reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
//===- HexagonExpandCondsets.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Replace mux instructions with the corresponding legal instructions.
// It is meant to work post-SSA, but still on virtual registers. It was
// originally placed between register coalescing and machine instruction
// scheduler.
// In this place in the optimization sequence, live interval analysis had
// been performed, and the live intervals should be preserved. A large part
// of the code deals with preserving the liveness information.
//
// Liveness tracking aside, the main functionality of this pass is divided
// into two steps. The first step is to replace an instruction
//   %0 = C2_mux %1, %2, %3
// with a pair of conditional transfers
//   %0 = A2_tfrt %1, %2
//   %0 = A2_tfrf %1, %3
// It is the intention that the execution of this pass could be terminated
// after this step, and the code generated would be functionally correct.
//
// If the uses of the source values %1 and %2 are kills, and their
// definitions are predicable, then in the second step, the conditional
// transfers will then be rewritten as predicated instructions. E.g.
//   %0 = A2_or %1, %2
//   %3 = A2_tfrt %99, killed %0
// will be rewritten as
//   %3 = A2_port %99, %1, %2
//
// This replacement has two variants: "up" and "down". Consider this case:
//   %0 = A2_or %1, %2
//   ... [intervening instructions] ...
//   %3 = A2_tfrt %99, killed %0
// variant "up":
//   %3 = A2_port %99, %1, %2
//   ... [intervening instructions, %0->vreg3] ...
//   [deleted]
// variant "down":
//   [deleted]
//   ... [intervening instructions] ...
//   %3 = A2_port %99, %1, %2
//
// Both, one or none of these variants may be valid, and checks are made
// to rule out inapplicable variants.
//
// As an additional optimization, before either of the two steps above is
// executed, the pass attempts to coalesce the target register with one of
// the source registers, e.g. given an instruction
//   %3 = C2_mux %0, %1, %2
// %3 will be coalesced with either %1 or %2. If this succeeds,
// the instruction would then be (for example)
//   %3 = C2_mux %0, %3, %2
// and, under certain circumstances, this could result in only one predicated
// instruction:
//   %3 = A2_tfrf %0, %2
//

// Splitting a definition of a register into two predicated transfers
// creates a complication in liveness tracking. Live interval computation
// will see both instructions as actual definitions, and will mark the
// first one as dead. The definition is not actually dead, and this
// situation will need to be fixed. For example:
//   dead %1 = A2_tfrt ...  ; marked as dead
//   %1 = A2_tfrf ...
//
// Since any of the individual predicated transfers may end up getting
// removed (in case it is an identity copy), some pre-existing def may
// be marked as dead after live interval recomputation:
//   dead %1 = ...          ; marked as dead
//   ...
//   %1 = A2_tfrf ...       ; if A2_tfrt is removed
// This case happens if %1 was used as a source in A2_tfrt, which means
// that is it actually live at the A2_tfrf, and so the now dead definition
// of %1 will need to be updated to non-dead at some point.
//
// This issue could be remedied by adding implicit uses to the predicated
// transfers, but this will create a problem with subsequent predication,
// since the transfers will no longer be possible to reorder. To avoid
// that, the initial splitting will not add any implicit uses. These
// implicit uses will be added later, after predication. The extra price,
// however, is that finding the locations where the implicit uses need
// to be added, and updating the live ranges will be more involved.

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <set>
#include <utility>

#define DEBUG_TYPE "expand-condsets"

using namespace llvm;

static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
  cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
  cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));

namespace llvm {

  void initializeHexagonExpandCondsetsPass(PassRegistry&);
  FunctionPass *createHexagonExpandCondsets();

} // end namespace llvm

namespace {

  class HexagonExpandCondsets : public MachineFunctionPass {
  public:
    static char ID;

    HexagonExpandCondsets() : MachineFunctionPass(ID) {
      if (OptCoaLimit.getPosition())
        CoaLimitActive = true, CoaLimit = OptCoaLimit;
      if (OptTfrLimit.getPosition())
        TfrLimitActive = true, TfrLimit = OptTfrLimit;
      initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override { return "Hexagon Expand Condsets"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addPreserved<SlotIndexes>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    const HexagonInstrInfo *HII = nullptr;
    const TargetRegisterInfo *TRI = nullptr;
    MachineDominatorTree *MDT;
    MachineRegisterInfo *MRI = nullptr;
    LiveIntervals *LIS = nullptr;
    bool CoaLimitActive = false;
    bool TfrLimitActive = false;
    unsigned CoaLimit;
    unsigned TfrLimit;
    unsigned CoaCounter = 0;
    unsigned TfrCounter = 0;

    struct RegisterRef {
      RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
          Sub(Op.getSubReg()) {}
      RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}

      bool operator== (RegisterRef RR) const {
        return Reg == RR.Reg && Sub == RR.Sub;
      }
      bool operator!= (RegisterRef RR) const { return !operator==(RR); }
      bool operator< (RegisterRef RR) const {
        return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
      }

