1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
| //===- HexagonBitSimplify.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "BitTracker.h"
#include "HexagonBitTracker.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <utility>
#include <vector>
#define DEBUG_TYPE "hexbit"
using namespace llvm;
static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
cl::init(true), cl::desc("Preserve subregisters in tied operands"));
static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
cl::init(true), cl::desc("Generate extract instructions"));
static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
cl::init(true), cl::desc("Generate bitsplit instructions"));
static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
cl::init(std::numeric_limits<unsigned>::max()));
static unsigned CountExtract = 0;
static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
cl::init(std::numeric_limits<unsigned>::max()));
static unsigned CountBitSplit = 0;
namespace llvm {
void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
FunctionPass *createHexagonBitSimplify();
} // end namespace llvm
namespace {
// Set of virtual registers, based on BitVector.
struct RegisterSet : private BitVector {
RegisterSet() = default;
explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet(const RegisterSet &RS) = default;
using BitVector::clear;
using BitVector::count;
unsigned find_first() const {
int First = BitVector::find_first();
if (First < 0)
return 0;
return x2v(First);
}
unsigned find_next(unsigned Prev) const {
int Next = BitVector::find_next(v2x(Prev));
if (Next < 0)
return 0;
return x2v(Next);
}
RegisterSet &insert(unsigned R) {
unsigned Idx = v2x(R);
ensure(Idx);
return static_cast<RegisterSet&>(BitVector::set(Idx));
}
RegisterSet &remove(unsigned R) {
unsigned Idx = v2x(R);
if (Idx >= size())
return *this;
return static_cast<RegisterSet&>(BitVector::reset(Idx));
}
RegisterSet &insert(const RegisterSet &Rs) {
return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
}
RegisterSet &remove(const RegisterSet &Rs) {
return static_cast<RegisterSet&>(BitVector::reset(Rs));
}
reference operator[](unsigned R) {
unsigned Idx = v2x(R);
ensure(Idx);
return BitVector::operator[](Idx);
}
bool operator[](unsigned R) const {
unsigned Idx = v2x(R);
assert(Idx < size());
return BitVector::operator[](Idx);
}
bool has(unsigned R) const {
unsigned Idx = v2x(R);
if (Idx >= size())
return false;
return BitVector::test(Idx);
}
bool empty() const {
return !BitVector::any();
}
bool includes(const RegisterSet &Rs) const {
// A.BitVector::test(B) <=> A-B != {}
return !Rs.BitVector::test(*this);
}
bool intersects(const RegisterSet &Rs) const {
return BitVector::anyCommon(Rs);
}
private:
void ensure(unsigned Idx) {
if (size() <= Idx)
resize(std::max(Idx+1, 32U));
}
static inline unsigned v2x(unsigned v) {
return Register::virtReg2Index(v);
}
static inline unsigned x2v(unsigned x) {
return Register::index2VirtReg(x);
}
};
struct PrintRegSet {
PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
: RS(S), TRI(RI) {}
friend raw_ostream &operator<< (raw_ostream &OS,
const PrintRegSet &P);
private:
const RegisterSet &RS;
const TargetRegisterInfo *TRI;
};
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
LLVM_ATTRIBUTE_UNUSED;
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
OS << '{';
for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
OS << ' ' << printReg(R, P.TRI);
OS << " }";
return OS;
}
class Transformation;
class HexagonBitSimplify : public MachineFunctionPass {
public:
static char ID;
HexagonBitSimplify() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "Hexagon bit simplification";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
uint16_t W);
static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
uint16_t W, uint64_t &U);
static bool replaceReg(unsigned OldR, unsigned NewR,
MachineRegisterInfo &MRI);
static bool getSubregMask(const BitTracker::RegisterRef &RR,
unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
unsigned NewSR, MachineRegisterInfo &MRI);
static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
static bool parseRegSequence(const MachineInstr &I,
BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
const MachineRegisterInfo &MRI);
static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
uint16_t Begin);
static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
uint16_t Begin, const HexagonInstrInfo &HII);
static const TargetRegisterClass *getFinalVRegClass(
const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
private:
MachineDominatorTree *MDT = nullptr;
bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
unsigned NewSub = Hexagon::NoSubRegister);
};
using HBS = HexagonBitSimplify;
// The purpose of this class is to provide a common facility to traverse
// the function top-down or bottom-up via the dominator tree, and keep
// track of the available registers.
class Transformation {
public:
bool TopDown;
Transformation(bool TD) : TopDown(TD) {}
virtual ~Transformation() = default;
virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
};
} // end anonymous namespace
char HexagonBitSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
"Hexagon bit simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
"Hexagon bit simplification", false, false)
bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
RegisterSet &AVs) {
bool Changed = false;
if (T.TopDown)
Changed = T.processBlock(B, AVs);
RegisterSet Defs;
for (auto &I : B)
getInstrDefs(I, Defs);
RegisterSet NewAVs = AVs;
NewAVs.insert(Defs);
for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
if (!T.TopDown)
Changed |= T.processBlock(B, AVs);
return Changed;
}
//
// Utility functions:
//
void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
RegisterSet &Defs) {
for (auto &Op : MI.operands()) {
if (!Op.isReg() || !Op.isDef())
continue;
Register R = Op.getReg();
if (!Register::isVirtualRegister(R))
continue;
Defs.insert(R);
}
}
void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
RegisterSet &Uses) {
for (auto &Op : MI.operands()) {
if (!Op.isReg() || !Op.isUse())
continue;
Register R = Op.getReg();
if (!Register::isVirtualRegister(R))
continue;
Uses.insert(R);
}
}
// Check if all the bits in range [B, E) in both cells are equal.
bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
uint16_t W) {
for (uint16_t i = 0; i < W; ++i) {
// If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
return false;
// Same for RC2[i].
if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
return false;
if (RC1[B1+i] != RC2[B2+i])
return false;
}
return true;
}
bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
uint16_t B, uint16_t W) {
assert(B < RC.width() && B+W <= RC.width());
for (uint16_t i = B; i < B+W; ++i)
if (!RC[i].is(0))
return false;
return true;
}
bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
uint16_t B, uint16_t W, uint64_t &U) {
assert(B < RC.width() && B+W <= RC.width());
int64_t T = 0;
for (uint16_t i = B+W; i > B; --i) {
const BitTracker::BitValue &BV = RC[i-1];
T <<= 1;
if (BV.is(1))
T |= 1;
else if (!BV.is(0))
return false;
}
U = T;
return true;
}
bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
MachineRegisterInfo &MRI) {
if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
return false;
auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
decltype(End) NextI;
for (auto I = Begin; I != End; I = NextI) {
NextI = std::next(I);
I->setReg(NewR);
}
return Begin != End;
}
bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
unsigned NewSR, MachineRegisterInfo &MRI) {
if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
return false;
if (hasTiedUse(OldR, MRI, NewSR))
return false;
auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
decltype(End) NextI;
for (auto I = Begin; I != End; I = NextI) {
NextI = std::next(I);
I->setReg(NewR);
I->setSubReg(NewSR);
}
return Begin != End;
}
bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
return false;
if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
return false;
auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
decltype(End) NextI;
for (auto I = Begin; I != End; I = NextI) {
NextI = std::next(I);
if (I->getSubReg() != OldSR)
continue;
I->setReg(NewR);
I->setSubReg(NewSR);
}
return Begin != End;
}
// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
// if this succeeded, otherwise return false.
bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
if (RR.Sub == 0) {
Begin = 0;
Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
return true;
}
Begin = 0;
switch (RC->getID()) {
case Hexagon::DoubleRegsRegClassID:
case Hexagon::HvxWRRegClassID:
Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
Begin = Width;
break;
default:
return false;
}
return true;
}
// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
// subregister.
bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
const MachineRegisterInfo &MRI) {
assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
auto &HRI = static_cast<const HexagonRegisterInfo&>(
*MRI.getTargetRegisterInfo());
unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
if (Sub1 == SubLo && Sub2 == SubHi) {
SL = I.getOperand(1);
SH = I.getOperand(3);
return true;
}
if (Sub1 == SubHi && Sub2 == SubLo) {
SH = I.getOperand(1);
SL = I.getOperand(3);
return true;
}
return false;
}
// All stores (except 64-bit stores) take a 32-bit register as the source
// of the value to be stored. If the instruction stores into a location
// that is shorter than 32 bits, some bits of the source register are not
// used. For each store instruction, calculate the set of used bits in
// the source register, and set appropriate bits in Bits. Return true if
// the bits are calculated, false otherwise.
bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
uint16_t Begin) {
using namespace Hexagon;
switch (Opc) {
// Store byte
case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
case S4_storerb_ap: // memb(Re32=#U6)=Rt32
case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
case S2_storerbgp: // memb(gp+#u16:0)=Rt32
case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
Bits.set(Begin, Begin+8);
return true;
// Store low half
case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
case S4_storerh_ap: // memh(Re32=#U6)=Rt32
case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
case S2_storerhgp: // memh(gp+#u16:1)=Rt32
case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
Bits.set(Begin, Begin+16);
return true;
// Store high half
case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
Bits.set(Begin+16, Begin+32);
return true;
}
return false;
}
// For an instruction with opcode Opc, calculate the set of bits that it
// uses in a register in operand OpN. This only calculates the set of used
// bits for cases where it does not depend on any operands (as is the case
// in shifts, for example). For concrete instructions from a program, the
// operand may be a subregister of a larger register, while Bits would
// correspond to the larger register in its entirety. Because of that,
// the parameter Begin can be used to indicate which bit of Bits should be
// considered the LSB of the operand.
bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
using namespace Hexagon;
const MCInstrDesc &D = HII.get(Opc);
if (D.mayStore()) {
if (OpN == D.getNumOperands()-1)
return getUsedBitsInStore(Opc, Bits, Begin);
return false;
}
switch (Opc) {
// One register source. Used bits: R1[0-7].
case A2_sxtb:
case A2_zxtb:
case A4_cmpbeqi:
case A4_cmpbgti:
case A4_cmpbgtui:
if (OpN == 1) {
Bits.set(Begin, Begin+8);
return true;
}
break;
// One register source. Used bits: R1[0-15].
case A2_aslh:
case A2_sxth:
case A2_zxth:
case A4_cmpheqi:
case A4_cmphgti:
case A4_cmphgtui:
if (OpN == 1) {
Bits.set(Begin, Begin+16);
return true;
}
break;
// One register source. Used bits: R1[16-31].
