1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
| //===- HexagonGenInsert.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "BitTracker.h"
#include "HexagonBitTracker.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>
#define DEBUG_TYPE "hexinsert"
using namespace llvm;
static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
// The distance cutoff is selected based on the precheckin-perf results:
// cutoffs 20, 25, 35, and 40 are worse than 30.
static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
"generation."));
// Limit the container sizes for extreme cases where we run out of memory.
static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
"generation"));
static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
cl::ZeroOrMore);
static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
cl::ZeroOrMore);
// Whether to construct constant values via "insert". Could eliminate constant
// extenders, but often not practical.
static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
cl::ZeroOrMore);
// The preprocessor gets confused when the DEBUG macro is passed larger
// chunks of code. Use this function to detect debugging.
inline static bool isDebug() {
#ifndef NDEBUG
return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
#else
return false;
#endif
}
namespace {
// Set of virtual registers, based on BitVector.
struct RegisterSet : private BitVector {
RegisterSet() = default;
explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
using BitVector::clear;
unsigned find_first() const {
int First = BitVector::find_first();
if (First < 0)
return 0;
return x2v(First);
}
unsigned find_next(unsigned Prev) const {
int Next = BitVector::find_next(v2x(Prev));
if (Next < 0)
return 0;
return x2v(Next);
}
RegisterSet &insert(unsigned R) {
unsigned Idx = v2x(R);
ensure(Idx);
return static_cast<RegisterSet&>(BitVector::set(Idx));
}
RegisterSet &remove(unsigned R) {
unsigned Idx = v2x(R);
if (Idx >= size())
return *this;
return static_cast<RegisterSet&>(BitVector::reset(Idx));
}
RegisterSet &insert(const RegisterSet &Rs) {
return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
}
RegisterSet &remove(const RegisterSet &Rs) {
return static_cast<RegisterSet&>(BitVector::reset(Rs));
}
reference operator[](unsigned R) {
unsigned Idx = v2x(R);
ensure(Idx);
return BitVector::operator[](Idx);
}
bool operator[](unsigned R) const {
unsigned Idx = v2x(R);
assert(Idx < size());
return BitVector::operator[](Idx);
}
bool has(unsigned R) const {
unsigned Idx = v2x(R);
if (Idx >= size())
return false;
return BitVector::test(Idx);
}
bool empty() const {
return !BitVector::any();
}
bool includes(const RegisterSet &Rs) const {
// A.BitVector::test(B) <=> A-B != {}
return !Rs.BitVector::test(*this);
}
bool intersects(const RegisterSet &Rs) const {
return BitVector::anyCommon(Rs);
}
private:
void ensure(unsigned Idx) {
if (size() <= Idx)
resize(std::max(Idx+1, 32U));
}
static inline unsigned v2x(unsigned v) {
return Register::virtReg2Index(v);
}
static inline unsigned x2v(unsigned x) {
return Register::index2VirtReg(x);
}
};
struct PrintRegSet {
PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
: RS(S), TRI(RI) {}
friend raw_ostream &operator<< (raw_ostream &OS,
const PrintRegSet &P);
private:
const RegisterSet &RS;
const TargetRegisterInfo *TRI;
};
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
OS << '{';
for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
OS << ' ' << printReg(R, P.TRI);
OS << " }";
return OS;
}
// A convenience class to associate unsigned numbers (such as virtual
// registers) with unsigned numbers.
struct UnsignedMap : public DenseMap<unsigned,unsigned> {
UnsignedMap() = default;
private:
using BaseType = DenseMap<unsigned, unsigned>;
};
// A utility to establish an ordering between virtual registers:
// VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
// This is meant as a cache for the ordering of virtual registers defined
// by a potentially expensive comparison function, or obtained by a proce-
// dure that should not be repeated each time two registers are compared.
struct RegisterOrdering : public UnsignedMap {
RegisterOrdering() = default;
unsigned operator[](unsigned VR) const {
const_iterator F = find(VR);
assert(F != end());
return F->second;
}
// Add operator(), so that objects of this class can be used as
// comparators in std::sort et al.
bool operator() (unsigned VR1, unsigned VR2) const {
return operator[](VR1) < operator[](VR2);
}
};
// Ordering of bit values. This class does not have operator[], but
// is supplies a comparison operator() for use in std:: algorithms.
// The order is as follows:
// - 0 < 1 < ref
// - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
// or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
struct BitValueOrdering {
BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
bool operator() (const BitTracker::BitValue &V1,
const BitTracker::BitValue &V2) const;
const RegisterOrdering &BaseOrd;
};
} // end anonymous namespace
bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
const BitTracker::BitValue &V2) const {
if (V1 == V2)
return false;
// V1==0 => true, V2==0 => false
if (V1.is(0) || V2.is(0))
return V1.is(0);
// Neither of V1,V2 is 0, and V1!=V2.