      unsigned Reg, Sub;
    };

    using ReferenceMap = DenseMap<unsigned, unsigned>;
    enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
    enum { Exec_Then = 0x10, Exec_Else = 0x20 };

    unsigned getMaskForSub(unsigned Sub);
    bool isCondset(const MachineInstr &MI);
    LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);

    void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
    bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);

    void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
    void updateKillFlags(unsigned Reg);
    void updateDeadFlags(unsigned Reg);
    void recalculateLiveInterval(unsigned Reg);
    void removeInstr(MachineInstr &MI);
    void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
        bool UpdateKills, bool UpdateDeads);

    unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
    MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
        MachineBasicBlock::iterator At, unsigned DstR,
        unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
        bool ReadUndef, bool ImpUse);
    bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);

    bool isPredicable(MachineInstr *MI);
    MachineInstr *getReachingDefForPred(RegisterRef RD,
        MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
    bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
    bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
    void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
                     MachineBasicBlock::iterator Where,
                     const MachineOperand &PredOp, bool Cond,
                     std::set<unsigned> &UpdRegs);
    void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
        bool Cond, MachineBasicBlock::iterator First,
        MachineBasicBlock::iterator Last);
    bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
    bool predicateInBlock(MachineBasicBlock &B,
        std::set<unsigned> &UpdRegs);

    bool isIntReg(RegisterRef RR, unsigned &BW);
    bool isIntraBlocks(LiveInterval &LI);
    bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
    bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
                          std::set<unsigned> &UpdRegs);
  };

} // end anonymous namespace

char HexagonExpandCondsets::ID = 0;

namespace llvm {

  char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;

} // end namespace llvm

INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
  "Hexagon Expand Condsets", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
  "Hexagon Expand Condsets", false, false)

unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
  switch (Sub) {
    case Hexagon::isub_lo:
    case Hexagon::vsub_lo:
      return Sub_Low;
    case Hexagon::isub_hi:
    case Hexagon::vsub_hi:
      return Sub_High;
    case Hexagon::NoSubRegister:
      return Sub_None;
  }
  llvm_unreachable("Invalid subregister");
}

bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::C2_mux:
    case Hexagon::C2_muxii:
    case Hexagon::C2_muxir:
    case Hexagon::C2_muxri:
    case Hexagon::PS_pselect:
        return true;
      break;
  }
  return false;
}

LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
  assert(Register::isVirtualRegister(Reg));
  return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
                  : MRI->getMaxLaneMaskForVReg(Reg);
}

void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
      unsigned Exec) {
  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
  ReferenceMap::iterator F = Map.find(RR.Reg);
  if (F == Map.end())
    Map.insert(std::make_pair(RR.Reg, Mask));
  else
    F->second |= Mask;
}

bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
      unsigned Exec) {
  ReferenceMap::iterator F = Map.find(RR.Reg);
  if (F == Map.end())
    return false;
  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
  if (Mask & F->second)
    return true;
  return false;
}

void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
  auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
    // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
    MachineInstr *MI = LIS->getInstructionFromIndex(K);
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
          MI->isRegTiedToDefOperand(i))
        continue;
      LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
      if ((SLM & LM) == SLM) {
        // Only set the kill flag on the first encountered use of Reg in this
        // instruction.
        Op.setIsKill(true);
        break;
      }
    }
  };

  LiveInterval &LI = LIS->getInterval(Reg);
  for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
    if (!I->end.isRegister())
      continue;
    // Do not mark the end of the segment as <kill>, if the next segment
    // starts with a predicated instruction.
    auto NextI = std::next(I);
    if (NextI != E && NextI->start.isRegister()) {
      MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
      if (HII->isPredicated(*DefI))
        continue;
    }
    bool WholeReg = true;
    if (LI.hasSubRanges()) {
      auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
        LiveRange::iterator F = S.find(I->end);
        return F != S.end() && I->end == F->end;
      };
      // Check if all subranges end at I->end. If so, make sure to kill
      // the whole register.
      for (LiveInterval::SubRange &S : LI.subranges()) {
        if (EndsAtI(S))
          KillAt(I->end, S.LaneMask);
        else
          WholeReg = false;
      }
    }
    if (WholeReg)
      KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
  }
}

void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
      LiveRange &Range) {
  assert(Register::isVirtualRegister(Reg));
  if (Range.empty())
    return;

  // Return two booleans: { def-modifes-reg, def-covers-reg }.
  auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
    if (!Op.isReg() || !Op.isDef())
      return { false, false };
    Register DR = Op.getReg(), DSR = Op.getSubReg();
    if (!Register::isVirtualRegister(DR) || DR != Reg)
      return { false, false };
    LaneBitmask SLM = getLaneMask(DR, DSR);
    LaneBitmask A = SLM & LM;
    return { A.any(), A == SLM };
  };