case A2_asrh:
if (OpN == 1) {
Bits.set(Begin+16, Begin+32);
return true;
}
break;
// Two register sources. Used bits: R1[0-7], R2[0-7].
case A4_cmpbeq:
case A4_cmpbgt:
case A4_cmpbgtu:
if (OpN == 1) {
Bits.set(Begin, Begin+8);
return true;
}
break;
// Two register sources. Used bits: R1[0-15], R2[0-15].
case A4_cmpheq:
case A4_cmphgt:
case A4_cmphgtu:
case A2_addh_h16_ll:
case A2_addh_h16_sat_ll:
case A2_addh_l16_ll:
case A2_addh_l16_sat_ll:
case A2_combine_ll:
case A2_subh_h16_ll:
case A2_subh_h16_sat_ll:
case A2_subh_l16_ll:
case A2_subh_l16_sat_ll:
case M2_mpy_acc_ll_s0:
case M2_mpy_acc_ll_s1:
case M2_mpy_acc_sat_ll_s0:
case M2_mpy_acc_sat_ll_s1:
case M2_mpy_ll_s0:
case M2_mpy_ll_s1:
case M2_mpy_nac_ll_s0:
case M2_mpy_nac_ll_s1:
case M2_mpy_nac_sat_ll_s0:
case M2_mpy_nac_sat_ll_s1:
case M2_mpy_rnd_ll_s0:
case M2_mpy_rnd_ll_s1:
case M2_mpy_sat_ll_s0:
case M2_mpy_sat_ll_s1:
case M2_mpy_sat_rnd_ll_s0:
case M2_mpy_sat_rnd_ll_s1:
case M2_mpyd_acc_ll_s0:
case M2_mpyd_acc_ll_s1:
case M2_mpyd_ll_s0:
case M2_mpyd_ll_s1:
case M2_mpyd_nac_ll_s0:
case M2_mpyd_nac_ll_s1:
case M2_mpyd_rnd_ll_s0:
case M2_mpyd_rnd_ll_s1:
case M2_mpyu_acc_ll_s0:
case M2_mpyu_acc_ll_s1:
case M2_mpyu_ll_s0:
case M2_mpyu_ll_s1:
case M2_mpyu_nac_ll_s0:
case M2_mpyu_nac_ll_s1:
case M2_mpyud_acc_ll_s0:
case M2_mpyud_acc_ll_s1:
case M2_mpyud_ll_s0:
case M2_mpyud_ll_s1:
case M2_mpyud_nac_ll_s0:
case M2_mpyud_nac_ll_s1:
if (OpN == 1 || OpN == 2) {
Bits.set(Begin, Begin+16);
return true;
}
break;
// Two register sources. Used bits: R1[0-15], R2[16-31].
case A2_addh_h16_lh:
case A2_addh_h16_sat_lh:
case A2_combine_lh:
case A2_subh_h16_lh:
case A2_subh_h16_sat_lh:
case M2_mpy_acc_lh_s0:
case M2_mpy_acc_lh_s1:
case M2_mpy_acc_sat_lh_s0:
case M2_mpy_acc_sat_lh_s1:
case M2_mpy_lh_s0:
case M2_mpy_lh_s1:
case M2_mpy_nac_lh_s0:
case M2_mpy_nac_lh_s1:
case M2_mpy_nac_sat_lh_s0:
case M2_mpy_nac_sat_lh_s1:
case M2_mpy_rnd_lh_s0:
case M2_mpy_rnd_lh_s1:
case M2_mpy_sat_lh_s0:
case M2_mpy_sat_lh_s1:
case M2_mpy_sat_rnd_lh_s0:
case M2_mpy_sat_rnd_lh_s1:
case M2_mpyd_acc_lh_s0:
case M2_mpyd_acc_lh_s1:
case M2_mpyd_lh_s0:
case M2_mpyd_lh_s1:
case M2_mpyd_nac_lh_s0:
case M2_mpyd_nac_lh_s1:
case M2_mpyd_rnd_lh_s0:
case M2_mpyd_rnd_lh_s1:
case M2_mpyu_acc_lh_s0:
case M2_mpyu_acc_lh_s1:
case M2_mpyu_lh_s0:
case M2_mpyu_lh_s1:
case M2_mpyu_nac_lh_s0:
case M2_mpyu_nac_lh_s1:
case M2_mpyud_acc_lh_s0:
case M2_mpyud_acc_lh_s1:
case M2_mpyud_lh_s0:
case M2_mpyud_lh_s1:
case M2_mpyud_nac_lh_s0:
case M2_mpyud_nac_lh_s1:
// These four are actually LH.
case A2_addh_l16_hl:
case A2_addh_l16_sat_hl:
case A2_subh_l16_hl:
case A2_subh_l16_sat_hl:
if (OpN == 1) {
Bits.set(Begin, Begin+16);
return true;
}
if (OpN == 2) {
Bits.set(Begin+16, Begin+32);
return true;
}
break;
// Two register sources, used bits: R1[16-31], R2[0-15].
