1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
| //===- HexagonOptAddrMode.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements a Hexagon-specific pass to optimize addressing mode for
// load/store instructions.
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "RDFGraph.h"
#include "RDFLiveness.h"
#include "RDFRegisters.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#define DEBUG_TYPE "opt-addr-mode"
using namespace llvm;
using namespace rdf;
static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit",
cl::Hidden, cl::init(0), cl::desc("Code growth limit for address mode "
"optimization"));
namespace llvm {
FunctionPass *createHexagonOptAddrMode();
void initializeHexagonOptAddrModePass(PassRegistry&);
} // end namespace llvm
namespace {
class HexagonOptAddrMode : public MachineFunctionPass {
public:
static char ID;
HexagonOptAddrMode() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "Optimize addressing mode of load/store";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineDominanceFrontier>();
AU.setPreservesAll();
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
using MISetType = DenseSet<MachineInstr *>;
using InstrEvalMap = DenseMap<MachineInstr *, bool>;
MachineRegisterInfo *MRI = nullptr;
const HexagonInstrInfo *HII = nullptr;
const HexagonRegisterInfo *HRI = nullptr;
MachineDominatorTree *MDT = nullptr;
DataFlowGraph *DFG = nullptr;
DataFlowGraph::DefStackMap DefM;
Liveness *LV = nullptr;
MISetType Deleted;
bool processBlock(NodeAddr<BlockNode *> BA);
bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
NodeAddr<UseNode *> UseN, unsigned UseMOnum);
bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI,
const NodeList &UNodeList);
bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI);
bool analyzeUses(unsigned DefR, const NodeList &UNodeList,
InstrEvalMap &InstrEvalResult, short &SizeInc);
bool hasRepForm(MachineInstr &MI, unsigned TfrDefR);
bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI,
const NodeList &UNodeList);
bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI,
unsigned LRExtReg, const NodeList &UNodeList);
void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList);
bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList);
short getBaseWithLongOffset(const MachineInstr &MI) const;
bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
unsigned ImmOpNum);
bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum);
bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI,
const MachineOperand &ImmOp, unsigned ImmOpNum);
bool isValidOffset(MachineInstr *MI, int Offset);
};
} // end anonymous namespace
char HexagonOptAddrMode::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt",
"Optimize addressing mode", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode",
false, false)
bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) {
const MCInstrDesc &MID = MI.getDesc();
if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI))
return false;
if (MID.mayStore()) {
MachineOperand StOp = MI.getOperand(MI.getNumOperands() - 1);
if (StOp.isReg() && StOp.getReg() == TfrDefR)
return false;
}
if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset)
// Tranform to Absolute plus register offset.
return (HII->changeAddrMode_rr_ur(MI) >= 0);
else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset)
// Tranform to absolute addressing mode.
return (HII->changeAddrMode_io_abs(MI) >= 0);
return false;
}
// Check if addasl instruction can be removed. This is possible only
// if it's feeding to only load/store instructions with base + register
// offset as these instruction can be tranformed to use 'absolute plus
// shifted register offset'.
// ex:
// Rs = ##foo
// Rx = addasl(Rs, Rt, #2)
// Rd = memw(Rx + #28)
// Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28)
bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN,
MachineInstr &MI,
const NodeList &UNodeList) {
// check offset size in addasl. if 'offset > 3' return false
const MachineOperand &OffsetOp = MI.getOperand(3);
if (!OffsetOp.isImm() || OffsetOp.getImm() > 3)
return false;
Register OffsetReg = MI.getOperand(2).getReg();
RegisterRef OffsetRR;
NodeId OffsetRegRD = 0;
for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(DFG->IsUse, *DFG)) {
RegisterRef RR = UA.Addr->getRegRef(*DFG);
if (OffsetReg == RR.Reg) {
OffsetRR = RR;
OffsetRegRD = UA.Addr->getReachingDef();
}
}
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UA = *I;
NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
return false;
NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(OffsetRR, IA);
if ((DFG->IsDef(AA) && AA.Id != OffsetRegRD) ||
AA.Addr->getReachingDef() != OffsetRegRD)
return false;
MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode();
NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(OffsetRegRD);
// Reaching Def to an offset register can't be a phi.
if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
MI.getParent() != UseMI.getParent())
return false;
const MCInstrDesc &UseMID = UseMI.getDesc();
if ((!UseMID.mayLoad() && !UseMID.mayStore()) ||
HII->getAddrMode(UseMI) != HexagonII::BaseImmOffset ||
getBaseWithLongOffset(UseMI) < 0)
return false;
// Addasl output can't be a store value.