  // The splitting step will create pairs of predicated definitions without
  // any implicit uses (since implicit uses would interfere with predication).
  // This can cause the reaching defs to become dead after live range
  // recomputation, even though they are not really dead.
  // We need to identify predicated defs that need implicit uses, and
  // dead defs that are not really dead, and correct both problems.

  auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
                          MachineBasicBlock *Dest) -> bool {
    for (MachineBasicBlock *D : Defs)
      if (D != Dest && MDT->dominates(D, Dest))
        return true;

    MachineBasicBlock *Entry = &Dest->getParent()->front();
    SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
    for (unsigned i = 0; i < Work.size(); ++i) {
      MachineBasicBlock *B = Work[i];
      if (Defs.count(B))
        continue;
      if (B == Entry)
        return false;
      for (auto *P : B->predecessors())
        Work.insert(P);
    }
    return true;
  };

  // First, try to extend live range within individual basic blocks. This
  // will leave us only with dead defs that do not reach any predicated
  // defs in the same block.
  SetVector<MachineBasicBlock*> Defs;
  SmallVector<SlotIndex,4> PredDefs;
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister())
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    Defs.insert(DefI->getParent());
    if (HII->isPredicated(*DefI))
      PredDefs.push_back(Seg.start);
  }

  SmallVector<SlotIndex,8> Undefs;
  LiveInterval &LI = LIS->getInterval(Reg);
  LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());

  for (auto &SI : PredDefs) {
    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
    if (P.first != nullptr || P.second)
      SI = SlotIndex();
  }

  // Calculate reachability for those predicated defs that were not handled
  // by the in-block extension.
  SmallVector<SlotIndex,4> ExtTo;
  for (auto &SI : PredDefs) {
    if (!SI.isValid())
      continue;
    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    if (BB->pred_empty())
      continue;
    // If the defs from this range reach SI via all predecessors, it is live.
    // It can happen that SI is reached by the defs through some paths, but
    // not all. In the IR coming into this optimization, SI would not be
    // considered live, since the defs would then not jointly dominate SI.
    // That means that SI is an overwriting def, and no implicit use is
    // needed at this point. Do not add SI to the extension points, since
    // extendToIndices will abort if there is no joint dominance.
    // If the abort was avoided by adding extra undefs added to Undefs,
    // extendToIndices could actually indicate that SI is live, contrary
    // to the original IR.
    if (Dominate(Defs, BB))
      ExtTo.push_back(SI);
  }

  if (!ExtTo.empty())
    LIS->extendToIndices(Range, ExtTo, Undefs);

  // Remove <dead> flags from all defs that are not dead after live range
  // extension, and collect all def operands. They will be used to generate
  // the necessary implicit uses.
  // At the same time, add <dead> flag to all defs that are actually dead.
  // This can happen, for example, when a mux with identical inputs is
  // replaced with a COPY: the use of the predicate register disappears and
  // the dead can become dead.
  std::set<RegisterRef> DefRegs;
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister())
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    for (auto &Op : DefI->operands()) {
      auto P = IsRegDef(Op);
      if (P.second && Seg.end.isDead()) {
        Op.setIsDead(true);
      } else if (P.first) {
        DefRegs.insert(Op);
        Op.setIsDead(false);
      }
    }
  }

  // Now, add implicit uses to each predicated def that is reached
  // by other defs.
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    if (!HII->isPredicated(*DefI))
      continue;
    // Construct the set of all necessary implicit uses, based on the def
    // operands in the instruction. We need to tie the implicit uses to
    // the corresponding defs.
    std::map<RegisterRef,unsigned> ImpUses;
    for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = DefI->getOperand(i);
      if (!Op.isReg() || !DefRegs.count(Op))
        continue;
      if (Op.isDef()) {
        // Tied defs will always have corresponding uses, so no extra
        // implicit uses are needed.
        if (!Op.isTied())
          ImpUses.insert({Op, i});
      } else {
        // This function can be called for the same register with different
        // lane masks. If the def in this instruction was for the whole
        // register, we can get here more than once. Avoid adding multiple
        // implicit uses (or adding an implicit use when an explicit one is
        // present).
        if (Op.isTied())
          ImpUses.erase(Op);
      }
    }
    if (ImpUses.empty())
      continue;
    MachineFunction &MF = *DefI->getParent()->getParent();
    for (std::pair<RegisterRef, unsigned> P : ImpUses) {
      RegisterRef R = P.first;
      MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
      DefI->tieOperands(P.second, DefI->getNumOperands()-1);
    }
  }
}

void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
  LiveInterval &LI = LIS->getInterval(Reg);
  if (LI.hasSubRanges()) {
    for (LiveInterval::SubRange &S : LI.subranges()) {
      updateDeadsInRange(Reg, S.LaneMask, S);
      LIS->shrinkToUses(S, Reg);
    }
    LI.clear();
    LIS->constructMainRangeFromSubranges(LI);
  } else {
    updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
  }
}

void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
  LIS->removeInterval(Reg);
  LIS->createAndComputeVirtRegInterval(Reg);
}