case A2_addh_h16_hl:
case A2_addh_h16_sat_hl:
case A2_combine_hl:
case A2_subh_h16_hl:
case A2_subh_h16_sat_hl:
case M2_mpy_acc_hl_s0:
case M2_mpy_acc_hl_s1:
case M2_mpy_acc_sat_hl_s0:
case M2_mpy_acc_sat_hl_s1:
case M2_mpy_hl_s0:
case M2_mpy_hl_s1:
case M2_mpy_nac_hl_s0:
case M2_mpy_nac_hl_s1:
case M2_mpy_nac_sat_hl_s0:
case M2_mpy_nac_sat_hl_s1:
case M2_mpy_rnd_hl_s0:
case M2_mpy_rnd_hl_s1:
case M2_mpy_sat_hl_s0:
case M2_mpy_sat_hl_s1:
case M2_mpy_sat_rnd_hl_s0:
case M2_mpy_sat_rnd_hl_s1:
case M2_mpyd_acc_hl_s0:
case M2_mpyd_acc_hl_s1:
case M2_mpyd_hl_s0:
case M2_mpyd_hl_s1:
case M2_mpyd_nac_hl_s0:
case M2_mpyd_nac_hl_s1:
case M2_mpyd_rnd_hl_s0:
case M2_mpyd_rnd_hl_s1:
case M2_mpyu_acc_hl_s0:
case M2_mpyu_acc_hl_s1:
case M2_mpyu_hl_s0:
case M2_mpyu_hl_s1:
case M2_mpyu_nac_hl_s0:
case M2_mpyu_nac_hl_s1:
case M2_mpyud_acc_hl_s0:
case M2_mpyud_acc_hl_s1:
case M2_mpyud_hl_s0:
case M2_mpyud_hl_s1:
case M2_mpyud_nac_hl_s0:
case M2_mpyud_nac_hl_s1:
if (OpN == 1) {
Bits.set(Begin+16, Begin+32);
return true;
}
if (OpN == 2) {
Bits.set(Begin, Begin+16);
return true;
}
break;
// Two register sources, used bits: R1[16-31], R2[16-31].
case A2_addh_h16_hh:
case A2_addh_h16_sat_hh:
case A2_combine_hh:
case A2_subh_h16_hh:
case A2_subh_h16_sat_hh:
case M2_mpy_acc_hh_s0:
case M2_mpy_acc_hh_s1:
case M2_mpy_acc_sat_hh_s0:
case M2_mpy_acc_sat_hh_s1:
case M2_mpy_hh_s0:
case M2_mpy_hh_s1:
case M2_mpy_nac_hh_s0:
case M2_mpy_nac_hh_s1:
case M2_mpy_nac_sat_hh_s0:
case M2_mpy_nac_sat_hh_s1:
case M2_mpy_rnd_hh_s0:
case M2_mpy_rnd_hh_s1:
case M2_mpy_sat_hh_s0:
case M2_mpy_sat_hh_s1:
case M2_mpy_sat_rnd_hh_s0:
case M2_mpy_sat_rnd_hh_s1:
case M2_mpyd_acc_hh_s0:
case M2_mpyd_acc_hh_s1:
case M2_mpyd_hh_s0:
case M2_mpyd_hh_s1:
case M2_mpyd_nac_hh_s0:
case M2_mpyd_nac_hh_s1:
case M2_mpyd_rnd_hh_s0:
case M2_mpyd_rnd_hh_s1:
case M2_mpyu_acc_hh_s0:
case M2_mpyu_acc_hh_s1:
case M2_mpyu_hh_s0:
case M2_mpyu_hh_s1:
case M2_mpyu_nac_hh_s0:
case M2_mpyu_nac_hh_s1:
case M2_mpyud_acc_hh_s0:
case M2_mpyud_acc_hh_s1:
case M2_mpyud_hh_s0:
case M2_mpyud_hh_s1:
case M2_mpyud_nac_hh_s0:
case M2_mpyud_nac_hh_s1:
if (OpN == 1 || OpN == 2) {
Bits.set(Begin+16, Begin+32);
return true;
}
break;
}
return false;
}
// Calculate the register class that matches Reg:Sub. For example, if
// %1 is a double register, then %1:isub_hi would match the "int"
// register class.
const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
if (!Register::isVirtualRegister(RR.Reg))
return nullptr;
auto *RC = MRI.getRegClass(RR.Reg);
if (RR.Sub == 0)
return RC;
auto &HRI = static_cast<const HexagonRegisterInfo&>(
*MRI.getTargetRegisterInfo());
auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
(void)HRI;
assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
};
switch (RC->getID()) {
case Hexagon::DoubleRegsRegClassID:
VerifySR(RC, RR.Sub);
return &Hexagon::IntRegsRegClass;
case Hexagon::HvxWRRegClassID:
VerifySR(RC, RR.Sub);
return &Hexagon::HvxVRRegClass;
}
return nullptr;
}
// Check if RD could be replaced with RS at any possible use of RD.