// V2==1 => false, V1==1 => true
if (V2.is(1) || V1.is(1))
return !V2.is(1);
// Both V1,V2 are refs.
unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
if (Ind1 != Ind2)
return Ind1 < Ind2;
// If V1.Pos==V2.Pos
assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
return V1.RefI.Pos < V2.RefI.Pos;
}
namespace {
// Cache for the BitTracker's cell map. Map lookup has a logarithmic
// complexity, this class will memoize the lookup results to reduce
// the access time for repeated lookups of the same cell.
struct CellMapShadow {
CellMapShadow(const BitTracker &T) : BT(T) {}
const BitTracker::RegisterCell &lookup(unsigned VR) {
unsigned RInd = Register::virtReg2Index(VR);
// Grow the vector to at least 32 elements.
if (RInd >= CVect.size())
CVect.resize(std::max(RInd+16, 32U), nullptr);
const BitTracker::RegisterCell *CP = CVect[RInd];
if (CP == nullptr)
CP = CVect[RInd] = &BT.lookup(VR);
return *CP;
}
const BitTracker &BT;
private:
using CellVectType = std::vector<const BitTracker::RegisterCell *>;
CellVectType CVect;
};
// Comparator class for lexicographic ordering of virtual registers
// according to the corresponding BitTracker::RegisterCell objects.
struct RegisterCellLexCompare {
RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
: BitOrd(BO), CM(M) {}
bool operator() (unsigned VR1, unsigned VR2) const;
private:
const BitValueOrdering &BitOrd;
CellMapShadow &CM;
};
// Comparator class for lexicographic ordering of virtual registers
// according to the specified bits of the corresponding BitTracker::
// RegisterCell objects.
// Specifically, this class will be used to compare bit B of a register
// cell for a selected virtual register R with bit N of any register
// other than R.
struct RegisterCellBitCompareSel {
RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
const BitValueOrdering &BO, CellMapShadow &M)
: SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
bool operator() (unsigned VR1, unsigned VR2) const;
private:
const unsigned SelR, SelB;
const unsigned BitN;
const BitValueOrdering &BitOrd;
CellMapShadow &CM;
};
} // end anonymous namespace
bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
// Ordering of registers, made up from two given orderings:
// - the ordering of the register numbers, and
// - the ordering of register cells.
// Def. R1 < R2 if:
// - cell(R1) < cell(R2), or
// - cell(R1) == cell(R2), and index(R1) < index(R2).
//
// For register cells, the ordering is lexicographic, with index 0 being
// the most significant.
if (VR1 == VR2)
return false;
const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
uint16_t W1 = RC1.width(), W2 = RC2.width();
for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
if (V1 != V2)
return BitOrd(V1, V2);
}
// Cells are equal up until the common length.
if (W1 != W2)
return W1 < W2;
return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
}
bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
if (VR1 == VR2)
return false;
const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
uint16_t W1 = RC1.width(), W2 = RC2.width();
uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
// If Bit1 exceeds the width of VR1, then:
// - return false, if at the same time Bit2 exceeds VR2, or
// - return true, otherwise.
// (I.e. "a bit value that does not exist is less than any bit value
// that does exist".)
if (W1 <= Bit1)
return Bit2 < W2;
// If Bit1 is within VR1, but Bit2 is not within VR2, return false.
if (W2 <= Bit2)
return false;
const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
if (V1 != V2)
return BitOrd(V1, V2);
return false;
}
namespace {
class OrderedRegisterList {
using ListType = std::vector<unsigned>;
const unsigned MaxSize;
public:
OrderedRegisterList(const RegisterOrdering &RO)
: MaxSize(MaxORLSize), Ord(RO) {}
void insert(unsigned VR);
void remove(unsigned VR);
unsigned operator[](unsigned Idx) const {
assert(Idx < Seq.size());
return Seq[Idx];
}
unsigned size() const {
return Seq.size();
}
using iterator = ListType::iterator;
using const_iterator = ListType::const_iterator;
iterator begin() { return Seq.begin(); }
iterator end() { return Seq.end(); }
const_iterator begin() const { return Seq.begin(); }
const_iterator end() const { return Seq.end(); }
// Convenience function to convert an iterator to the corresponding index.
