reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
//===- HexagonGenInsert.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "BitTracker.h"
#include "HexagonBitTracker.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>

#define DEBUG_TYPE "hexinsert"

using namespace llvm;

static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
// The distance cutoff is selected based on the precheckin-perf results:
// cutoffs 20, 25, 35, and 40 are worse than 30.
static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
  "generation."));

// Limit the container sizes for extreme cases where we run out of memory.
static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));

static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
  "generation"));

static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
  cl::ZeroOrMore);
static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
  cl::ZeroOrMore);
// Whether to construct constant values via "insert". Could eliminate constant
// extenders, but often not practical.
static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
  cl::ZeroOrMore);

// The preprocessor gets confused when the DEBUG macro is passed larger
// chunks of code. Use this function to detect debugging.
inline static bool isDebug() {
#ifndef NDEBUG
  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
#else
  return false;
#endif
}

namespace {

  // Set of virtual registers, based on BitVector.
  struct RegisterSet : private BitVector {
    RegisterSet() = default;
    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}

    using BitVector::clear;

    unsigned find_first() const {
      int First = BitVector::find_first();
      if (First < 0)
        return 0;
      return x2v(First);
    }

    unsigned find_next(unsigned Prev) const {
      int Next = BitVector::find_next(v2x(Prev));
      if (Next < 0)
        return 0;
      return x2v(Next);
    }

    RegisterSet &insert(unsigned R) {
      unsigned Idx = v2x(R);
      ensure(Idx);
      return static_cast<RegisterSet&>(BitVector::set(Idx));
    }
    RegisterSet &remove(unsigned R) {
      unsigned Idx = v2x(R);
      if (Idx >= size())
        return *this;
      return static_cast<RegisterSet&>(BitVector::reset(Idx));
    }

    RegisterSet &insert(const RegisterSet &Rs) {
      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
    }
    RegisterSet &remove(const RegisterSet &Rs) {
      return static_cast<RegisterSet&>(BitVector::reset(Rs));
    }

    reference operator[](unsigned R) {
      unsigned Idx = v2x(R);
      ensure(Idx);
      return BitVector::operator[](Idx);
    }
    bool operator[](unsigned R) const {
      unsigned Idx = v2x(R);
      assert(Idx < size());
      return BitVector::operator[](Idx);
    }
    bool has(unsigned R) const {
      unsigned Idx = v2x(R);
      if (Idx >= size())
        return false;
      return BitVector::test(Idx);
    }

    bool empty() const {
      return !BitVector::any();
    }
    bool includes(const RegisterSet &Rs) const {
      // A.BitVector::test(B)  <=>  A-B != {}
      return !Rs.BitVector::test(*this);
    }
    bool intersects(const RegisterSet &Rs) const {
      return BitVector::anyCommon(Rs);
    }

  private:
    void ensure(unsigned Idx) {
      if (size() <= Idx)
        resize(std::max(Idx+1, 32U));
    }

    static inline unsigned v2x(unsigned v) {
      return Register::virtReg2Index(v);
    }

    static inline unsigned x2v(unsigned x) {
      return Register::index2VirtReg(x);
    }
  };

  struct PrintRegSet {
    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
      : RS(S), TRI(RI) {}

    friend raw_ostream &operator<< (raw_ostream &OS,
          const PrintRegSet &P);

  private:
    const RegisterSet &RS;
    const TargetRegisterInfo *TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
    OS << '{';
    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
      OS << ' ' << printReg(R, P.TRI);
    OS << " }";
    return OS;
  }

  // A convenience class to associate unsigned numbers (such as virtual
  // registers) with unsigned numbers.
  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
    UnsignedMap() = default;

  private:
    using BaseType = DenseMap<unsigned, unsigned>;
  };

  // A utility to establish an ordering between virtual registers:
  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
  // This is meant as a cache for the ordering of virtual registers defined
  // by a potentially expensive comparison function, or obtained by a proce-
  // dure that should not be repeated each time two registers are compared.
  struct RegisterOrdering : public UnsignedMap {
    RegisterOrdering() = default;

    unsigned operator[](unsigned VR) const {
      const_iterator F = find(VR);
      assert(F != end());
      return F->second;
    }

    // Add operator(), so that objects of this class can be used as
    // comparators in std::sort et al.
    bool operator() (unsigned VR1, unsigned VR2) const {
      return operator[](VR1) < operator[](VR2);
    }
  };

  // Ordering of bit values. This class does not have operator[], but
  // is supplies a comparison operator() for use in std:: algorithms.
  // The order is as follows:
  // - 0 < 1 < ref
  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
  struct BitValueOrdering {
    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}

    bool operator() (const BitTracker::BitValue &V1,
          const BitTracker::BitValue &V2) const;

    const RegisterOrdering &BaseOrd;
  };