// For example a predicate register cannot be replaced with a integer
// register, but a 64-bit register with a subregister can be replaced
// with a 32-bit register.
bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
if (!Register::isVirtualRegister(RD.Reg) ||
!Register::isVirtualRegister(RS.Reg))
return false;
// Return false if one (or both) classes are nullptr.
auto *DRC = getFinalVRegClass(RD, MRI);
if (!DRC)
return false;
return DRC == getFinalVRegClass(RS, MRI);
}
bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
unsigned NewSub) {
if (!PreserveTiedOps)
return false;
return llvm::any_of(MRI.use_operands(Reg),
[NewSub] (const MachineOperand &Op) -> bool {
return Op.getSubReg() != NewSub && Op.isTied();
});
}
namespace {
class DeadCodeElimination {
public:
DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
: MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
MDT(mdt), MRI(mf.getRegInfo()) {}
bool run() {
return runOnNode(MDT.getRootNode());
}
private:
bool isDead(unsigned R) const;
bool runOnNode(MachineDomTreeNode *N);
MachineFunction &MF;
const HexagonInstrInfo &HII;
MachineDominatorTree &MDT;
MachineRegisterInfo &MRI;
};
} // end anonymous namespace
bool DeadCodeElimination::isDead(unsigned R) const {
for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
MachineInstr *UseI = I->getParent();
if (UseI->isDebugValue())
continue;
if (UseI->isPHI()) {
assert(!UseI->getOperand(0).getSubReg());
Register DR = UseI->getOperand(0).getReg();
if (DR == R)
continue;
}
return false;
}
return true;
}
bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
bool Changed = false;
for (auto *DTN : children<MachineDomTreeNode*>(N))
Changed |= runOnNode(DTN);
MachineBasicBlock *B = N->getBlock();
std::vector<MachineInstr*> Instrs;
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
Instrs.push_back(&*I);
for (auto MI : Instrs) {
unsigned Opc = MI->getOpcode();
// Do not touch lifetime markers. This is why the target-independent DCE
// cannot be used.
if (Opc == TargetOpcode::LIFETIME_START ||
Opc == TargetOpcode::LIFETIME_END)
continue;
bool Store = false;
if (MI->isInlineAsm())
continue;
// Delete PHIs if possible.
if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
continue;
bool AllDead = true;
SmallVector<unsigned,2> Regs;
for (auto &Op : MI->operands()) {
if (!Op.isReg() || !Op.isDef())
continue;
Register R = Op.getReg();
if (!Register::isVirtualRegister(R) || !isDead(R)) {
AllDead = false;
break;
}
Regs.push_back(R);
}
if (!AllDead)
continue;
B->erase(MI);
for (unsigned i = 0, n = Regs.size(); i != n; ++i)
MRI.markUsesInDebugValueAsUndef(Regs[i]);
Changed = true;
}
return Changed;
}
namespace {
// Eliminate redundant instructions
//
// This transformation will identify instructions where the output register
// is the same as one of its input registers. This only works on instructions
// that define a single register (unlike post-increment loads, for example).
// The equality check is actually more detailed: the code calculates which
// bits of the output are used, and only compares these bits with the input
// registers.
// If the output matches an input, the instruction is replaced with COPY.
// The copies will be removed by another transformation.
class RedundantInstrElimination : public Transformation {
public:
RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
: Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
private:
bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
unsigned &LostB, unsigned &LostE);
bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
unsigned &LostB, unsigned &LostE);
bool computeUsedBits(unsigned Reg, BitVector &Bits);
bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
uint16_t Begin);
bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
const HexagonInstrInfo &HII;
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
BitTracker &BT;
};
} // end anonymous namespace
// Check if the instruction is a lossy shift left, where the input being
// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
// of bit indices that are lost.
bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
unsigned OpN, unsigned &LostB, unsigned &LostE) {
using namespace Hexagon;
unsigned Opc = MI.getOpcode();
unsigned ImN, RegN, Width;
switch (Opc) {
case S2_asl_i_p:
ImN = 2;
RegN = 1;
Width = 64;
break;
case S2_asl_i_p_acc:
case S2_asl_i_p_and:
case S2_asl_i_p_nac:
case S2_asl_i_p_or:
case S2_asl_i_p_xacc:
ImN = 3;
RegN = 2;
Width = 64;
break;
case S2_asl_i_r:
ImN = 2;
RegN = 1;
Width = 32;
break;
case S2_addasl_rrri:
case S4_andi_asl_ri:
case S4_ori_asl_ri:
case S4_addi_asl_ri:
case S4_subi_asl_ri:
case S2_asl_i_r_acc:
case S2_asl_i_r_and:
case S2_asl_i_r_nac:
case S2_asl_i_r_or:
case S2_asl_i_r_sat:
case S2_asl_i_r_xacc:
ImN = 3;
RegN = 2;
Width = 32;
break;
default:
return false;
}
if (RegN != OpN)
return false;
assert(MI.getOperand(ImN).isImm());
unsigned S = MI.getOperand(ImN).getImm();
if (S == 0)
return false;
LostB = Width-S;
LostE = Width;
return true;
}
// Check if the instruction is a lossy shift right, where the input being
// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
// of bit indices that are lost.
bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
unsigned OpN, unsigned &LostB, unsigned &LostE) {
using namespace Hexagon;
unsigned Opc = MI.getOpcode();
unsigned ImN, RegN;
switch (Opc) {
case S2_asr_i_p:
case S2_lsr_i_p:
ImN = 2;
RegN = 1;
break;
case S2_asr_i_p_acc:
case S2_asr_i_p_and:
case S2_asr_i_p_nac:
case S2_asr_i_p_or:
case S2_lsr_i_p_acc:
case S2_lsr_i_p_and:
case S2_lsr_i_p_nac:
case S2_lsr_i_p_or:
case S2_lsr_i_p_xacc:
ImN = 3;
RegN = 2;
break;
case S2_asr_i_r:
case S2_lsr_i_r:
ImN = 2;
RegN = 1;
break;
case S4_andi_lsr_ri:
case S4_ori_lsr_ri:
case S4_addi_lsr_ri:
case S4_subi_lsr_ri:
case S2_asr_i_r_acc:
case S2_asr_i_r_and:
case S2_asr_i_r_nac:
case S2_asr_i_r_or:
case S2_lsr_i_r_acc:
case S2_lsr_i_r_and:
case S2_lsr_i_r_nac:
case S2_lsr_i_r_or:
case S2_lsr_i_r_xacc:
ImN = 3;
RegN = 2;
break;
default:
return false;
}
if (RegN != OpN)
return false;
assert(MI.getOperand(ImN).isImm());
unsigned S = MI.getOperand(ImN).getImm();
LostB = 0;
LostE = S;
return true;
}
// Calculate the bit vector that corresponds to the used bits of register Reg.