unsigned idx(iterator It) const { return It-begin(); }
private:
ListType Seq;
const RegisterOrdering &Ord;
};
struct PrintORL {
PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
: RL(L), TRI(RI) {}
friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
private:
const OrderedRegisterList &RL;
const TargetRegisterInfo *TRI;
};
raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
OS << '(';
OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
if (I != B)
OS << ", ";
OS << printReg(*I, P.TRI);
}
OS << ')';
return OS;
}
} // end anonymous namespace
void OrderedRegisterList::insert(unsigned VR) {
iterator L = llvm::lower_bound(Seq, VR, Ord);
if (L == Seq.end())
Seq.push_back(VR);
else
Seq.insert(L, VR);
unsigned S = Seq.size();
if (S > MaxSize)
Seq.resize(MaxSize);
assert(Seq.size() <= MaxSize);
}
void OrderedRegisterList::remove(unsigned VR) {
iterator L = llvm::lower_bound(Seq, VR, Ord);
if (L != Seq.end())
Seq.erase(L);
}
namespace {
// A record of the insert form. The fields correspond to the operands
// of the "insert" instruction:
// ... = insert(SrcR, InsR, #Wdh, #Off)
struct IFRecord {
IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
: SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
unsigned SrcR, InsR;
uint16_t Wdh, Off;
};
struct PrintIFR {
PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
: IFR(R), TRI(RI) {}
private:
friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
const IFRecord &IFR;
const TargetRegisterInfo *TRI;
};
raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
<< ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
return OS;
}
using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
} // end anonymous namespace
namespace llvm {
void initializeHexagonGenInsertPass(PassRegistry&);
FunctionPass *createHexagonGenInsert();
} // end namespace llvm
namespace {
class HexagonGenInsert : public MachineFunctionPass {
public:
static char ID;
HexagonGenInsert() : MachineFunctionPass(ID) {
initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Hexagon generate \"insert\" instructions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
void buildOrderingMF(RegisterOrdering &RO) const;
void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
bool isIntClass(const TargetRegisterClass *RC) const;
bool isConstant(unsigned VR) const;
bool isSmallConstant(unsigned VR) const;
bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
uint16_t L, uint16_t S) const;
bool findSelfReference(unsigned VR) const;
bool findNonSelfReference(unsigned VR) const;
void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
unsigned distance(const MachineBasicBlock *FromB,
const MachineBasicBlock *ToB, const UnsignedMap &RPO,
PairMapType &M) const;
unsigned distance(MachineBasicBlock::const_iterator FromI,
MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
PairMapType &M) const;
bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
void findRemovableRegisters(unsigned VR, IFRecord IF,
RegisterSet &RMs) const;
void computeRemovableRegisters();
void pruneEmptyLists();
void pruneCoveredSets(unsigned VR);
void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
void pruneRegCopies(unsigned VR);
void pruneCandidates();
void selectCandidates();
bool generateInserts();
bool removeDeadCode(MachineDomTreeNode *N);
// IFRecord coupled with a set of potentially removable registers:
using IFListType = std::vector<IFRecordWithRegSet>;
using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
void dump_map() const;
const HexagonInstrInfo *HII = nullptr;
const HexagonRegisterInfo *HRI = nullptr;
MachineFunction *MFN;
MachineRegisterInfo *MRI;
MachineDominatorTree *MDT;
CellMapShadow *CMS;
RegisterOrdering BaseOrd;
RegisterOrdering CellOrd;
IFMapType IFMap;
};
} // end anonymous namespace
char HexagonGenInsert::ID = 0;
void HexagonGenInsert::dump_map() const {
using iterator = IFMapType::const_iterator;
for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
dbgs() << " " << printReg(I->first, HRI) << ":\n";
const IFListType &LL = I->second;
for (unsigned i = 0, n = LL.size(); i < n; ++i)
dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", "
<< PrintRegSet(LL[i].second, HRI) << '\n';
}
}
void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
unsigned Index = 0;
using mf_iterator = MachineFunction::const_iterator;
for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
const MachineBasicBlock &B = *A;
if (!CMS->BT.reached(&B))
continue;
using mb_iterator = MachineBasicBlock::const_iterator;
for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
const MachineInstr *MI = &*I;
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
Register R = MO.getReg();
assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
if (Register::isVirtualRegister(R))
RO.insert(std::make_pair(R, Index++));
}
}
}
}
// Since some virtual registers may have had their def and uses eliminated,
// they are no longer referenced in the code, and so they will not appear
// in the map.
}
void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
RegisterOrdering &RO) const {
// Create a vector of all virtual registers (collect them from the base
// ordering RB), and then sort it using the RegisterCell comparator.
BitValueOrdering BVO(RB);
RegisterCellLexCompare LexCmp(BVO, *CMS);
using SortableVectorType = std::vector<unsigned>;
SortableVectorType VRs;
for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
VRs.push_back(I->first);
llvm::sort(VRs, LexCmp);
// Transfer the results to the outgoing register ordering.
for (unsigned i = 0, n = VRs.size(); i < n; ++i)
RO.insert(std::make_pair(VRs[i], i));
}
inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
}
bool HexagonGenInsert::isConstant(unsigned VR) const {
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
uint16_t W = RC.width();
for (uint16_t i = 0; i < W; ++i) {
const BitTracker::BitValue &BV = RC[i];
if (BV.is(0) || BV.is(1))
continue;
return false;
}
return true;
}
bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
uint16_t W = RC.width();
if (W > 64)
return false;
uint64_t V = 0, B = 1;
for (uint16_t i = 0; i < W; ++i) {
const BitTracker::BitValue &BV = RC[i];
if (BV.is(1))
V |= B;
else if (!BV.is(0))
return false;
B <<= 1;
}
// For 32-bit registers, consider: Rd = #s16.
if (W == 32)
return isInt<16>(V);
// For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
}
bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
unsigned InsR, uint16_t L, uint16_t S) const {
const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
// Only integet (32-/64-bit) register classes.
if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
return false;
// The "source" register must be of the same class as DstR.
if (DstRC != SrcRC)
return false;
if (DstRC == InsRC)
return true;
// A 64-bit register can only be generated from other 64-bit registers.
if (DstRC == &Hexagon::DoubleRegsRegClass)
return false;
// Otherwise, the L and S cannot span 32-bit word boundary.