if (UseMID.mayStore() && UseMI.getOperand(2).isReg() &&
UseMI.getOperand(2).getReg() == MI.getOperand(0).getReg())
return false;
for (auto &Mo : UseMI.operands())
if (Mo.isFI())
return false;
}
return true;
}
bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA,
NodeList &UNodeList) {
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UN = *I;
RegisterRef UR = UN.Addr->getRegRef(*DFG);
NodeSet Visited, Defs;
const auto &P = LV->getAllReachingDefsRec(UR, UN, Visited, Defs);
if (!P.second) {
LLVM_DEBUG({
dbgs() << "*** Unable to collect all reaching defs for use ***\n"
<< PrintNode<UseNode*>(UN, *DFG) << '\n'
<< "The program's complexity may exceed the limits.\n";
});
return false;
}
const auto &ReachingDefs = P.first;
if (ReachingDefs.size() > 1) {
LLVM_DEBUG({
dbgs() << "*** Multiple Reaching Defs found!!! ***\n";
for (auto DI : ReachingDefs) {
NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI);
NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG);
dbgs() << "\t\t[Reaching Def]: "
<< Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
}
});
return false;
}
}
return true;
}
void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA,
NodeList &UNodeList) {
for (NodeAddr<DefNode *> DA : SA.Addr->members_if(DFG->IsDef, *DFG)) {
LLVM_DEBUG(dbgs() << "\t\t[DefNode]: "
<< Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n");
RegisterRef DR = DFG->getPRI().normalize(DA.Addr->getRegRef(*DFG));
auto UseSet = LV->getAllReachedUses(DR, DA);
for (auto UI : UseSet) {
NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(UI);
LLVM_DEBUG({
NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG);
dbgs() << "\t\t\t[Reached Use]: "
<< Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
});
if (UA.Addr->getFlags() & NodeAttrs::PhiRef) {
NodeAddr<PhiNode *> PA = UA.Addr->getOwner(*DFG);
NodeId id = PA.Id;
const Liveness::RefMap &phiUse = LV->getRealUses(id);
LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses"
<< Print<Liveness::RefMap>(phiUse, *DFG) << "\n");
if (!phiUse.empty()) {
for (auto I : phiUse) {
if (!DFG->getPRI().alias(RegisterRef(I.first), DR))
continue;
auto phiUseSet = I.second;
for (auto phiUI : phiUseSet) {
NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(phiUI.first);
UNodeList.push_back(phiUA);
}
}
}
} else
UNodeList.push_back(UA);
}
}
}
bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN,
MachineInstr *MI, unsigned LRExtReg,
const NodeList &UNodeList) {
RegisterRef LRExtRR;
NodeId LRExtRegRD = 0;
// Iterate through all the UseNodes in SN and find the reaching def
// for the LRExtReg.
for (NodeAddr<UseNode *> UA : SN.Addr->members_if(DFG->IsUse, *DFG)) {
RegisterRef RR = UA.Addr->getRegRef(*DFG);
if (LRExtReg == RR.Reg) {
LRExtRR = RR;
LRExtRegRD = UA.Addr->getReachingDef();
}
}
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UA = *I;
NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
// The reaching def of LRExtRR at load/store node should be same as the
// one reaching at the SN.
if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
return false;
NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(LRExtRR, IA);
if ((DFG->IsDef(AA) && AA.Id != LRExtRegRD) ||
AA.Addr->getReachingDef() != LRExtRegRD) {
LLVM_DEBUG(
dbgs() << "isSafeToExtLR: Returning false; another reaching def\n");
return false;
}
MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode();
NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
// Reaching Def to LRExtReg can't be a phi.