} // end anonymous namespace

bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
      const BitTracker::BitValue &V2) const {
  if (V1 == V2)
    return false;
  // V1==0 => true, V2==0 => false
  if (V1.is(0) || V2.is(0))
    return V1.is(0);
  // Neither of V1,V2 is 0, and V1!=V2.
  // V2==1 => false, V1==1 => true
  if (V2.is(1) || V1.is(1))
    return !V2.is(1);
  // Both V1,V2 are refs.
  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
  if (Ind1 != Ind2)
    return Ind1 < Ind2;
  // If V1.Pos==V2.Pos
  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
  return V1.RefI.Pos < V2.RefI.Pos;
}

namespace {

  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
  // complexity, this class will memoize the lookup results to reduce
  // the access time for repeated lookups of the same cell.
  struct CellMapShadow {
    CellMapShadow(const BitTracker &T) : BT(T) {}

    const BitTracker::RegisterCell &lookup(unsigned VR) {
      unsigned RInd = Register::virtReg2Index(VR);
      // Grow the vector to at least 32 elements.
      if (RInd >= CVect.size())
        CVect.resize(std::max(RInd+16, 32U), nullptr);
      const BitTracker::RegisterCell *CP = CVect[RInd];
      if (CP == nullptr)
        CP = CVect[RInd] = &BT.lookup(VR);
      return *CP;
    }

    const BitTracker &BT;

  private:
    using CellVectType = std::vector<const BitTracker::RegisterCell *>;

    CellVectType CVect;
  };

  // Comparator class for lexicographic ordering of virtual registers
  // according to the corresponding BitTracker::RegisterCell objects.
  struct RegisterCellLexCompare {
    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
      : BitOrd(BO), CM(M) {}

    bool operator() (unsigned VR1, unsigned VR2) const;

  private:
    const BitValueOrdering &BitOrd;
    CellMapShadow &CM;
  };

  // Comparator class for lexicographic ordering of virtual registers
  // according to the specified bits of the corresponding BitTracker::
  // RegisterCell objects.
  // Specifically, this class will be used to compare bit B of a register
  // cell for a selected virtual register R with bit N of any register
  // other than R.
  struct RegisterCellBitCompareSel {
    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
          const BitValueOrdering &BO, CellMapShadow &M)
      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}

    bool operator() (unsigned VR1, unsigned VR2) const;

  private:
    const unsigned SelR, SelB;
    const unsigned BitN;
    const BitValueOrdering &BitOrd;
    CellMapShadow &CM;
  };

} // end anonymous namespace

bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
  // Ordering of registers, made up from two given orderings:
  // - the ordering of the register numbers, and
  // - the ordering of register cells.
  // Def. R1 < R2 if:
  // - cell(R1) < cell(R2), or
  // - cell(R1) == cell(R2), and index(R1) < index(R2).
  //
  // For register cells, the ordering is lexicographic, with index 0 being
  // the most significant.
  if (VR1 == VR2)
    return false;

  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
  uint16_t W1 = RC1.width(), W2 = RC2.width();
  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
    if (V1 != V2)
      return BitOrd(V1, V2);
  }
  // Cells are equal up until the common length.
  if (W1 != W2)
    return W1 < W2;

  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
}

bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
  if (VR1 == VR2)
    return false;
  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
  uint16_t W1 = RC1.width(), W2 = RC2.width();
  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
  // If Bit1 exceeds the width of VR1, then:
  // - return false, if at the same time Bit2 exceeds VR2, or
  // - return true, otherwise.
  // (I.e. "a bit value that does not exist is less than any bit value
  // that does exist".)
  if (W1 <= Bit1)
    return Bit2 < W2;
  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
  if (W2 <= Bit2)
    return false;

  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
  if (V1 != V2)
    return BitOrd(V1, V2);
  return false;
}

namespace {

  class OrderedRegisterList {
    using ListType = std::vector<unsigned>;
    const unsigned MaxSize;

  public:
    OrderedRegisterList(const RegisterOrdering &RO)
      : MaxSize(MaxORLSize), Ord(RO) {}

    void insert(unsigned VR);
    void remove(unsigned VR);

    unsigned operator[](unsigned Idx) const {
      assert(Idx < Seq.size());
      return Seq[Idx];
    }

    unsigned size() const {
      return Seq.size();
    }

    using iterator = ListType::iterator;
    using const_iterator = ListType::const_iterator;

    iterator begin() { return Seq.begin(); }
    iterator end() { return Seq.end(); }
    const_iterator begin() const { return Seq.begin(); }
    const_iterator end() const { return Seq.end(); }

    // Convenience function to convert an iterator to the corresponding index.
    unsigned idx(iterator It) const { return It-begin(); }

  private:
    ListType Seq;
    const RegisterOrdering &Ord;
  };

  struct PrintORL {
    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
      : RL(L), TRI(RI) {}

    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);

  private:
    const OrderedRegisterList &RL;
    const TargetRegisterInfo *TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
    OS << '(';
    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
      if (I != B)
        OS << ", ";
      OS << printReg(*I, P.TRI);
    }
    OS << ')';
    return OS;
  }