if (S < 32 && S+L > 32)
return false;
return true;
}
bool HexagonGenInsert::findSelfReference(unsigned VR) const {
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
const BitTracker::BitValue &V = RC[i];
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
return true;
}
return false;
}
bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
BitTracker::RegisterCell RC = CMS->lookup(VR);
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
const BitTracker::BitValue &V = RC[i];
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
return true;
}
return false;
}
void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
RegisterSet &Defs) const {
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
Register R = MO.getReg();
if (!Register::isVirtualRegister(R))
continue;
Defs.insert(R);
}
}
void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
RegisterSet &Uses) const {
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
Register R = MO.getReg();
if (!Register::isVirtualRegister(R))
continue;
Uses.insert(R);
}
}
unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
const MachineBasicBlock *ToB, const UnsignedMap &RPO,
PairMapType &M) const {
// Forward distance from the end of a block to the beginning of it does
// not make sense. This function should not be called with FromB == ToB.
assert(FromB != ToB);
unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
// If we have already computed it, return the cached result.
PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
if (F != M.end())
return F->second;
unsigned ToRPO = RPO.lookup(ToN);
unsigned MaxD = 0;
using pred_iterator = MachineBasicBlock::const_pred_iterator;
for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
const MachineBasicBlock *PB = *I;
// Skip back edges. Also, if FromB is a predecessor of ToB, the distance
// along that path will be 0, and we don't need to do any calculations
// on it.
if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
continue;
unsigned D = PB->size() + distance(FromB, PB, RPO, M);
if (D > MaxD)
MaxD = D;
}
// Memoize the result for later lookup.
M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
return MaxD;
}
unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
PairMapType &M) const {
const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
if (FB == TB)
return std::distance(FromI, ToI);
unsigned D1 = std::distance(TB->begin(), ToI);
unsigned D2 = distance(FB, TB, RPO, M);
unsigned D3 = std::distance(FromI, FB->end());
return D1+D2+D3;
}
bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
OrderedRegisterList &AVs) {
if (isDebug()) {
dbgs() << __func__ << ": " << printReg(VR, HRI)
<< " AVs: " << PrintORL(AVs, HRI) << "\n";
}
if (AVs.size() == 0)
return false;
using iterator = OrderedRegisterList::iterator;
BitValueOrdering BVO(BaseOrd);
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
uint16_t W = RC.width();
using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
using RSListType = std::vector<RSRecord>;
// Have a map, with key being the matching prefix length, and the value
// being the list of pairs (R,S), where R's prefix matches VR at S.
// (DenseMap<uint16_t,RSListType> fails to instantiate.)
using LRSMapType = DenseMap<unsigned, RSListType>;
LRSMapType LM;
// Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
// and find matching prefixes from AVs with the rotated RC. Such a prefix
// would match a string of bits (of length L) in RC starting at S.
for (uint16_t S = 0; S < W; ++S) {
iterator B = AVs.begin(), E = AVs.end();
// The registers in AVs are ordered according to the lexical order of
// the corresponding register cells. This means that the range of regis-
// ters in AVs that match a prefix of length L+1 will be contained in
// the range that matches a prefix of length L. This means that we can
// keep narrowing the search space as the prefix length goes up. This
// helps reduce the overall complexity of the search.
uint16_t L;
for (L = 0; L < W-S; ++L) {
// Compare against VR's bits starting at S, which emulates rotation
// of VR by S.
RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
iterator NewB = std::lower_bound(B, E, VR, RCB);
iterator NewE = std::upper_bound(NewB, E, VR, RCB);
// For the registers that are eliminated from the next range, L is
// the longest prefix matching VR at position S (their prefixes
// differ from VR at S+L). If L>0, record this information for later
// use.
if (L > 0) {
for (iterator I = B; I != NewB; ++I)
LM[L].push_back(std::make_pair(*I, S));
for (iterator I = NewE; I != E; ++I)
LM[L].push_back(std::make_pair(*I, S));
}
B = NewB, E = NewE;
if (B == E)
break;
}
// Record the final register range. If this range is non-empty, then
// L=W-S.
assert(B == E || L == W-S);
if (B != E) {
for (iterator I = B; I != E; ++I)
LM[L].push_back(std::make_pair(*I, S));
// If B!=E, then we found a range of registers whose prefixes cover the
// rest of VR from position S. There is no need to further advance S.
break;
}
}
if (isDebug()) {
dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
dbgs() << " L=" << I->first << ':';
const RSListType &LL = I->second;
for (unsigned i = 0, n = LL.size(); i < n; ++i)
dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
<< LL[i].second << ')';
dbgs() << '\n';
}
}
bool Recorded = false;
for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
unsigned SrcR = *I;
int FDi = -1, LDi = -1; // First/last different bit.
const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
uint16_t AW = AC.width();
for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
if (RC[i] == AC[i])
continue;
if (FDi == -1)
FDi = i;
LDi = i;
}
if (FDi == -1)
continue; // TODO (future): Record identical registers.