void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
  LIS->RemoveMachineInstrFromMaps(MI);
  MI.eraseFromParent();
}

void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
      bool Recalc, bool UpdateKills, bool UpdateDeads) {
  UpdateKills |= UpdateDeads;
  for (unsigned R : RegSet) {
    if (!Register::isVirtualRegister(R)) {
      assert(Register::isPhysicalRegister(R));
      // There shouldn't be any physical registers as operands, except
      // possibly reserved registers.
      assert(MRI->isReserved(R));
      continue;
    }
    if (Recalc)
      recalculateLiveInterval(R);
    if (UpdateKills)
      MRI->clearKillFlags(R);
    if (UpdateDeads)
      updateDeadFlags(R);
    // Fixing <dead> flags may extend live ranges, so reset <kill> flags
    // after that.
    if (UpdateKills)
      updateKillFlags(R);
    LIS->getInterval(R).verify();
  }
}

/// Get the opcode for a conditional transfer of the value in SO (source
/// operand). The condition (true/false) is given in Cond.
unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
      bool IfTrue) {
  using namespace Hexagon;

  if (SO.isReg()) {
    Register PhysR;
    RegisterRef RS = SO;
    if (Register::isVirtualRegister(RS.Reg)) {
      const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
      assert(VC->begin() != VC->end() && "Empty register class");
      PhysR = *VC->begin();
    } else {
      assert(Register::isPhysicalRegister(RS.Reg));
      PhysR = RS.Reg;
    }
    Register PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
    switch (TRI->getRegSizeInBits(*RC)) {
      case 32:
        return IfTrue ? A2_tfrt : A2_tfrf;
      case 64:
        return IfTrue ? A2_tfrpt : A2_tfrpf;
    }
    llvm_unreachable("Invalid register operand");
  }
  switch (SO.getType()) {
    case MachineOperand::MO_Immediate:
    case MachineOperand::MO_FPImmediate:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_TargetIndex:
    case MachineOperand::MO_JumpTableIndex:
    case MachineOperand::MO_ExternalSymbol:
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_BlockAddress:
      return IfTrue ? C2_cmoveit : C2_cmoveif;
    default:
      break;
  }
  llvm_unreachable("Unexpected source operand");
}

/// Generate a conditional transfer, copying the value SrcOp to the
/// destination register DstR:DstSR, and using the predicate register from
/// PredOp. The Cond argument specifies whether the predicate is to be
/// if(PredOp), or if(!PredOp).
MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
      MachineBasicBlock::iterator At,
      unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
      bool PredSense, bool ReadUndef, bool ImpUse) {
  MachineInstr *MI = SrcOp.getParent();
  MachineBasicBlock &B = *At->getParent();
  const DebugLoc &DL = MI->getDebugLoc();

  // Don't avoid identity copies here (i.e. if the source and the destination
  // are the same registers). It is actually better to generate them here,
  // since this would cause the copy to potentially be predicated in the next
  // step. The predication will remove such a copy if it is unable to
  /// predicate.

  unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
  unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
  unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
  MachineInstrBuilder MIB;

  if (SrcOp.isReg()) {
    unsigned SrcState = getRegState(SrcOp);
    if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
      SrcState &= ~RegState::Kill;
    MIB = BuildMI(B, At, DL, HII->get(Opc))
          .addReg(DstR, DstState, DstSR)
          .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
          .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
  } else {
    MIB = BuildMI(B, At, DL, HII->get(Opc))
              .addReg(DstR, DstState, DstSR)
              .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
              .add(SrcOp);
  }

  LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
  return &*MIB;
}

/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
/// performs all necessary changes to complete the replacement.
bool HexagonExpandCondsets::split(MachineInstr &MI,
                                  std::set<unsigned> &UpdRegs) {
  if (TfrLimitActive) {
    if (TfrCounter >= TfrLimit)
      return false;
    TfrCounter++;
  }
  LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
                    << ": " << MI);
  MachineOperand &MD = MI.getOperand(0);  // Definition
  MachineOperand &MP = MI.getOperand(1);  // Predicate register
  assert(MD.isDef());
  Register DR = MD.getReg(), DSR = MD.getSubReg();
  bool ReadUndef = MD.isUndef();
  MachineBasicBlock::iterator At = MI;

  auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
    for (auto &Op : MI.operands())
      if (Op.isReg())
        UpdRegs.insert(Op.getReg());
  };

  // If this is a mux of the same register, just replace it with COPY.
  // Ideally, this would happen earlier, so that register coalescing would
  // see it.
  MachineOperand &ST = MI.getOperand(2);
  MachineOperand &SF = MI.getOperand(3);
  if (ST.isReg() && SF.isReg()) {
    RegisterRef RT(ST);
    if (RT == RegisterRef(SF)) {
      // Copy regs to update first.
      updateRegs(MI);
      MI.setDesc(HII->get(TargetOpcode::COPY));
      unsigned S = getRegState(ST);
      while (MI.getNumOperands() > 1)
        MI.RemoveOperand(MI.getNumOperands()-1);
      MachineFunction &MF = *MI.getParent()->getParent();
      MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
      return true;
    }
  }