} // end anonymous namespace

void OrderedRegisterList::insert(unsigned VR) {
  iterator L = llvm::lower_bound(Seq, VR, Ord);
  if (L == Seq.end())
    Seq.push_back(VR);
  else
    Seq.insert(L, VR);

  unsigned S = Seq.size();
  if (S > MaxSize)
    Seq.resize(MaxSize);
  assert(Seq.size() <= MaxSize);
}

void OrderedRegisterList::remove(unsigned VR) {
  iterator L = llvm::lower_bound(Seq, VR, Ord);
  if (L != Seq.end())
    Seq.erase(L);
}

namespace {

  // A record of the insert form. The fields correspond to the operands
  // of the "insert" instruction:
  // ... = insert(SrcR, InsR, #Wdh, #Off)
  struct IFRecord {
    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}

    unsigned SrcR, InsR;
    uint16_t Wdh, Off;
  };

  struct PrintIFR {
    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
      : IFR(R), TRI(RI) {}

  private:
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);

    const IFRecord &IFR;
    const TargetRegisterInfo *TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
    OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
    return OS;
  }

  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;

} // end anonymous namespace

namespace llvm {

  void initializeHexagonGenInsertPass(PassRegistry&);
  FunctionPass *createHexagonGenInsert();

} // end namespace llvm

namespace {

  class HexagonGenInsert : public MachineFunctionPass {
  public:
    static char ID;

    HexagonGenInsert() : MachineFunctionPass(ID) {
      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override {
      return "Hexagon generate \"insert\" instructions";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;

    void buildOrderingMF(RegisterOrdering &RO) const;
    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
    bool isIntClass(const TargetRegisterClass *RC) const;
    bool isConstant(unsigned VR) const;
    bool isSmallConstant(unsigned VR) const;
    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
          uint16_t L, uint16_t S) const;
    bool findSelfReference(unsigned VR) const;
    bool findNonSelfReference(unsigned VR) const;
    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
    unsigned distance(const MachineBasicBlock *FromB,
          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
          PairMapType &M) const;
    unsigned distance(MachineBasicBlock::const_iterator FromI,
          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
          PairMapType &M) const;
    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
    void findRemovableRegisters(unsigned VR, IFRecord IF,
          RegisterSet &RMs) const;
    void computeRemovableRegisters();

    void pruneEmptyLists();
    void pruneCoveredSets(unsigned VR);
    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
    void pruneRegCopies(unsigned VR);
    void pruneCandidates();
    void selectCandidates();
    bool generateInserts();

    bool removeDeadCode(MachineDomTreeNode *N);

    // IFRecord coupled with a set of potentially removable registers:
    using IFListType = std::vector<IFRecordWithRegSet>;
    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType

    void dump_map() const;

    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;

    MachineFunction *MFN;
    MachineRegisterInfo *MRI;
    MachineDominatorTree *MDT;
    CellMapShadow *CMS;

    RegisterOrdering BaseOrd;
    RegisterOrdering CellOrd;
    IFMapType IFMap;
  };

} // end anonymous namespace

char HexagonGenInsert::ID = 0;

void HexagonGenInsert::dump_map() const {
  using iterator = IFMapType::const_iterator;

  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    dbgs() << "  " << printReg(I->first, HRI) << ":\n";
    const IFListType &LL = I->second;
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
             << PrintRegSet(LL[i].second, HRI) << '\n';
  }
}

void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
  unsigned Index = 0;

  using mf_iterator = MachineFunction::const_iterator;

  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
    const MachineBasicBlock &B = *A;
    if (!CMS->BT.reached(&B))
      continue;

    using mb_iterator = MachineBasicBlock::const_iterator;

    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
      const MachineInstr *MI = &*I;
      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
        const MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.isDef()) {
          Register R = MO.getReg();
          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
          if (Register::isVirtualRegister(R))
            RO.insert(std::make_pair(R, Index++));
        }
      }
    }
  }
  // Since some virtual registers may have had their def and uses eliminated,
  // they are no longer referenced in the code, and so they will not appear
  // in the map.
}

void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
      RegisterOrdering &RO) const {
  // Create a vector of all virtual registers (collect them from the base
  // ordering RB), and then sort it using the RegisterCell comparator.
  BitValueOrdering BVO(RB);
  RegisterCellLexCompare LexCmp(BVO, *CMS);

  using SortableVectorType = std::vector<unsigned>;

  SortableVectorType VRs;
  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
    VRs.push_back(I->first);
  llvm::sort(VRs, LexCmp);
  // Transfer the results to the outgoing register ordering.
  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
    RO.insert(std::make_pair(VRs[i], i));
}

inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
}

bool HexagonGenInsert::isConstant(unsigned VR) const {
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  uint16_t W = RC.width();
  for (uint16_t i = 0; i < W; ++i) {
    const BitTracker::BitValue &BV = RC[i];
    if (BV.is(0) || BV.is(1))
      continue;
    return false;
  }
  return true;
}

bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  uint16_t W = RC.width();
  if (W > 64)
    return false;
  uint64_t V = 0, B = 1;
  for (uint16_t i = 0; i < W; ++i) {
    const BitTracker::BitValue &BV = RC[i];
    if (BV.is(1))
      V |= B;
    else if (!BV.is(0))
      return false;
    B <<= 1;
  }

  // For 32-bit registers, consider: Rd = #s16.
  if (W == 32)
    return isInt<16>(V);