// Look for a register whose prefix could patch the range [FD..LD]
// where VR and SrcR differ.
uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
uint16_t MinL = LD-FD+1;
for (uint16_t L = MinL; L < W; ++L) {
LRSMapType::iterator F = LM.find(L);
if (F == LM.end())
continue;
RSListType &LL = F->second;
for (unsigned i = 0, n = LL.size(); i < n; ++i) {
uint16_t S = LL[i].second;
// MinL is the minimum length of the prefix. Any length above MinL
// allows some flexibility as to where the prefix can start:
// given the extra length EL=L-MinL, the prefix must start between
// max(0,FD-EL) and FD.
if (S > FD) // Starts too late.
continue;
uint16_t EL = L-MinL;
uint16_t LowS = (EL < FD) ? FD-EL : 0;
if (S < LowS) // Starts too early.
continue;
unsigned InsR = LL[i].first;
if (!isValidInsertForm(VR, SrcR, InsR, L, S))
continue;
if (isDebug()) {
dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
<< ',' << printReg(InsR, HRI) << ",#" << L << ",#"
<< S << ")\n";
}
IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
IFMap[VR].push_back(RR);
Recorded = true;
}
}
}
return Recorded;
}
void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
OrderedRegisterList &AVs) {
if (isDebug())
dbgs() << "visiting block " << printMBBReference(*B) << "\n";
// First, check if this block is reachable at all. If not, the bit tracker
// will not have any information about registers in it.
if (!CMS->BT.reached(B))
return;
bool DoConst = OptConst;
// Keep a separate set of registers defined in this block, so that we
// can remove them from the list of available registers once all DT
// successors have been processed.
RegisterSet BlockDefs, InsDefs;
for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
MachineInstr *MI = &*I;
InsDefs.clear();
getInstrDefs(MI, InsDefs);
// Leave those alone. They are more transparent than "insert".
bool Skip = MI->isCopy() || MI->isRegSequence();
if (!Skip) {
// Visit all defined registers, and attempt to find the corresponding
// "insert" representations.
for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
// Do not collect registers that are known to be compile-time cons-
// tants, unless requested.
if (!DoConst && isConstant(VR))
continue;
// If VR's cell contains a reference to VR, then VR cannot be defined
// via "insert". If VR is a constant that can be generated in a single
// instruction (without constant extenders), generating it via insert
// makes no sense.
if (findSelfReference(VR) || isSmallConstant(VR))
continue;
findRecordInsertForms(VR, AVs);
// Stop if the map size is too large.
if (IFMap.size() > MaxIFMSize)
return;
}
}
// Insert the defined registers into the list of available registers
// after they have been processed.
for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
AVs.insert(VR);
BlockDefs.insert(InsDefs);
}
for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
MachineBasicBlock *SB = DTN->getBlock();
collectInBlock(SB, AVs);
}
for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
AVs.remove(VR);
}
void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
RegisterSet &RMs) const {
// For a given register VR and a insert form, find the registers that are
// used by the current definition of VR, and which would no longer be
// needed for it after the definition of VR is replaced with the insert
// form. These are the registers that could potentially become dead.
RegisterSet Regs[2];
unsigned S = 0; // Register set selector.
Regs[S].insert(VR);
while (!Regs[S].empty()) {
// Breadth-first search.
unsigned OtherS = 1-S;
Regs[OtherS].clear();
for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
Regs[S].remove(R);
if (R == IF.SrcR || R == IF.InsR)
continue;
// Check if a given register has bits that are references to any other
// registers. This is to detect situations where the instruction that
// defines register R takes register Q as an operand, but R itself does
// not contain any bits from Q. Loads are examples of how this could
// happen:
// R = load Q
// In this case (assuming we do not have any knowledge about the loaded
// value), we must not treat R as a "conveyance" of the bits from Q.
// (The information in BT about R's bits would have them as constants,
// in case of zero-extending loads, or refs to R.)
if (!findNonSelfReference(R))
continue;
RMs.insert(R);
const MachineInstr *DefI = MRI->getVRegDef(R);
assert(DefI);
// Do not iterate past PHI nodes to avoid infinite loops. This can
// make the final set a bit less accurate, but the removable register
// sets are an approximation anyway.
if (DefI->isPHI())
continue;
getInstrUses(DefI, Regs[OtherS]);
}
S = OtherS;
}
// The register VR is added to the list as a side-effect of the algorithm,
// but it is not "potentially removable". A potentially removable register
// is one that may become unused (dead) after conversion to the insert form
// IF, and obviously VR (or its replacement) will not become dead by apply-
// ing IF.
RMs.remove(VR);
}
void HexagonGenInsert::computeRemovableRegisters() {
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
IFListType &LL = I->second;
for (unsigned i = 0, n = LL.size(); i < n; ++i)
findRemovableRegisters(I->first, LL[i].first, LL[i].second);
}
}
void HexagonGenInsert::pruneEmptyLists() {
// Remove all entries from the map, where the register has no insert forms
// associated with it.
using IterListType = SmallVector<IFMapType::iterator, 16>;
IterListType Prune;
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
if (I->second.empty())
Prune.push_back(I);
}
for (unsigned i = 0, n = Prune.size(); i < n; ++i)
IFMap.erase(Prune[i]);
}
void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
IFMapType::iterator F = IFMap.find(VR);
assert(F != IFMap.end());
IFListType &LL = F->second;
// First, examine the IF candidates for register VR whose removable-regis-
// ter sets are empty. This means that a given candidate will not help eli-
// minate any registers, but since "insert" is not a constant-extendable
// instruction, using such a candidate may reduce code size if the defini-
// tion of VR is constant-extended.