// The vector Bits has the same size, as the size of Reg in bits. If the cal-
// culation fails (i.e. the used bits are unknown), it returns false. Other-
// wise, it returns true and sets the corresponding bits in Bits.
bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
BitVector Used(Bits.size());
RegisterSet Visited;
std::vector<unsigned> Pending;
Pending.push_back(Reg);
for (unsigned i = 0; i < Pending.size(); ++i) {
unsigned R = Pending[i];
if (Visited.has(R))
continue;
Visited.insert(R);
for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
BitTracker::RegisterRef UR = *I;
unsigned B, W;
if (!HBS::getSubregMask(UR, B, W, MRI))
return false;
MachineInstr &UseI = *I->getParent();
if (UseI.isPHI() || UseI.isCopy()) {
Register DefR = UseI.getOperand(0).getReg();
if (!Register::isVirtualRegister(DefR))
return false;
Pending.push_back(DefR);
} else {
if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
return false;
}
}
}
Bits |= Used;
return true;
}
// Calculate the bits used by instruction MI in a register in operand OpN.
// Return true/false if the calculation succeeds/fails. If is succeeds, set
// used bits in Bits. This function does not reset any bits in Bits, so
// subsequent calls over different instructions will result in the union
// of the used bits in all these instructions.
// The register in question may be used with a sub-register, whereas Bits
// holds the bits for the entire register. To keep track of that, the
// argument Begin indicates where in Bits is the lowest-significant bit
// of the register used in operand OpN. For example, in instruction:
// %1 = S2_lsr_i_r %2:isub_hi, 10
// the operand 1 is a 32-bit register, which happens to be a subregister
// of the 64-bit register %2, and that subregister starts at position 32.
// In this case Begin=32, since Bits[32] would be the lowest-significant bit
// of %2:isub_hi.
bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
unsigned OpN, BitVector &Bits, uint16_t Begin) {
unsigned Opc = MI.getOpcode();
BitVector T(Bits.size());
bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
// Even if we don't have bits yet, we could still provide some information
// if the instruction is a lossy shift: the lost bits will be marked as
// not used.
unsigned LB, LE;
if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
assert(MI.getOperand(OpN).isReg());
BitTracker::RegisterRef RR = MI.getOperand(OpN);
const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
uint16_t Width = HRI.getRegSizeInBits(*RC);
if (!GotBits)
T.set(Begin, Begin+Width);
assert(LB <= LE && LB < Width && LE <= Width);
T.reset(Begin+LB, Begin+LE);
GotBits = true;
}
if (GotBits)
Bits |= T;
return GotBits;
}
// Calculates the used bits in RD ("defined register"), and checks if these
// bits in RS ("used register") and RD are identical.
bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
BitTracker::RegisterRef RS) {
const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
unsigned DB, DW;
if (!HBS::getSubregMask(RD, DB, DW, MRI))
return false;
unsigned SB, SW;
if (!HBS::getSubregMask(RS, SB, SW, MRI))
return false;
if (SW != DW)
return false;
BitVector Used(DC.width());
if (!computeUsedBits(RD.Reg, Used))
return false;
for (unsigned i = 0; i != DW; ++i)
if (Used[i+DB] && DC[DB+i] != SC[SB+i])
return false;
return true;
}
bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
const RegisterSet&) {
if (!BT.reached(&B))
return false;
bool Changed = false;
for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
NextI = std::next(I);
MachineInstr *MI = &*I;
if (MI->getOpcode() == TargetOpcode::COPY)
continue;
if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
continue;
unsigned NumD = MI->getDesc().getNumDefs();
if (NumD != 1)
continue;
BitTracker::RegisterRef RD = MI->getOperand(0);
if (!BT.has(RD.Reg))
continue;
const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
auto At = MachineBasicBlock::iterator(MI);
// Find a source operand that is equal to the result.
for (auto &Op : MI->uses()) {
if (!Op.isReg())
continue;
BitTracker::RegisterRef RS = Op;
if (!BT.has(RS.Reg))
continue;
if (!HBS::isTransparentCopy(RD, RS, MRI))
continue;
unsigned BN, BW;
if (!HBS::getSubregMask(RS, BN, BW, MRI))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
continue;
// If found, replace the instruction with a COPY.
const DebugLoc &DL = MI->getDebugLoc();
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
Register NewR = MRI.createVirtualRegister(FRC);
MachineInstr *CopyI =
BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
.addReg(RS.Reg, 0, RS.Sub);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
// This pass can create copies between registers that don't have the
// exact same values. Updating the tracker has to involve updating
// all dependent cells. Example:
// %1 = inst %2 ; %1 != %2, but used bits are equal
//
// %3 = copy %2 ; <- inserted
// ... = %3 ; <- replaced from %2
// Indirectly, we can create a "copy" between %1 and %2 even
// though their exact values do not match.