  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
}

bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
      unsigned InsR, uint16_t L, uint16_t S) const {
  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
  // Only integet (32-/64-bit) register classes.
  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
    return false;
  // The "source" register must be of the same class as DstR.
  if (DstRC != SrcRC)
    return false;
  if (DstRC == InsRC)
    return true;
  // A 64-bit register can only be generated from other 64-bit registers.
  if (DstRC == &Hexagon::DoubleRegsRegClass)
    return false;
  // Otherwise, the L and S cannot span 32-bit word boundary.
  if (S < 32 && S+L > 32)
    return false;
  return true;
}

bool HexagonGenInsert::findSelfReference(unsigned VR) const {
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
    const BitTracker::BitValue &V = RC[i];
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
      return true;
  }
  return false;
}

bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
  BitTracker::RegisterCell RC = CMS->lookup(VR);
  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
    const BitTracker::BitValue &V = RC[i];
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
      return true;
  }
  return false;
}

void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
      RegisterSet &Defs) const {
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    Defs.insert(R);
  }
}

void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
      RegisterSet &Uses) const {
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    Uses.insert(R);
  }
}

unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
      PairMapType &M) const {
  // Forward distance from the end of a block to the beginning of it does
  // not make sense. This function should not be called with FromB == ToB.
  assert(FromB != ToB);

  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
  // If we have already computed it, return the cached result.
  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
  if (F != M.end())
    return F->second;
  unsigned ToRPO = RPO.lookup(ToN);

  unsigned MaxD = 0;

  using pred_iterator = MachineBasicBlock::const_pred_iterator;

  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
    const MachineBasicBlock *PB = *I;
    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
    // along that path will be 0, and we don't need to do any calculations
    // on it.
    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
      continue;
    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
    if (D > MaxD)
      MaxD = D;
  }

  // Memoize the result for later lookup.
  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
  return MaxD;
}

unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
      PairMapType &M) const {
  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
  if (FB == TB)
    return std::distance(FromI, ToI);
  unsigned D1 = std::distance(TB->begin(), ToI);
  unsigned D2 = distance(FB, TB, RPO, M);
  unsigned D3 = std::distance(FromI, FB->end());
  return D1+D2+D3;
}

bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
      OrderedRegisterList &AVs) {
  if (isDebug()) {
    dbgs() << __func__ << ": " << printReg(VR, HRI)
           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
  }
  if (AVs.size() == 0)
    return false;

  using iterator = OrderedRegisterList::iterator;

  BitValueOrdering BVO(BaseOrd);
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  uint16_t W = RC.width();

  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
  using RSListType = std::vector<RSRecord>;
  // Have a map, with key being the matching prefix length, and the value
  // being the list of pairs (R,S), where R's prefix matches VR at S.
  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
  using LRSMapType = DenseMap<unsigned, RSListType>;
  LRSMapType LM;

  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
  // and find matching prefixes from AVs with the rotated RC. Such a prefix
  // would match a string of bits (of length L) in RC starting at S.
  for (uint16_t S = 0; S < W; ++S) {
    iterator B = AVs.begin(), E = AVs.end();
    // The registers in AVs are ordered according to the lexical order of
    // the corresponding register cells. This means that the range of regis-
    // ters in AVs that match a prefix of length L+1 will be contained in
    // the range that matches a prefix of length L. This means that we can
    // keep narrowing the search space as the prefix length goes up. This
    // helps reduce the overall complexity of the search.
    uint16_t L;
    for (L = 0; L < W-S; ++L) {
      // Compare against VR's bits starting at S, which emulates rotation
      // of VR by S.
      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
      iterator NewB = std::lower_bound(B, E, VR, RCB);
      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
      // For the registers that are eliminated from the next range, L is
      // the longest prefix matching VR at position S (their prefixes
      // differ from VR at S+L). If L>0, record this information for later
      // use.
      if (L > 0) {
        for (iterator I = B; I != NewB; ++I)
          LM[L].push_back(std::make_pair(*I, S));
        for (iterator I = NewE; I != E; ++I)
          LM[L].push_back(std::make_pair(*I, S));
      }
      B = NewB, E = NewE;
      if (B == E)
        break;
    }
    // Record the final register range. If this range is non-empty, then
    // L=W-S.
    assert(B == E || L == W-S);
    if (B != E) {
      for (iterator I = B; I != E; ++I)
        LM[L].push_back(std::make_pair(*I, S));
      // If B!=E, then we found a range of registers whose prefixes cover the
      // rest of VR from position S. There is no need to further advance S.
      break;
    }
  }

  if (isDebug()) {
    dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
      dbgs() << "  L=" << I->first << ':';
      const RSListType &LL = I->second;
      for (unsigned i = 0, n = LL.size(); i < n; ++i)
        dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
               << LL[i].second << ')';
      dbgs() << '\n';
    }
  }

  bool Recorded = false;