// If there exists a candidate with a non-empty set, the ones with empty
// sets will not be used and can be removed.
MachineInstr *DefVR = MRI->getVRegDef(VR);
bool DefEx = HII->isConstExtended(*DefVR);
bool HasNE = false;
for (unsigned i = 0, n = LL.size(); i < n; ++i) {
if (LL[i].second.empty())
continue;
HasNE = true;
break;
}
if (!DefEx || HasNE) {
// The definition of VR is not constant-extended, or there is a candidate
// with a non-empty set. Remove all candidates with empty sets.
auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
return IR.second.empty();
};
auto End = llvm::remove_if(LL, IsEmpty);
if (End != LL.end())
LL.erase(End, LL.end());
} else {
// The definition of VR is constant-extended, and all candidates have
// empty removable-register sets. Pick the maximum candidate, and remove
// all others. The "maximum" does not have any special meaning here, it
// is only so that the candidate that will remain on the list is selec-
// ted deterministically.
IFRecord MaxIF = LL[0].first;
for (unsigned i = 1, n = LL.size(); i < n; ++i) {
// If LL[MaxI] < LL[i], then MaxI = i.
const IFRecord &IF = LL[i].first;
unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
if (M0 > R0)
continue;
if (M0 == R0) {
if (M1 > R1)
continue;
if (M1 == R1) {
if (MaxIF.Wdh > IF.Wdh)
continue;
if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
continue;
}
}
// MaxIF < IF.
MaxIF = IF;
}
// Remove everything except the maximum candidate. All register sets
// are empty, so no need to preserve anything.
LL.clear();
LL.push_back(std::make_pair(MaxIF, RegisterSet()));
}
// Now, remove those whose sets of potentially removable registers are
// contained in another IF candidate for VR. For example, given these
// candidates for %45,
// %45:
// (%44,%41,#9,#8), { %42 }
// (%43,%41,#9,#8), { %42 %44 }
// remove the first one, since it is contained in the second one.
for (unsigned i = 0, n = LL.size(); i < n; ) {
const RegisterSet &RMi = LL[i].second;
unsigned j = 0;
while (j < n) {
if (j != i && LL[j].second.includes(RMi))
break;
j++;
}
if (j == n) { // RMi not contained in anything else.
i++;
continue;
}
LL.erase(LL.begin()+i);
n = LL.size();
}
}
void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
PairMapType &M) {
IFMapType::iterator F = IFMap.find(VR);
assert(F != IFMap.end());
IFListType &LL = F->second;
unsigned Cutoff = VRegDistCutoff;
const MachineInstr *DefV = MRI->getVRegDef(VR);
for (unsigned i = LL.size(); i > 0; --i) {
unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
const MachineInstr *DefS = MRI->getVRegDef(SR);
const MachineInstr *DefI = MRI->getVRegDef(IR);
unsigned DSV = distance(DefS, DefV, RPO, M);
if (DSV < Cutoff) {
unsigned DIV = distance(DefI, DefV, RPO, M);
if (DIV < Cutoff)
continue;
}
LL.erase(LL.begin()+(i-1));
}
}
void HexagonGenInsert::pruneRegCopies(unsigned VR) {
IFMapType::iterator F = IFMap.find(VR);
assert(F != IFMap.end());
IFListType &LL = F->second;
auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
};
auto End = llvm::remove_if(LL, IsCopy);
if (End != LL.end())
LL.erase(End, LL.end());
}
void HexagonGenInsert::pruneCandidates() {
// Remove candidates that are not beneficial, regardless of the final
// selection method.
// First, remove candidates whose potentially removable set is a subset
// of another candidate's set.
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
pruneCoveredSets(I->first);
UnsignedMap RPO;
using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
RPOTType RPOT(MFN);
unsigned RPON = 0;
for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
RPO[(*I)->getNumber()] = RPON++;
PairMapType Memo; // Memoization map for distance calculation.
// Remove candidates that would use registers defined too far away.
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
pruneUsesTooFar(I->first, RPO, Memo);
pruneEmptyLists();
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
pruneRegCopies(I->first);
}
namespace {
// Class for comparing IF candidates for registers that have multiple of
// them. The smaller the candidate, according to this ordering, the better.
// First, compare the number of zeros in the associated potentially remova-
// ble register sets. "Zero" indicates that the register is very likely to
// become dead after this transformation.
// Second, compare "averages", i.e. use-count per size. The lower wins.