  // First, create the two invididual conditional transfers, and add each
  // of them to the live intervals information. Do that first and then remove
  // the old instruction from live intervals.
  MachineInstr *TfrT =
      genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
  MachineInstr *TfrF =
      genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
  LIS->InsertMachineInstrInMaps(*TfrT);
  LIS->InsertMachineInstrInMaps(*TfrF);

  // Will need to recalculate live intervals for all registers in MI.
  updateRegs(MI);

  removeInstr(MI);
  return true;
}

bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
  if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
    return false;
  if (MI->hasUnmodeledSideEffects() || MI->mayStore())
    return false;
  // Reject instructions with multiple defs (e.g. post-increment loads).
  bool HasDef = false;
  for (auto &Op : MI->operands()) {
    if (!Op.isReg() || !Op.isDef())
      continue;
    if (HasDef)
      return false;
    HasDef = true;
  }
  for (auto &Mo : MI->memoperands())
    if (Mo->isVolatile() || Mo->isAtomic())
      return false;
  return true;
}

/// Find the reaching definition for a predicated use of RD. The RD is used
/// under the conditions given by PredR and Cond, and this function will ignore
/// definitions that set RD under the opposite conditions.
MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
      MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
  MachineBasicBlock &B = *UseIt->getParent();
  MachineBasicBlock::iterator I = UseIt, S = B.begin();
  if (I == S)
    return nullptr;

  bool PredValid = true;
  do {
    --I;
    MachineInstr *MI = &*I;
    // Check if this instruction can be ignored, i.e. if it is predicated
    // on the complementary condition.
    if (PredValid && HII->isPredicated(*MI)) {
      if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
        continue;
    }

    // Check the defs. If the PredR is defined, invalidate it. If RD is
    // defined, return the instruction or 0, depending on the circumstances.
    for (auto &Op : MI->operands()) {
      if (!Op.isReg() || !Op.isDef())
        continue;
      RegisterRef RR = Op;
      if (RR.Reg == PredR) {
        PredValid = false;
        continue;
      }
      if (RR.Reg != RD.Reg)
        continue;
      // If the "Reg" part agrees, there is still the subregister to check.
      // If we are looking for %1:loreg, we can skip %1:hireg, but
      // not %1 (w/o subregisters).
      if (RR.Sub == RD.Sub)
        return MI;
      if (RR.Sub == 0 || RD.Sub == 0)
        return nullptr;
      // We have different subregisters, so we can continue looking.
    }
  } while (I != S);

  return nullptr;
}

/// Check if the instruction MI can be safely moved over a set of instructions
/// whose side-effects (in terms of register defs and uses) are expressed in
/// the maps Defs and Uses. These maps reflect the conditional defs and uses
/// that depend on the same predicate register to allow moving instructions
/// over instructions predicated on the opposite condition.
bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
                                        ReferenceMap &Uses) {
  // In order to be able to safely move MI over instructions that define
  // "Defs" and use "Uses", no def operand from MI can be defined or used
  // and no use operand can be defined.
  for (auto &Op : MI.operands()) {
    if (!Op.isReg())
      continue;
    RegisterRef RR = Op;
    // For physical register we would need to check register aliases, etc.
    // and we don't want to bother with that. It would be of little value
    // before the actual register rewriting (from virtual to physical).
    if (!Register::isVirtualRegister(RR.Reg))
      return false;
    // No redefs for any operand.
    if (isRefInMap(RR, Defs, Exec_Then))
      return false;
    // For defs, there cannot be uses.
    if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
      return false;
  }
  return true;
}

/// Check if the instruction accessing memory (TheI) can be moved to the
/// location ToI.
bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
                                         bool IsDown) {
  bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
  if (!IsLoad && !IsStore)
    return true;
  if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
    return true;
  if (TheI.hasUnmodeledSideEffects())
    return false;

  MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
  MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
  bool Ordered = TheI.hasOrderedMemoryRef();

  // Search for aliased memory reference in (StartI, EndI).
  for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
    MachineInstr *MI = &*I;
    if (MI->hasUnmodeledSideEffects())
      return false;
    bool L = MI->mayLoad(), S = MI->mayStore();
    if (!L && !S)
      continue;
    if (Ordered && MI->hasOrderedMemoryRef())
      return false;

    bool Conflict = (L && IsStore) || S;
    if (Conflict)
      return false;
  }
  return true;
}

/// Generate a predicated version of MI (where the condition is given via
/// PredR and Cond) at the point indicated by Where.
void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
                                        MachineInstr &MI,
                                        MachineBasicBlock::iterator Where,
                                        const MachineOperand &PredOp, bool Cond,
                                        std::set<unsigned> &UpdRegs) {
  // The problem with updating live intervals is that we can move one def
  // past another def. In particular, this can happen when moving an A2_tfrt
  // over an A2_tfrf defining the same register. From the point of view of
  // live intervals, these two instructions are two separate definitions,
  // and each one starts another live segment. LiveIntervals's "handleMove"
  // does not allow such moves, so we need to handle it ourselves. To avoid
  // invalidating liveness data while we are using it, the move will be
  // implemented in 4 steps: (1) add a clone of the instruction MI at the
  // target location, (2) update liveness, (3) delete the old instruction,
  // and (4) update liveness again.