  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
    unsigned SrcR = *I;
    int FDi = -1, LDi = -1;   // First/last different bit.
    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
    uint16_t AW = AC.width();
    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
      if (RC[i] == AC[i])
        continue;
      if (FDi == -1)
        FDi = i;
      LDi = i;
    }
    if (FDi == -1)
      continue;  // TODO (future): Record identical registers.
    // Look for a register whose prefix could patch the range [FD..LD]
    // where VR and SrcR differ.
    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
    uint16_t MinL = LD-FD+1;
    for (uint16_t L = MinL; L < W; ++L) {
      LRSMapType::iterator F = LM.find(L);
      if (F == LM.end())
        continue;
      RSListType &LL = F->second;
      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
        uint16_t S = LL[i].second;
        // MinL is the minimum length of the prefix. Any length above MinL
        // allows some flexibility as to where the prefix can start:
        // given the extra length EL=L-MinL, the prefix must start between
        // max(0,FD-EL) and FD.
        if (S > FD)   // Starts too late.
          continue;
        uint16_t EL = L-MinL;
        uint16_t LowS = (EL < FD) ? FD-EL : 0;
        if (S < LowS) // Starts too early.
          continue;
        unsigned InsR = LL[i].first;
        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
          continue;
        if (isDebug()) {
          dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
                 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
                 << S << ")\n";
        }
        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
        IFMap[VR].push_back(RR);
        Recorded = true;
      }
    }
  }

  return Recorded;
}

void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
      OrderedRegisterList &AVs) {
  if (isDebug())
    dbgs() << "visiting block " << printMBBReference(*B) << "\n";

  // First, check if this block is reachable at all. If not, the bit tracker
  // will not have any information about registers in it.
  if (!CMS->BT.reached(B))
    return;

  bool DoConst = OptConst;
  // Keep a separate set of registers defined in this block, so that we
  // can remove them from the list of available registers once all DT
  // successors have been processed.
  RegisterSet BlockDefs, InsDefs;
  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    InsDefs.clear();
    getInstrDefs(MI, InsDefs);
    // Leave those alone. They are more transparent than "insert".
    bool Skip = MI->isCopy() || MI->isRegSequence();

    if (!Skip) {
      // Visit all defined registers, and attempt to find the corresponding
      // "insert" representations.
      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
        // Do not collect registers that are known to be compile-time cons-
        // tants, unless requested.
        if (!DoConst && isConstant(VR))
          continue;
        // If VR's cell contains a reference to VR, then VR cannot be defined
        // via "insert". If VR is a constant that can be generated in a single
        // instruction (without constant extenders), generating it via insert
        // makes no sense.
        if (findSelfReference(VR) || isSmallConstant(VR))
          continue;

        findRecordInsertForms(VR, AVs);
        // Stop if the map size is too large.
        if (IFMap.size() > MaxIFMSize)
          return;
      }
    }

    // Insert the defined registers into the list of available registers
    // after they have been processed.
    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
      AVs.insert(VR);
    BlockDefs.insert(InsDefs);
  }

  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
    MachineBasicBlock *SB = DTN->getBlock();
    collectInBlock(SB, AVs);
  }

  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
    AVs.remove(VR);
}

void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
      RegisterSet &RMs) const {
  // For a given register VR and a insert form, find the registers that are
  // used by the current definition of VR, and which would no longer be
  // needed for it after the definition of VR is replaced with the insert
  // form. These are the registers that could potentially become dead.
  RegisterSet Regs[2];

  unsigned S = 0;  // Register set selector.
  Regs[S].insert(VR);

  while (!Regs[S].empty()) {
    // Breadth-first search.
    unsigned OtherS = 1-S;
    Regs[OtherS].clear();
    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
      Regs[S].remove(R);
      if (R == IF.SrcR || R == IF.InsR)
        continue;
      // Check if a given register has bits that are references to any other
      // registers. This is to detect situations where the instruction that
      // defines register R takes register Q as an operand, but R itself does
      // not contain any bits from Q. Loads are examples of how this could
      // happen:
      //   R = load Q
      // In this case (assuming we do not have any knowledge about the loaded
      // value), we must not treat R as a "conveyance" of the bits from Q.
      // (The information in BT about R's bits would have them as constants,
      // in case of zero-extending loads, or refs to R.)
      if (!findNonSelfReference(R))
        continue;
      RMs.insert(R);
      const MachineInstr *DefI = MRI->getVRegDef(R);
      assert(DefI);
      // Do not iterate past PHI nodes to avoid infinite loops. This can
      // make the final set a bit less accurate, but the removable register
      // sets are an approximation anyway.
      if (DefI->isPHI())
        continue;
      getInstrUses(DefI, Regs[OtherS]);
    }
    S = OtherS;
  }
  // The register VR is added to the list as a side-effect of the algorithm,
  // but it is not "potentially removable". A potentially removable register
  // is one that may become unused (dead) after conversion to the insert form
  // IF, and obviously VR (or its replacement) will not become dead by apply-
  // ing IF.
  RMs.remove(VR);
}

void HexagonGenInsert::computeRemovableRegisters() {
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    IFListType &LL = I->second;
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
  }
}

void HexagonGenInsert::pruneEmptyLists() {
  // Remove all entries from the map, where the register has no insert forms
  // associated with it.
  using IterListType = SmallVector<IFMapType::iterator, 16>;
  IterListType Prune;
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    if (I->second.empty())
      Prune.push_back(I);
  }
  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
    IFMap.erase(Prune[i]);
}

void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
  IFMapType::iterator F = IFMap.find(VR);
  assert(F != IFMap.end());
  IFListType &LL = F->second;