// After that, it does not really matter which one is smaller. Resolve
// the tie in some deterministic way.
struct IFOrdering {
IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
: UseC(UC), BaseOrd(BO) {}
bool operator() (const IFRecordWithRegSet &A,
const IFRecordWithRegSet &B) const;
private:
void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
unsigned &Sum) const;
const UnsignedMap &UseC;
const RegisterOrdering &BaseOrd;
};
} // end anonymous namespace
bool IFOrdering::operator() (const IFRecordWithRegSet &A,
const IFRecordWithRegSet &B) const {
unsigned SizeA = 0, ZeroA = 0, SumA = 0;
unsigned SizeB = 0, ZeroB = 0, SumB = 0;
stats(A.second, SizeA, ZeroA, SumA);
stats(B.second, SizeB, ZeroB, SumB);
// We will pick the minimum element. The more zeros, the better.
if (ZeroA != ZeroB)
return ZeroA > ZeroB;
// Compare SumA/SizeA with SumB/SizeB, lower is better.
uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
if (AvgA != AvgB)
return AvgA < AvgB;
// The sets compare identical so far. Resort to comparing the IF records.
// The actual values don't matter, this is only for determinism.
unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
if (OSA != OSB)
return OSA < OSB;
unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
if (OIA != OIB)
return OIA < OIB;
if (A.first.Wdh != B.first.Wdh)
return A.first.Wdh < B.first.Wdh;
return A.first.Off < B.first.Off;
}
void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
unsigned &Sum) const {
for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
UnsignedMap::const_iterator F = UseC.find(R);
assert(F != UseC.end());
unsigned UC = F->second;
if (UC == 0)
Zero++;
Sum += UC;
Size++;
}
}
void HexagonGenInsert::selectCandidates() {
// Some registers may have multiple valid candidates. Pick the best one
// (or decide not to use any).
// Compute the "removability" measure of R:
// For each potentially removable register R, record the number of regis-
// ters with IF candidates, where R appears in at least one set.
RegisterSet AllRMs;
UnsignedMap UseC, RemC;
IFMapType::iterator End = IFMap.end();
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
const IFListType &LL = I->second;
RegisterSet TT;
for (unsigned i = 0, n = LL.size(); i < n; ++i)
TT.insert(LL[i].second);
for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
RemC[R]++;
AllRMs.insert(TT);
}
for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
using InstrSet = SmallSet<const MachineInstr *, 16>;
InstrSet UIs;
// Count as the number of instructions in which R is used, not the
// number of operands.
use_iterator E = MRI->use_nodbg_end();
for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
UIs.insert(I->getParent());
unsigned C = UIs.size();
// Calculate a measure, which is the number of instructions using R,
// minus the "removability" count computed earlier.
unsigned D = RemC[R];
UseC[R] = (C > D) ? C-D : 0; // doz
}
bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
if (!SelectAll0 && !SelectHas0)
SelectAll0 = true;
// The smaller the number UseC for a given register R, the "less used"
// R is aside from the opportunities for removal offered by generating
// "insert" instructions.
// Iterate over the IF map, and for those registers that have multiple
// candidates, pick the minimum one according to IFOrdering.
IFOrdering IFO(UseC, BaseOrd);
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
IFListType &LL = I->second;
if (LL.empty())
continue;
// Get the minimum element, remember it and clear the list. If the
// element found is adequate, we will put it back on the list, other-
// wise the list will remain empty, and the entry for this register
// will be removed (i.e. this register will not be replaced by insert).
IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
assert(MinI != LL.end());
IFRecordWithRegSet M = *MinI;
LL.clear();
// We want to make sure that this replacement will have a chance to be
// beneficial, and that means that we want to have indication that some
// register will be removed. The most likely registers to be eliminated
// are the use operands in the definition of I->first. Accept/reject a
// candidate based on how many of its uses it can potentially eliminate.
RegisterSet Us;
const MachineInstr *DefI = MRI->getVRegDef(I->first);
getInstrUses(DefI, Us);
bool Accept = false;
if (SelectAll0) {
bool All0 = true;
for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
if (UseC[R] == 0)
continue;
All0 = false;
break;
}
Accept = All0;
} else if (SelectHas0) {
bool Has0 = false;
for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
if (UseC[R] != 0)
continue;
Has0 = true;
break;
}
Accept = Has0;
}
if (Accept)
LL.push_back(M);
}
// Remove candidates that add uses of removable registers, unless the
// removable registers are among replacement candidates.
// Recompute the removable registers, since some candidates may have
// been eliminated.
AllRMs.clear();
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
const IFListType &LL = I->second;
if (!LL.empty())
AllRMs.insert(LL[0].second);
}
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
IFListType &LL = I->second;
if (LL.empty())
continue;
unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
if (AllRMs[SR] || AllRMs[IR])
LL.clear();
}
pruneEmptyLists();
}
bool HexagonGenInsert::generateInserts() {
// Create a new register for each one from IFMap, and store them in the
// map.
UnsignedMap RegMap;
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
unsigned VR = I->first;
const TargetRegisterClass *RC = MRI->getRegClass(VR);
Register NewVR = MRI->createVirtualRegister(RC);
RegMap[VR] = NewVR;
}
// We can generate the "insert" instructions using potentially stale re-
// gisters: SrcR and InsR for a given VR may be among other registers that
// are also replaced. This is fine, we will do the mass "rauw" a bit later.