  MachineBasicBlock &B = *MI.getParent();
  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
  unsigned Opc = MI.getOpcode();
  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
  unsigned Ox = 0, NP = MI.getNumOperands();
  // Skip all defs from MI first.
  while (Ox < NP) {
    MachineOperand &MO = MI.getOperand(Ox);
    if (!MO.isReg() || !MO.isDef())
      break;
    Ox++;
  }
  // Add the new def, then the predicate register, then the rest of the
  // operands.
  MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
  MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
            PredOp.getSubReg());
  while (Ox < NP) {
    MachineOperand &MO = MI.getOperand(Ox);
    if (!MO.isReg() || !MO.isImplicit())
      MB.add(MO);
    Ox++;
  }
  MB.cloneMemRefs(MI);

  MachineInstr *NewI = MB;
  NewI->clearKillInfo();
  LIS->InsertMachineInstrInMaps(*NewI);

  for (auto &Op : NewI->operands())
    if (Op.isReg())
      UpdRegs.insert(Op.getReg());
}

/// In the range [First, Last], rename all references to the "old" register RO
/// to the "new" register RN, but only in instructions predicated on the given
/// condition.
void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
      unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
      MachineBasicBlock::iterator Last) {
  MachineBasicBlock::iterator End = std::next(Last);
  for (MachineBasicBlock::iterator I = First; I != End; ++I) {
    MachineInstr *MI = &*I;
    // Do not touch instructions that are not predicated, or are predicated
    // on the opposite condition.
    if (!HII->isPredicated(*MI))
      continue;
    if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
      continue;

    for (auto &Op : MI->operands()) {
      if (!Op.isReg() || RO != RegisterRef(Op))
        continue;
      Op.setReg(RN.Reg);
      Op.setSubReg(RN.Sub);
      // In practice, this isn't supposed to see any defs.
      assert(!Op.isDef() && "Not expecting a def");
    }
  }
}

/// For a given conditional copy, predicate the definition of the source of
/// the copy under the given condition (using the same predicate register as
/// the copy).
bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
                                      std::set<unsigned> &UpdRegs) {
  // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
  unsigned Opc = TfrI.getOpcode();
  (void)Opc;
  assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
  LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
                    << ": " << TfrI);

  MachineOperand &MD = TfrI.getOperand(0);
  MachineOperand &MP = TfrI.getOperand(1);
  MachineOperand &MS = TfrI.getOperand(2);
  // The source operand should be a <kill>. This is not strictly necessary,
  // but it makes things a lot simpler. Otherwise, we would need to rename
  // some registers, which would complicate the transformation considerably.
  if (!MS.isKill())
    return false;
  // Avoid predicating instructions that define a subregister if subregister
  // liveness tracking is not enabled.
  if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
    return false;

  RegisterRef RT(MS);
  Register PredR = MP.getReg();
  MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
  if (!DefI || !isPredicable(DefI))
    return false;

  LLVM_DEBUG(dbgs() << "Source def: " << *DefI);

  // Collect the information about registers defined and used between the
  // DefI and the TfrI.
  // Map: reg -> bitmask of subregs
  ReferenceMap Uses, Defs;
  MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;

  // Check if the predicate register is valid between DefI and TfrI.
  // If it is, we can then ignore instructions predicated on the negated
  // conditions when collecting def and use information.
  bool PredValid = true;
  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
    if (!I->modifiesRegister(PredR, nullptr))
      continue;
    PredValid = false;
    break;
  }

  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
    MachineInstr *MI = &*I;
    // If this instruction is predicated on the same register, it could
    // potentially be ignored.
    // By default assume that the instruction executes on the same condition
    // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
    unsigned Exec = Exec_Then | Exec_Else;
    if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
      Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;

    for (auto &Op : MI->operands()) {
      if (!Op.isReg())
        continue;
      // We don't want to deal with physical registers. The reason is that
      // they can be aliased with other physical registers. Aliased virtual
      // registers must share the same register number, and can only differ
      // in the subregisters, which we are keeping track of. Physical
      // registers ters no longer have subregisters---their super- and
      // subregisters are other physical registers, and we are not checking
      // that.
      RegisterRef RR = Op;
      if (!Register::isVirtualRegister(RR.Reg))
        return false;