  // First, examine the IF candidates for register VR whose removable-regis-
  // ter sets are empty. This means that a given candidate will not help eli-
  // minate any registers, but since "insert" is not a constant-extendable
  // instruction, using such a candidate may reduce code size if the defini-
  // tion of VR is constant-extended.
  // If there exists a candidate with a non-empty set, the ones with empty
  // sets will not be used and can be removed.
  MachineInstr *DefVR = MRI->getVRegDef(VR);
  bool DefEx = HII->isConstExtended(*DefVR);
  bool HasNE = false;
  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
    if (LL[i].second.empty())
      continue;
    HasNE = true;
    break;
  }
  if (!DefEx || HasNE) {
    // The definition of VR is not constant-extended, or there is a candidate
    // with a non-empty set. Remove all candidates with empty sets.
    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
      return IR.second.empty();
    };
    auto End = llvm::remove_if(LL, IsEmpty);
    if (End != LL.end())
      LL.erase(End, LL.end());
  } else {
    // The definition of VR is constant-extended, and all candidates have
    // empty removable-register sets. Pick the maximum candidate, and remove
    // all others. The "maximum" does not have any special meaning here, it
    // is only so that the candidate that will remain on the list is selec-
    // ted deterministically.
    IFRecord MaxIF = LL[0].first;
    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
      // If LL[MaxI] < LL[i], then MaxI = i.
      const IFRecord &IF = LL[i].first;
      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
      if (M0 > R0)
        continue;
      if (M0 == R0) {
        if (M1 > R1)
          continue;
        if (M1 == R1) {
          if (MaxIF.Wdh > IF.Wdh)
            continue;
          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
            continue;
        }
      }
      // MaxIF < IF.
      MaxIF = IF;
    }
    // Remove everything except the maximum candidate. All register sets
    // are empty, so no need to preserve anything.
    LL.clear();
    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
  }

  // Now, remove those whose sets of potentially removable registers are
  // contained in another IF candidate for VR. For example, given these
  // candidates for %45,
  //   %45:
  //     (%44,%41,#9,#8), { %42 }
  //     (%43,%41,#9,#8), { %42 %44 }
  // remove the first one, since it is contained in the second one.
  for (unsigned i = 0, n = LL.size(); i < n; ) {
    const RegisterSet &RMi = LL[i].second;
    unsigned j = 0;
    while (j < n) {
      if (j != i && LL[j].second.includes(RMi))
        break;
      j++;
    }
    if (j == n) {   // RMi not contained in anything else.
      i++;
      continue;
    }
    LL.erase(LL.begin()+i);
    n = LL.size();
  }
}

void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
      PairMapType &M) {
  IFMapType::iterator F = IFMap.find(VR);
  assert(F != IFMap.end());
  IFListType &LL = F->second;
  unsigned Cutoff = VRegDistCutoff;
  const MachineInstr *DefV = MRI->getVRegDef(VR);

  for (unsigned i = LL.size(); i > 0; --i) {
    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
    const MachineInstr *DefS = MRI->getVRegDef(SR);
    const MachineInstr *DefI = MRI->getVRegDef(IR);
    unsigned DSV = distance(DefS, DefV, RPO, M);
    if (DSV < Cutoff) {
      unsigned DIV = distance(DefI, DefV, RPO, M);
      if (DIV < Cutoff)
        continue;
    }
    LL.erase(LL.begin()+(i-1));
  }
}

void HexagonGenInsert::pruneRegCopies(unsigned VR) {
  IFMapType::iterator F = IFMap.find(VR);
  assert(F != IFMap.end());
  IFListType &LL = F->second;

  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
  };
  auto End = llvm::remove_if(LL, IsCopy);
  if (End != LL.end())
    LL.erase(End, LL.end());
}

void HexagonGenInsert::pruneCandidates() {
  // Remove candidates that are not beneficial, regardless of the final
  // selection method.
  // First, remove candidates whose potentially removable set is a subset
  // of another candidate's set.
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
    pruneCoveredSets(I->first);

  UnsignedMap RPO;

  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;

  RPOTType RPOT(MFN);
  unsigned RPON = 0;
  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
    RPO[(*I)->getNumber()] = RPON++;

  PairMapType Memo; // Memoization map for distance calculation.
  // Remove candidates that would use registers defined too far away.
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
    pruneUsesTooFar(I->first, RPO, Memo);

  pruneEmptyLists();

  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
    pruneRegCopies(I->first);
}

namespace {

  // Class for comparing IF candidates for registers that have multiple of
  // them. The smaller the candidate, according to this ordering, the better.
  // First, compare the number of zeros in the associated potentially remova-
  // ble register sets. "Zero" indicates that the register is very likely to
  // become dead after this transformation.
  // Second, compare "averages", i.e. use-count per size. The lower wins.
  // After that, it does not really matter which one is smaller. Resolve
  // the tie in some deterministic way.
  struct IFOrdering {
    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
      : UseC(UC), BaseOrd(BO) {}

    bool operator() (const IFRecordWithRegSet &A,
                     const IFRecordWithRegSet &B) const;

  private:
    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
          unsigned &Sum) const;

    const UnsignedMap &UseC;
    const RegisterOrdering &BaseOrd;
  };