BT.visit(*CopyI);
Changed = true;
break;
}
}
return Changed;
}
namespace {
// Recognize instructions that produce constant values known at compile-time.
// Replace them with register definitions that load these constants directly.
class ConstGeneration : public Transformation {
public:
ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
MachineRegisterInfo &mri)
: Transformation(true), HII(hii), MRI(mri), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
static bool isTfrConst(const MachineInstr &MI);
private:
unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
const HexagonInstrInfo &HII;
MachineRegisterInfo &MRI;
BitTracker &BT;
};
} // end anonymous namespace
bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
case Hexagon::A2_tfrsi:
case Hexagon::A2_tfrpi:
case Hexagon::PS_true:
case Hexagon::PS_false:
case Hexagon::CONST32:
case Hexagon::CONST64:
return true;
}
return false;
}
// Generate a transfer-immediate instruction that is appropriate for the
// register class and the actual value being transferred.
unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
Register Reg = MRI.createVirtualRegister(RC);
if (RC == &Hexagon::IntRegsRegClass) {
BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
.addImm(int32_t(C));
return Reg;
}
if (RC == &Hexagon::DoubleRegsRegClass) {
if (isInt<8>(C)) {
BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
.addImm(C);
return Reg;
}
unsigned Lo = Lo_32(C), Hi = Hi_32(C);
if (isInt<8>(Lo) || isInt<8>(Hi)) {
unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
: Hexagon::A4_combineii;
BuildMI(B, At, DL, HII.get(Opc), Reg)
.addImm(int32_t(Hi))
.addImm(int32_t(Lo));
return Reg;
}
BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
.addImm(C);
return Reg;
}
if (RC == &Hexagon::PredRegsRegClass) {
unsigned Opc;
if (C == 0)
Opc = Hexagon::PS_false;
else if ((C & 0xFF) == 0xFF)
Opc = Hexagon::PS_true;
else
return 0;
BuildMI(B, At, DL, HII.get(Opc), Reg);
return Reg;
}
return 0;
}
bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
if (!BT.reached(&B))
return false;
bool Changed = false;
RegisterSet Defs;
for (auto I = B.begin(), E = B.end(); I != E; ++I) {
if (isTfrConst(*I))
continue;
Defs.clear();
HBS::getInstrDefs(*I, Defs);
if (Defs.count() != 1)
continue;
unsigned DR = Defs.find_first();
if (!Register::isVirtualRegister(DR))
continue;
uint64_t U;
const BitTracker::RegisterCell &DRC = BT.lookup(DR);
if (HBS::getConst(DRC, 0, DRC.width(), U)) {
int64_t C = U;
DebugLoc DL = I->getDebugLoc();
auto At = I->isPHI() ? B.getFirstNonPHI() : I;
unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
if (ImmReg) {
HBS::replaceReg(DR, ImmReg, MRI);
BT.put(ImmReg, DRC);
Changed = true;
}
}
}
return Changed;
}
namespace {
// Identify pairs of available registers which hold identical values.
// In such cases, only one of them needs to be calculated, the other one
// will be defined as a copy of the first.
class CopyGeneration : public Transformation {
public:
CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
: Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
private:
bool findMatch(const BitTracker::RegisterRef &Inp,
BitTracker::RegisterRef &Out, const RegisterSet &AVs);
const HexagonInstrInfo &HII;
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
BitTracker &BT;
RegisterSet Forbidden;
};
// Eliminate register copies RD = RS, by replacing the uses of RD with
// with uses of RS.
class CopyPropagation : public Transformation {
public:
CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
: Transformation(false), HRI(hri), MRI(mri) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
static bool isCopyReg(unsigned Opc, bool NoConv);
private:
bool propagateRegCopy(MachineInstr &MI);
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
};
} // end anonymous namespace
/// Check if there is a register in AVs that is identical to Inp. If so,
/// set Out to the found register. The output may be a pair Reg:Sub.
bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
if (!BT.has(Inp.Reg))
return false;
const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
unsigned B, W;
if (!HBS::getSubregMask(Inp, B, W, MRI))
return false;
for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
if (!BT.has(R) || Forbidden[R])
continue;
const BitTracker::RegisterCell &RC = BT.lookup(R);
unsigned RW = RC.width();
if (W == RW) {
if (FRC != MRI.getRegClass(R))
continue;
if (!HBS::isTransparentCopy(R, Inp, MRI))
continue;
if (!HBS::isEqual(InpRC, B, RC, 0, W))
continue;
Out.Reg = R;
Out.Sub = 0;
return true;
}
// Check if there is a super-register, whose part (with a subregister)
// is equal to the input.