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
MachineInstr *MI = MRI->getVRegDef(I->first);
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned NewR = RegMap[I->first];
bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
: HII->get(Hexagon::S2_insertp);
IFRecord IF = I->second[0].first;
unsigned Wdh = IF.Wdh, Off = IF.Off;
unsigned InsS = 0;
if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
InsS = Hexagon::isub_lo;
if (Off >= 32) {
InsS = Hexagon::isub_hi;
Off -= 32;
}
}
// Advance to the proper location for inserting instructions. This could
// be B.end().
MachineBasicBlock::iterator At = MI;
if (MI->isPHI())
At = B.getFirstNonPHI();
BuildMI(B, At, DL, D, NewR)
.addReg(IF.SrcR)
.addReg(IF.InsR, 0, InsS)
.addImm(Wdh)
.addImm(Off);
MRI->clearKillFlags(IF.SrcR);
MRI->clearKillFlags(IF.InsR);
}
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
MachineInstr *DefI = MRI->getVRegDef(I->first);
MRI->replaceRegWith(I->first, RegMap[I->first]);
DefI->eraseFromParent();
}
return true;
}
bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
bool Changed = false;
for (auto *DTN : children<MachineDomTreeNode*>(N))
Changed |= removeDeadCode(DTN);
MachineBasicBlock *B = N->getBlock();
std::vector<MachineInstr*> Instrs;
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
Instrs.push_back(&*I);
for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
MachineInstr *MI = *I;
unsigned Opc = MI->getOpcode();
// Do not touch lifetime markers. This is why the target-independent DCE
// cannot be used.
if (Opc == TargetOpcode::LIFETIME_START ||
Opc == TargetOpcode::LIFETIME_END)
continue;
bool Store = false;
if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
continue;
bool AllDead = true;
SmallVector<unsigned,2> Regs;
for (const MachineOperand &MO : MI->operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register R = MO.getReg();
if (!Register::isVirtualRegister(R) || !MRI->use_nodbg_empty(R)) {
AllDead = false;
break;
}
Regs.push_back(R);
}
if (!AllDead)
continue;
B->erase(MI);
for (unsigned I = 0, N = Regs.size(); I != N; ++I)
MRI->markUsesInDebugValueAsUndef(Regs[I]);
Changed = true;
}
return Changed;
}
bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
bool Changed = false;
// Sanity check: one, but not both.
assert(!OptSelectAll0 || !OptSelectHas0);
IFMap.clear();
BaseOrd.clear();
CellOrd.clear();
const auto &ST = MF.getSubtarget<HexagonSubtarget>();
HII = ST.getInstrInfo();
HRI = ST.getRegisterInfo();
MFN = &MF;
MRI = &MF.getRegInfo();
MDT = &getAnalysis<MachineDominatorTree>();
// Clean up before any further processing, so that dead code does not
// get used in a newly generated "insert" instruction. Have a custom
// version of DCE that preserves lifetime markers. Without it, merging
// of stack objects can fail to recognize and merge disjoint objects
// leading to unnecessary stack growth.
Changed = removeDeadCode(MDT->getRootNode());
const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
BitTracker BTLoc(HE, MF);
BTLoc.trace(isDebug());
BTLoc.run();
CellMapShadow MS(BTLoc);
CMS = &MS;
buildOrderingMF(BaseOrd);
buildOrderingBT(BaseOrd, CellOrd);
if (isDebug()) {
dbgs() << "Cell ordering:\n";
for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
I != E; ++I) {
unsigned VR = I->first, Pos = I->second;
dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
}
}
// Collect candidates for conversion into the insert forms.
MachineBasicBlock *RootB = MDT->getRoot();
OrderedRegisterList AvailR(CellOrd);
const char *const TGName = "hexinsert";
const char *const TGDesc = "Generate Insert Instructions";
{
NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
TimingDetail);
collectInBlock(RootB, AvailR);
// Complete the information gathered in IFMap.
computeRemovableRegisters();
}
if (isDebug()) {
dbgs() << "Candidates after collection:\n";
dump_map();
}
if (IFMap.empty())
return Changed;
{
NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
pruneCandidates();
}
if (isDebug()) {
dbgs() << "Candidates after pruning:\n";
dump_map();
}
if (IFMap.empty())
return Changed;
{
NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
selectCandidates();
}
if (isDebug()) {
dbgs() << "Candidates after selection:\n";
dump_map();
}
// Filter out vregs beyond the cutoff.
if (VRegIndexCutoff.getPosition()) {
unsigned Cutoff = VRegIndexCutoff;
using IterListType = SmallVector<IFMapType::iterator, 16>;
IterListType Out;
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
unsigned Idx = Register::virtReg2Index(I->first);
if (Idx >= Cutoff)
Out.push_back(I);
}
for (unsigned i = 0, n = Out.size(); i < n; ++i)
IFMap.erase(Out[i]);
}
if (IFMap.empty())
return Changed;
{
NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
TimingDetail);
generateInserts();
}
return true;
}
FunctionPass *llvm::createHexagonGenInsert() {
return new HexagonGenInsert();
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
"Hexagon generate \"insert\" instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
"Hexagon generate \"insert\" instructions", false, false)
|