} // end anonymous namespace

bool IFOrdering::operator() (const IFRecordWithRegSet &A,
      const IFRecordWithRegSet &B) const {
  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
  stats(A.second, SizeA, ZeroA, SumA);
  stats(B.second, SizeB, ZeroB, SumB);

  // We will pick the minimum element. The more zeros, the better.
  if (ZeroA != ZeroB)
    return ZeroA > ZeroB;
  // Compare SumA/SizeA with SumB/SizeB, lower is better.
  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
  if (AvgA != AvgB)
    return AvgA < AvgB;

  // The sets compare identical so far. Resort to comparing the IF records.
  // The actual values don't matter, this is only for determinism.
  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
  if (OSA != OSB)
    return OSA < OSB;
  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
  if (OIA != OIB)
    return OIA < OIB;
  if (A.first.Wdh != B.first.Wdh)
    return A.first.Wdh < B.first.Wdh;
  return A.first.Off < B.first.Off;
}

void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
      unsigned &Sum) const {
  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
    UnsignedMap::const_iterator F = UseC.find(R);
    assert(F != UseC.end());
    unsigned UC = F->second;
    if (UC == 0)
      Zero++;
    Sum += UC;
    Size++;
  }
}

void HexagonGenInsert::selectCandidates() {
  // Some registers may have multiple valid candidates. Pick the best one
  // (or decide not to use any).

  // Compute the "removability" measure of R:
  // For each potentially removable register R, record the number of regis-
  // ters with IF candidates, where R appears in at least one set.
  RegisterSet AllRMs;
  UnsignedMap UseC, RemC;
  IFMapType::iterator End = IFMap.end();

  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    const IFListType &LL = I->second;
    RegisterSet TT;
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
      TT.insert(LL[i].second);
    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
      RemC[R]++;
    AllRMs.insert(TT);
  }

  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
    using InstrSet = SmallSet<const MachineInstr *, 16>;

    InstrSet UIs;
    // Count as the number of instructions in which R is used, not the
    // number of operands.
    use_iterator E = MRI->use_nodbg_end();
    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
      UIs.insert(I->getParent());
    unsigned C = UIs.size();
    // Calculate a measure, which is the number of instructions using R,
    // minus the "removability" count computed earlier.
    unsigned D = RemC[R];
    UseC[R] = (C > D) ? C-D : 0;  // doz
  }

  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
  if (!SelectAll0 && !SelectHas0)
    SelectAll0 = true;

  // The smaller the number UseC for a given register R, the "less used"
  // R is aside from the opportunities for removal offered by generating
  // "insert" instructions.
  // Iterate over the IF map, and for those registers that have multiple
  // candidates, pick the minimum one according to IFOrdering.
  IFOrdering IFO(UseC, BaseOrd);
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    IFListType &LL = I->second;
    if (LL.empty())
      continue;
    // Get the minimum element, remember it and clear the list. If the
    // element found is adequate, we will put it back on the list, other-
    // wise the list will remain empty, and the entry for this register
    // will be removed (i.e. this register will not be replaced by insert).
    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
    assert(MinI != LL.end());
    IFRecordWithRegSet M = *MinI;
    LL.clear();

    // We want to make sure that this replacement will have a chance to be
    // beneficial, and that means that we want to have indication that some
    // register will be removed. The most likely registers to be eliminated
    // are the use operands in the definition of I->first. Accept/reject a
    // candidate based on how many of its uses it can potentially eliminate.

    RegisterSet Us;
    const MachineInstr *DefI = MRI->getVRegDef(I->first);
    getInstrUses(DefI, Us);
    bool Accept = false;

    if (SelectAll0) {
      bool All0 = true;
      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
        if (UseC[R] == 0)
          continue;
        All0 = false;
        break;
      }
      Accept = All0;
    } else if (SelectHas0) {
      bool Has0 = false;
      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
        if (UseC[R] != 0)
          continue;
        Has0 = true;
        break;
      }
      Accept = Has0;
    }
    if (Accept)
      LL.push_back(M);
  }

  // Remove candidates that add uses of removable registers, unless the
  // removable registers are among replacement candidates.
  // Recompute the removable registers, since some candidates may have
  // been eliminated.
  AllRMs.clear();
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    const IFListType &LL = I->second;
    if (!LL.empty())
      AllRMs.insert(LL[0].second);
  }
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    IFListType &LL = I->second;
    if (LL.empty())
      continue;
    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
    if (AllRMs[SR] || AllRMs[IR])
      LL.clear();
  }

  pruneEmptyLists();
}

bool HexagonGenInsert::generateInserts() {
  // Create a new register for each one from IFMap, and store them in the
  // map.
  UnsignedMap RegMap;
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    unsigned VR = I->first;
    const TargetRegisterClass *RC = MRI->getRegClass(VR);
    Register NewVR = MRI->createVirtualRegister(RC);
    RegMap[VR] = NewVR;
  }