      ReferenceMap &Map = Op.isDef() ? Defs : Uses;
      if (Op.isDef() && Op.isUndef()) {
        assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
        // If this is a <def,read-undef>, then it invalidates the non-written
        // part of the register. For the purpose of checking the validity of
        // the move, assume that it modifies the whole register.
        RR.Sub = 0;
      }
      addRefToMap(RR, Map, Exec);
    }
  }

  // The situation:
  //   RT = DefI
  //   ...
  //   RD = TfrI ..., RT

  // If the register-in-the-middle (RT) is used or redefined between
  // DefI and TfrI, we may not be able proceed with this transformation.
  // We can ignore a def that will not execute together with TfrI, and a
  // use that will. If there is such a use (that does execute together with
  // TfrI), we will not be able to move DefI down. If there is a use that
  // executed if TfrI's condition is false, then RT must be available
  // unconditionally (cannot be predicated).
  // Essentially, we need to be able to rename RT to RD in this segment.
  if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
    return false;
  RegisterRef RD = MD;
  // If the predicate register is defined between DefI and TfrI, the only
  // potential thing to do would be to move the DefI down to TfrI, and then
  // predicate. The reaching def (DefI) must be movable down to the location
  // of the TfrI.
  // If the target register of the TfrI (RD) is not used or defined between
  // DefI and TfrI, consider moving TfrI up to DefI.
  bool CanUp =   canMoveOver(TfrI, Defs, Uses);
  bool CanDown = canMoveOver(*DefI, Defs, Uses);
  // The TfrI does not access memory, but DefI could. Check if it's safe
  // to move DefI down to TfrI.
  if (DefI->mayLoad() || DefI->mayStore())
    if (!canMoveMemTo(*DefI, TfrI, true))
      CanDown = false;

  LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
                    << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
  MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
  if (CanUp)
    predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
  else if (CanDown)
    predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
  else
    return false;

  if (RT != RD) {
    renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
    UpdRegs.insert(RT.Reg);
  }

  removeInstr(TfrI);
  removeInstr(*DefI);
  return true;
}

/// Predicate all cases of conditional copies in the specified block.
bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
      std::set<unsigned> &UpdRegs) {
  bool Changed = false;
  MachineBasicBlock::iterator I, E, NextI;
  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
    NextI = std::next(I);
    unsigned Opc = I->getOpcode();
    if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
      bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
      if (!Done) {
        // If we didn't predicate I, we may need to remove it in case it is
        // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
        if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
          for (auto &Op : I->operands())
            if (Op.isReg())
              UpdRegs.insert(Op.getReg());
          removeInstr(*I);
        }
      }
      Changed |= Done;
    }
  }
  return Changed;
}

bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
  if (!Register::isVirtualRegister(RR.Reg))
    return false;
  const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
  if (RC == &Hexagon::IntRegsRegClass) {
    BW = 32;
    return true;
  }
  if (RC == &Hexagon::DoubleRegsRegClass) {
    BW = (RR.Sub != 0) ? 32 : 64;
    return true;
  }
  return false;
}

bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    LiveRange::Segment &LR = *I;
    // Range must start at a register...
    if (!LR.start.isRegister())
      return false;
    // ...and end in a register or in a dead slot.
    if (!LR.end.isRegister() && !LR.end.isDead())
      return false;
  }
  return true;
}

bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
  if (CoaLimitActive) {
    if (CoaCounter >= CoaLimit)
      return false;
    CoaCounter++;
  }
  unsigned BW1, BW2;
  if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
    return false;
  if (MRI->isLiveIn(R1.Reg))
    return false;
  if (MRI->isLiveIn(R2.Reg))
    return false;

  LiveInterval &L1 = LIS->getInterval(R1.Reg);
  LiveInterval &L2 = LIS->getInterval(R2.Reg);
  if (L2.empty())
    return false;
  if (L1.hasSubRanges() || L2.hasSubRanges())
    return false;
  bool Overlap = L1.overlaps(L2);

  LLVM_DEBUG(dbgs() << "compatible registers: ("
                    << (Overlap ? "overlap" : "disjoint") << ")\n  "
                    << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
                    << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
  if (R1.Sub || R2.Sub)
    return false;
  if (Overlap)
    return false;

  // Coalescing could have a negative impact on scheduling, so try to limit
  // to some reasonable extent. Only consider coalescing segments, when one
  // of them does not cross basic block boundaries.
  if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
    return false;

  MRI->replaceRegWith(R2.Reg, R1.Reg);