if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
MI->getParent() != UseMI->getParent())
return false;
}
return true;
}
bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) {
unsigned AlignMask = 0;
switch (HII->getMemAccessSize(*MI)) {
case HexagonII::MemAccessSize::DoubleWordAccess:
AlignMask = 0x7;
break;
case HexagonII::MemAccessSize::WordAccess:
AlignMask = 0x3;
break;
case HexagonII::MemAccessSize::HalfWordAccess:
AlignMask = 0x1;
break;
case HexagonII::MemAccessSize::ByteAccess:
AlignMask = 0x0;
break;
default:
return false;
}
if ((AlignMask & Offset) != 0)
return false;
return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
}
bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN,
MachineInstr *AddMI,
const NodeList &UNodeList) {
Register AddDefR = AddMI->getOperand(0).getReg();
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UN = *I;
NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
MachineInstr *MI = SN.Addr->getCode();
const MCInstrDesc &MID = MI->getDesc();
if ((!MID.mayLoad() && !MID.mayStore()) ||
HII->getAddrMode(*MI) != HexagonII::BaseImmOffset ||
HII->isHVXVec(*MI))
return false;
MachineOperand BaseOp = MID.mayLoad() ? MI->getOperand(1)
: MI->getOperand(0);
if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR)
return false;
MachineOperand OffsetOp = MID.mayLoad() ? MI->getOperand(2)
: MI->getOperand(1);
if (!OffsetOp.isImm())
return false;
int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(2).getImm();
if (!isValidOffset(MI, newOffset))
return false;
// Since we'll be extending the live range of Rt in the following example,
// make sure that is safe. another definition of Rt doesn't exist between 'add'
// and load/store instruction.
//
// Ex: Rx= add(Rt,#10)
// memw(Rx+#0) = Rs
// will be replaced with => memw(Rt+#10) = Rs
Register BaseReg = AddMI->getOperand(1).getReg();
if (!isSafeToExtLR(AddSN, AddMI, BaseReg, UNodeList))
return false;
}
// Update all the uses of 'add' with the appropriate base and offset
// values.
bool Changed = false;
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UseN = *I;
assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
"Found a PhiRef node as a real reached use!!");
NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
MachineInstr *UseMI = OwnerN.Addr->getCode();
LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber()
<< ">]: " << *UseMI << "\n");
Changed |= updateAddUses(AddMI, UseMI);
}
if (Changed)
Deleted.insert(AddMI);
return Changed;
}
bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI,
MachineInstr *UseMI) {
const MachineOperand ImmOp = AddMI->getOperand(2);
const MachineOperand AddRegOp = AddMI->getOperand(1);
Register newReg = AddRegOp.getReg();
const MCInstrDesc &MID = UseMI->getDesc();
MachineOperand &BaseOp = MID.mayLoad() ? UseMI->getOperand(1)
: UseMI->getOperand(0);
MachineOperand &OffsetOp = MID.mayLoad() ? UseMI->getOperand(2)
: UseMI->getOperand(1);
BaseOp.setReg(newReg);
BaseOp.setIsUndef(AddRegOp.isUndef());
BaseOp.setImplicit(AddRegOp.isImplicit());
OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm());
MRI->clearKillFlags(newReg);
return true;
}
bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR,
const NodeList &UNodeList,
InstrEvalMap &InstrEvalResult,
short &SizeInc) {
bool KeepTfr = false;
bool HasRepInstr = false;
InstrEvalResult.clear();
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
bool CanBeReplaced = false;
NodeAddr<UseNode *> UN = *I;
NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
MachineInstr &MI = *SN.Addr->getCode();
const MCInstrDesc &MID = MI.getDesc();
if ((MID.mayLoad() || MID.mayStore())) {
if (!hasRepForm(MI, tfrDefR)) {
KeepTfr = true;
continue;
}
SizeInc++;
CanBeReplaced = true;
} else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) {
NodeList AddaslUseList;
LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n");
getAllRealUses(SN, AddaslUseList);
// Process phi nodes.
if (allValidCandidates(SN, AddaslUseList) &&
canRemoveAddasl(SN, MI, AddaslUseList)) {
SizeInc += AddaslUseList.size();
SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed.
CanBeReplaced = true;
} else
SizeInc++;
} else
// Currently, only load/store and addasl are handled.
// Some other instructions to consider -
// A2_add -> A2_addi
// M4_mpyrr_addr -> M4_mpyrr_addi
KeepTfr = true;
InstrEvalResult[&MI] = CanBeReplaced;
HasRepInstr |= CanBeReplaced;
}
// Reduce total size by 2 if original tfr can be deleted.