  // We can generate the "insert" instructions using potentially stale re-
  // gisters: SrcR and InsR for a given VR may be among other registers that
  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    MachineInstr *MI = MRI->getVRegDef(I->first);
    MachineBasicBlock &B = *MI->getParent();
    DebugLoc DL = MI->getDebugLoc();
    unsigned NewR = RegMap[I->first];
    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
                               : HII->get(Hexagon::S2_insertp);
    IFRecord IF = I->second[0].first;
    unsigned Wdh = IF.Wdh, Off = IF.Off;
    unsigned InsS = 0;
    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
      InsS = Hexagon::isub_lo;
      if (Off >= 32) {
        InsS = Hexagon::isub_hi;
        Off -= 32;
      }
    }
    // Advance to the proper location for inserting instructions. This could
    // be B.end().
    MachineBasicBlock::iterator At = MI;
    if (MI->isPHI())
      At = B.getFirstNonPHI();

    BuildMI(B, At, DL, D, NewR)
      .addReg(IF.SrcR)
      .addReg(IF.InsR, 0, InsS)
      .addImm(Wdh)
      .addImm(Off);

    MRI->clearKillFlags(IF.SrcR);
    MRI->clearKillFlags(IF.InsR);
  }

  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    MachineInstr *DefI = MRI->getVRegDef(I->first);
    MRI->replaceRegWith(I->first, RegMap[I->first]);
    DefI->eraseFromParent();
  }

  return true;
}

bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
  bool Changed = false;

  for (auto *DTN : children<MachineDomTreeNode*>(N))
    Changed |= removeDeadCode(DTN);

  MachineBasicBlock *B = N->getBlock();
  std::vector<MachineInstr*> Instrs;
  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
    Instrs.push_back(&*I);

  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
    MachineInstr *MI = *I;
    unsigned Opc = MI->getOpcode();
    // Do not touch lifetime markers. This is why the target-independent DCE
    // cannot be used.
    if (Opc == TargetOpcode::LIFETIME_START ||
        Opc == TargetOpcode::LIFETIME_END)
      continue;
    bool Store = false;
    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
      continue;

    bool AllDead = true;
    SmallVector<unsigned,2> Regs;
    for (const MachineOperand &MO : MI->operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register R = MO.getReg();
      if (!Register::isVirtualRegister(R) || !MRI->use_nodbg_empty(R)) {
        AllDead = false;
        break;
      }
      Regs.push_back(R);
    }
    if (!AllDead)
      continue;

    B->erase(MI);
    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
      MRI->markUsesInDebugValueAsUndef(Regs[I]);
    Changed = true;
  }

  return Changed;
}

bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
  bool Changed = false;

  // Sanity check: one, but not both.
  assert(!OptSelectAll0 || !OptSelectHas0);

  IFMap.clear();
  BaseOrd.clear();
  CellOrd.clear();

  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
  HII = ST.getInstrInfo();
  HRI = ST.getRegisterInfo();
  MFN = &MF;
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();

  // Clean up before any further processing, so that dead code does not
  // get used in a newly generated "insert" instruction. Have a custom
  // version of DCE that preserves lifetime markers. Without it, merging
  // of stack objects can fail to recognize and merge disjoint objects
  // leading to unnecessary stack growth.
  Changed = removeDeadCode(MDT->getRootNode());

  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
  BitTracker BTLoc(HE, MF);
  BTLoc.trace(isDebug());
  BTLoc.run();
  CellMapShadow MS(BTLoc);
  CMS = &MS;

  buildOrderingMF(BaseOrd);
  buildOrderingBT(BaseOrd, CellOrd);

  if (isDebug()) {
    dbgs() << "Cell ordering:\n";
    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
        I != E; ++I) {
      unsigned VR = I->first, Pos = I->second;
      dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
    }
  }

  // Collect candidates for conversion into the insert forms.
  MachineBasicBlock *RootB = MDT->getRoot();
  OrderedRegisterList AvailR(CellOrd);

  const char *const TGName = "hexinsert";
  const char *const TGDesc = "Generate Insert Instructions";

  {
    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
                        TimingDetail);
    collectInBlock(RootB, AvailR);
    // Complete the information gathered in IFMap.
    computeRemovableRegisters();
  }

  if (isDebug()) {
    dbgs() << "Candidates after collection:\n";
    dump_map();
  }

  if (IFMap.empty())
    return Changed;

  {
    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
    pruneCandidates();
  }

  if (isDebug()) {
    dbgs() << "Candidates after pruning:\n";
    dump_map();
  }

  if (IFMap.empty())
    return Changed;

  {
    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
    selectCandidates();
  }

  if (isDebug()) {
    dbgs() << "Candidates after selection:\n";
    dump_map();
  }

  // Filter out vregs beyond the cutoff.
  if (VRegIndexCutoff.getPosition()) {
    unsigned Cutoff = VRegIndexCutoff;

    using IterListType = SmallVector<IFMapType::iterator, 16>;

    IterListType Out;
    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
      unsigned Idx = Register::virtReg2Index(I->first);
      if (Idx >= Cutoff)
        Out.push_back(I);
    }
    for (unsigned i = 0, n = Out.size(); i < n; ++i)
      IFMap.erase(Out[i]);
  }
  if (IFMap.empty())
    return Changed;

  {
    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
                        TimingDetail);
    generateInserts();
  }

  return true;
}

FunctionPass *llvm::createHexagonGenInsert() {
  return new HexagonGenInsert();
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
  "Hexagon generate \"insert\" instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
  "Hexagon generate \"insert\" instructions", false, false)