.Addr->getRegRef(DFG));
        // If this is enough to cover LRef, then stop.
        if (RRs.hasCoverOf(LRef))
          break;
      }
    }
  }

  emptify(LiveIn);

  if (Trace) {
    dbgs() << "after defs in block\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // Scan the block for upward-exposed uses and add them to the tracking set.
  for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
    NodeAddr<InstrNode*> IA = I;
    if (IA.Addr->getKind() != NodeAttrs::Stmt)
      continue;
    for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
      if (UA.Addr->getFlags() & NodeAttrs::Undef)
        continue;
      RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
      for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
        if (getBlockWithRef(D.Id) != B)
          LiveIn[RR.Reg].insert({D.Id,RR.Mask});
    }
  }

  if (Trace) {
    dbgs() << "after uses in block\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // Phi uses should not be propagated up the dominator tree, since they
  // are not dominated by their corresponding reaching defs.
  RegisterAggr &Local = LiveMap[B];
  RefMap &LON = PhiLON[B];
  for (auto &R : LON) {
    LaneBitmask M;
    for (auto P : R.second)
      M |= P.second;
    Local.insert(RegisterRef(R.first,M));
  }

  if (Trace) {
    dbgs() << "after phi uses in block\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
  }

  for (auto C : IIDF[B]) {
    RegisterAggr &LiveC = LiveMap[C];
    for (const std::pair<RegisterId,NodeRefSet> &S : LiveIn)
      for (auto R : S.second)
        if (MDT.properlyDominates(getBlockWithRef(R.first), C))
          LiveC.insert(RegisterRef(S.first, R.second));
  }
}

void Liveness::emptify(RefMap &M) {
  for (auto I = M.begin(), E = M.end(); I != E; )
    I = I->second.empty() ? M.erase(I) : std::next(I);
}