  // Move all live segments from L2 to L1.
  using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
  ValueInfoMap VM;
  for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
    VNInfo *NewVN, *OldVN = I->valno;
    ValueInfoMap::iterator F = VM.find(OldVN);
    if (F == VM.end()) {
      NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
      VM.insert(std::make_pair(OldVN, NewVN));
    } else {
      NewVN = F->second;
    }
    L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
  }
  while (L2.begin() != L2.end())
    L2.removeSegment(*L2.begin());
  LIS->removeInterval(R2.Reg);

  updateKillFlags(R1.Reg);
  LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
  L1.verify();

  return true;
}

/// Attempt to coalesce one of the source registers to a MUX instruction with
/// the destination register. This could lead to having only one predicated
/// instruction in the end instead of two.
bool HexagonExpandCondsets::coalesceSegments(
      const SmallVectorImpl<MachineInstr*> &Condsets,
      std::set<unsigned> &UpdRegs) {
  SmallVector<MachineInstr*,16> TwoRegs;
  for (MachineInstr *MI : Condsets) {
    MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
    if (!S1.isReg() && !S2.isReg())
      continue;
    TwoRegs.push_back(MI);
  }

  bool Changed = false;
  for (MachineInstr *CI : TwoRegs) {
    RegisterRef RD = CI->getOperand(0);
    RegisterRef RP = CI->getOperand(1);
    MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
    bool Done = false;
    // Consider this case:
    //   %1 = instr1 ...
    //   %2 = instr2 ...
    //   %0 = C2_mux ..., %1, %2
    // If %0 was coalesced with %1, we could end up with the following
    // code:
    //   %0 = instr1 ...
    //   %2 = instr2 ...
    //   %0 = A2_tfrf ..., %2
    // which will later become:
    //   %0 = instr1 ...
    //   %0 = instr2_cNotPt ...
    // i.e. there will be an unconditional definition (instr1) of %0
    // followed by a conditional one. The output dependency was there before
    // and it unavoidable, but if instr1 is predicable, we will no longer be
    // able to predicate it here.
    // To avoid this scenario, don't coalesce the destination register with
    // a source register that is defined by a predicable instruction.
    if (S1.isReg()) {
      RegisterRef RS = S1;
      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
      if (!RDef || !HII->isPredicable(*RDef)) {
        Done = coalesceRegisters(RD, RegisterRef(S1));
        if (Done) {
          UpdRegs.insert(RD.Reg);
          UpdRegs.insert(S1.getReg());
        }
      }
    }
    if (!Done && S2.isReg()) {
      RegisterRef RS = S2;
      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
      if (!RDef || !HII->isPredicable(*RDef)) {
        Done = coalesceRegisters(RD, RegisterRef(S2));
        if (Done) {
          UpdRegs.insert(RD.Reg);
          UpdRegs.insert(S2.getReg());
        }
      }
    }
    Changed |= Done;
  }
  return Changed;
}

bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
  TRI = MF.getSubtarget().getRegisterInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  LIS = &getAnalysis<LiveIntervals>();
  MRI = &MF.getRegInfo();

  LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
                        MF.getFunction().getParent()));

  bool Changed = false;
  std::set<unsigned> CoalUpd, PredUpd;

  SmallVector<MachineInstr*,16> Condsets;
  for (auto &B : MF)
    for (auto &I : B)
      if (isCondset(I))
        Condsets.push_back(&I);

  // Try to coalesce the target of a mux with one of its sources.
  // This could eliminate a register copy in some circumstances.
  Changed |= coalesceSegments(Condsets, CoalUpd);

  // Update kill flags on all source operands. This is done here because
  // at this moment (when expand-condsets runs), there are no kill flags
  // in the IR (they have been removed by live range analysis).
  // Updating them right before we split is the easiest, because splitting
  // adds definitions which would interfere with updating kills afterwards.
  std::set<unsigned> KillUpd;
  for (MachineInstr *MI : Condsets)
    for (MachineOperand &Op : MI->operands())
      if (Op.isReg() && Op.isUse())
        if (!CoalUpd.count(Op.getReg()))
          KillUpd.insert(Op.getReg());
  updateLiveness(KillUpd, false, true, false);
  LLVM_DEBUG(
      LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));

  // First, simply split all muxes into a pair of conditional transfers
  // and update the live intervals to reflect the new arrangement. The
  // goal is to update the kill flags, since predication will rely on
  // them.
  for (MachineInstr *MI : Condsets)
    Changed |= split(*MI, PredUpd);
  Condsets.clear(); // The contents of Condsets are invalid here anyway.

  // Do not update live ranges after splitting. Recalculation of live
  // intervals removes kill flags, which were preserved by splitting on
  // the source operands of condsets. These kill flags are needed by
  // predication, and after splitting they are difficult to recalculate
  // (because of predicated defs), so make sure they are left untouched.
  // Predication does not use live intervals.
  LLVM_DEBUG(
      LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));

  // Traverse all blocks and collapse predicable instructions feeding
  // conditional transfers into predicated instructions.
  // Walk over all the instructions again, so we may catch pre-existing
  // cases that were not created in the previous step.
  for (auto &B : MF)
    Changed |= predicateInBlock(B, PredUpd);
  LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
                        MF.getFunction().getParent()));

  PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
  updateLiveness(PredUpd, true, true, true);

  LLVM_DEBUG({
    if (Changed)
      LIS->print(dbgs() << "After expand-condsets\n",
                 MF.getFunction().getParent());
  });

  return Changed;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonExpandCondsets() {
  return new HexagonExpandCondsets();
}