if (!KeepTfr)
SizeInc -= 2;
return HasRepInstr;
}
bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp,
unsigned ImmOpNum) {
bool Changed = false;
MachineBasicBlock *BB = OldMI->getParent();
auto UsePos = MachineBasicBlock::iterator(OldMI);
MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
++InsertPt;
unsigned OpStart;
unsigned OpEnd = OldMI->getNumOperands();
MachineInstrBuilder MIB;
if (ImmOpNum == 1) {
if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(0));
MIB.add(OldMI->getOperand(2));
MIB.add(OldMI->getOperand(3));
MIB.add(ImmOp);
OpStart = 4;
Changed = true;
} else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset &&
OldMI->getOperand(2).isImm()) {
short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode))
.add(OldMI->getOperand(0));
const GlobalValue *GV = ImmOp.getGlobal();
int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(2).getImm();
MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
OpStart = 3;
Changed = true;
} else
Changed = false;
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
} else if (ImmOpNum == 2) {
if (OldMI->getOperand(3).isImm() && OldMI->getOperand(3).getImm() == 0) {
short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(0));
MIB.add(OldMI->getOperand(1));
MIB.add(ImmOp);
OpStart = 4;
Changed = true;
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
}
}
if (Changed)
for (unsigned i = OpStart; i < OpEnd; ++i)
MIB.add(OldMI->getOperand(i));
return Changed;
}
bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
unsigned ImmOpNum) {
bool Changed = false;
unsigned OpStart = 0;
unsigned OpEnd = OldMI->getNumOperands();
MachineBasicBlock *BB = OldMI->getParent();
auto UsePos = MachineBasicBlock::iterator(OldMI);
MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
++InsertPt;
MachineInstrBuilder MIB;
if (ImmOpNum == 0) {
if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(1));
MIB.add(OldMI->getOperand(2));
MIB.add(ImmOp);
MIB.add(OldMI->getOperand(3));
OpStart = 4;
} else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset) {
short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
const GlobalValue *GV = ImmOp.getGlobal();
int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(1).getImm();
MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
MIB.add(OldMI->getOperand(2));
OpStart = 3;
}
Changed = true;
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
} else if (ImmOpNum == 1 && OldMI->getOperand(2).getImm() == 0) {
short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(0));
MIB.add(ImmOp);
OpStart = 3;
Changed = true;
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
}
if (Changed)
for (unsigned i = OpStart; i < OpEnd; ++i)
MIB.add(OldMI->getOperand(i));
return Changed;
}
short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const {
if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) {
short TempOpCode = HII->changeAddrMode_io_rr(MI);
return HII->changeAddrMode_rr_ur(TempOpCode);
}
return HII->changeAddrMode_rr_ur(MI);
}
bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN,
MachineInstr *AddAslMI,
const MachineOperand &ImmOp,
unsigned ImmOpNum) {
NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(*DFG);
LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n");
NodeList UNodeList;
getAllRealUses(SA, UNodeList);
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UseUN = *I;
assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) &&
"Can't transform this 'AddAsl' instruction!");
NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(*DFG);
LLVM_DEBUG(dbgs() << "[InstrNode]: "
<< Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n");
MachineInstr *UseMI = UseIA.Addr->getCode();
LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent())
<< ">]: " << *UseMI << "\n");
const MCInstrDesc &UseMID = UseMI->getDesc();
assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset);
auto UsePos = MachineBasicBlock::iterator(UseMI);
MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
short NewOpCode = getBaseWithLongOffset(*UseMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
unsigned OpStart;
unsigned OpEnd = UseMI->getNumOperands();
MachineBasicBlock *BB = UseMI->getParent();
MachineInstrBuilder MIB =
BuildMI(*BB, InsertPt, UseMI->getDebugLoc(), HII->get(NewOpCode));
// change mem(Rs + # ) -> mem(Rt << # + ##)
if (UseMID.mayLoad()) {
MIB.add(UseMI->getOperand(0));
MIB.add(AddAslMI->getOperand(2));
MIB.add(AddAslMI->getOperand(3));
const GlobalValue *GV = ImmOp.getGlobal();
MIB.addGlobalAddress(GV, UseMI->getOperand(2).getImm()+ImmOp.getOffset(),
ImmOp.getTargetFlags());
OpStart = 3;
} else if (UseMID.mayStore()) {
MIB.add(AddAslMI->getOperand(2));
MIB.add(AddAslMI->getOperand(3));
const GlobalValue *GV = ImmOp.getGlobal();
MIB.addGlobalAddress(GV, UseMI->getOperand(1).getImm()+ImmOp.getOffset(),
ImmOp.getTargetFlags());
MIB.add(UseMI->getOperand(2));
OpStart = 3;
} else
llvm_unreachable("Unhandled instruction");
for (unsigned i = OpStart; i < OpEnd; ++i)
MIB.add(UseMI->getOperand(i));
Deleted.insert(UseMI);
}
return true;
}
bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
NodeAddr<UseNode *> UseN,
unsigned UseMOnum) {
const MachineOperand ImmOp = TfrMI->getOperand(1);
const MCInstrDesc &MID = UseMI->getDesc();
unsigned Changed = false;
if (MID.mayLoad())
Changed = changeLoad(UseMI, ImmOp, UseMOnum);
else if (MID.mayStore())
Changed = changeStore(UseMI, ImmOp, UseMOnum);
else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri)
Changed = changeAddAsl(UseN, UseMI, ImmOp, UseMOnum);
if (Changed)
Deleted.insert(UseMI);
return Changed;
}
bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) {
bool Changed = false;
for (auto IA : BA.Addr->members(*DFG)) {
if (!DFG->IsCode<NodeAttrs::Stmt>(IA))
continue;
NodeAddr<StmtNode *> SA = IA;
MachineInstr *MI = SA.Addr->getCode();
if ((MI->getOpcode() != Hexagon::A2_tfrsi ||
!MI->getOperand(1).isGlobal()) &&
(MI->getOpcode() != Hexagon::A2_addi ||
!MI->getOperand(2).isImm() || HII->isConstExtended(*MI)))
continue;
LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode())
<< "]: " << *MI << "\n\t[InstrNode]: "
<< Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n');
NodeList UNodeList;
getAllRealUses(SA, UNodeList);
if (!allValidCandidates(SA, UNodeList))
continue;
// Analyze all uses of 'add'. If the output of 'add' is used as an address
// in the base+immediate addressing mode load/store instructions, see if
// they can be updated to use the immediate value as an offet. Thus,
// providing us the opportunity to eliminate 'add'.
// Ex: Rx= add(Rt,#12)
// memw(Rx+#0) = Rs
// This can be replaced with memw(Rt+#12) = Rs
//
// This transformation is only performed if all uses can be updated and
// the offset isn't required to be constant extended.
if (MI->getOpcode() == Hexagon::A2_addi) {
Changed |= processAddUses(SA, MI, UNodeList);
continue;
}
short SizeInc = 0;
Register DefR = MI->getOperand(0).getReg();
InstrEvalMap InstrEvalResult;
// Analyze all uses and calculate increase in size. Perform the optimization
// only if there is no increase in size.
if (!analyzeUses(DefR, UNodeList, InstrEvalResult, SizeInc))
continue;
if (SizeInc > CodeGrowthLimit)
continue;
bool KeepTfr = false;
LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size()
<< "\n");
LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n");
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UseN = *I;
assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
"Found a PhiRef node as a real reached use!!");
NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
MachineInstr *UseMI = OwnerN.Addr->getCode();
LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent())
<< ">]: " << *UseMI << "\n");
int UseMOnum = -1;
unsigned NumOperands = UseMI->getNumOperands();
for (unsigned j = 0; j < NumOperands - 1; ++j) {
const MachineOperand &op = UseMI->getOperand(j);
if (op.isReg() && op.isUse() && DefR == op.getReg())
UseMOnum = j;
}
// It is possible that the register will not be found in any operand.
// This could happen, for example, when DefR = R4, but the used
// register is D2.
// Change UseMI if replacement is possible. If any replacement failed,
// or wasn't attempted, make sure to keep the TFR.
bool Xformed = false;
if (UseMOnum >= 0 && InstrEvalResult[UseMI])
Xformed = xformUseMI(MI, UseMI, UseN, UseMOnum);
Changed |= Xformed;
KeepTfr |= !Xformed;
}
if (!KeepTfr)
Deleted.insert(MI);
}
return Changed;
}
bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
bool Changed = false;
auto &HST = MF.getSubtarget<HexagonSubtarget>();
MRI = &MF.getRegInfo();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
const auto &MDF = getAnalysis<MachineDominanceFrontier>();
MDT = &getAnalysis<MachineDominatorTree>();
const TargetOperandInfo TOI(*HII);
DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF, TOI);
// Need to keep dead phis because we can propagate uses of registers into
// nodes dominated by those would-be phis.
G.build(BuildOptions::KeepDeadPhis);
DFG = &G;
Liveness L(*MRI, *DFG);
L.computePhiInfo();
LV = &L;
Deleted.clear();
NodeAddr<FuncNode *> FA = DFG->getFunc();
LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n "
<< Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n");
for (NodeAddr<BlockNode *> BA : FA.Addr->members(*DFG))
Changed |= processBlock(BA);
for (auto MI : Deleted)
MI->eraseFromParent();
if (Changed) {
G.build();
L.computeLiveIns();
L.resetLiveIns();
L.resetKills();
}
return Changed;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonOptAddrMode() {
return new HexagonOptAddrMode();
}
|