// Only do double registers for now.
if (W*2 != RW)
continue;
if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
continue;
if (HBS::isEqual(InpRC, B, RC, 0, W))
Out.Sub = Hexagon::isub_lo;
else if (HBS::isEqual(InpRC, B, RC, W, W))
Out.Sub = Hexagon::isub_hi;
else
continue;
Out.Reg = R;
if (HBS::isTransparentCopy(Out, Inp, MRI))
return true;
}
return false;
}
bool CopyGeneration::processBlock(MachineBasicBlock &B,
const RegisterSet &AVs) {
if (!BT.reached(&B))
return false;
RegisterSet AVB(AVs);
bool Changed = false;
RegisterSet Defs;
for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
++I, AVB.insert(Defs)) {
NextI = std::next(I);
Defs.clear();
HBS::getInstrDefs(*I, Defs);
unsigned Opc = I->getOpcode();
if (CopyPropagation::isCopyReg(Opc, false) ||
ConstGeneration::isTfrConst(*I))
continue;
DebugLoc DL = I->getDebugLoc();
auto At = I->isPHI() ? B.getFirstNonPHI() : I;
for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
BitTracker::RegisterRef MR;
auto *FRC = HBS::getFinalVRegClass(R, MRI);
if (findMatch(R, MR, AVB)) {
Register NewR = MRI.createVirtualRegister(FRC);
BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
.addReg(MR.Reg, 0, MR.Sub);
BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
HBS::replaceReg(R, NewR, MRI);
Forbidden.insert(R);
continue;
}
if (FRC == &Hexagon::DoubleRegsRegClass ||
FRC == &Hexagon::HvxWRRegClass) {
// Try to generate REG_SEQUENCE.
unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
BitTracker::RegisterRef TL = { R, SubLo };
BitTracker::RegisterRef TH = { R, SubHi };
BitTracker::RegisterRef ML, MH;
if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
auto *FRC = HBS::getFinalVRegClass(R, MRI);
Register NewR = MRI.createVirtualRegister(FRC);
BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
.addReg(ML.Reg, 0, ML.Sub)
.addImm(SubLo)
.addReg(MH.Reg, 0, MH.Sub)
.addImm(SubHi);
BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
HBS::replaceReg(R, NewR, MRI);
Forbidden.insert(R);
}
}
}
}
return Changed;
}
bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
switch (Opc) {
case TargetOpcode::COPY:
case TargetOpcode::REG_SEQUENCE:
case Hexagon::A4_combineir:
case Hexagon::A4_combineri:
return true;
case Hexagon::A2_tfr:
case Hexagon::A2_tfrp:
case Hexagon::A2_combinew:
case Hexagon::V6_vcombine:
return NoConv;
default:
break;
}
return false;
}
bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
bool Changed = false;
unsigned Opc = MI.getOpcode();
BitTracker::RegisterRef RD = MI.getOperand(0);
assert(MI.getOperand(0).getSubReg() == 0);
switch (Opc) {
case TargetOpcode::COPY:
case Hexagon::A2_tfr:
case Hexagon::A2_tfrp: {
BitTracker::RegisterRef RS = MI.getOperand(1);
if (!HBS::isTransparentCopy(RD, RS, MRI))
break;
if (RS.Sub != 0)
Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
else
Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
break;
}
case TargetOpcode::REG_SEQUENCE: {
BitTracker::RegisterRef SL, SH;
if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
}
break;
}
case Hexagon::A2_combinew:
case Hexagon::V6_vcombine: {
const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
break;
}
case Hexagon::A4_combineir:
case Hexagon::A4_combineri: {
unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
: Hexagon::isub_hi;
BitTracker::RegisterRef RS = MI.getOperand(SrcX);
Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
break;
}
}
return Changed;
}
bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
std::vector<MachineInstr*> Instrs;
for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
Instrs.push_back(&*I);
bool Changed = false;
for (auto I : Instrs) {
unsigned Opc = I->getOpcode();
if (!CopyPropagation::isCopyReg(Opc, true))
continue;
Changed |= propagateRegCopy(*I);
}
return Changed;
}
namespace {
// Recognize patterns that can be simplified and replace them with the
// simpler forms.
// This is by no means complete
class BitSimplification : public Transformation {
public:
BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
MachineRegisterInfo &mri, MachineFunction &mf)
: Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
MF(mf), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
private:
struct RegHalf : public BitTracker::RegisterRef {
bool Low; // Low/High halfword.
};
bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
unsigned B, RegHalf &RH);
bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
unsigned getCombineOpcode(bool HLow, bool LLow);
bool genStoreUpperHalf(MachineInstr *MI);
bool genStoreImmediate(MachineInstr *MI);
bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
// Cache of created instructions to avoid creating duplicates.
// XXX Currently only used by genBitSplit.
std::vector<MachineInstr*> NewMIs;
const MachineDominatorTree &MDT;
const HexagonInstrInfo &HII;
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
MachineFunction &MF;
BitTracker &BT;
};
} // end anonymous namespace
// Check if the bits [B..B+16) in register cell RC form a valid halfword,
// i.e. [0..16), [16..32), etc. of some register. If so, return true and
// set the information about the found register in RH.
bool BitSimplification::matchHalf(unsigned SelfR,
const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
// XXX This could be searching in the set of available registers, in case
// the match is not exact.
// Match 16-bit chunks, where the RC[B..B+15] references exactly one
// register and all the bits B..B+15 match between RC and the register.
// This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
// and RC = { [0]:0 [1-15]:v1[1-15]... }.
bool Low = false;
unsigned I = B;
while (I < B+16 && RC[I].num())
I++;
if (I == B+16)
return false;
unsigned Reg = RC[I].RefI.Reg;
unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
if (P < I-B)
return false;
unsigned Pos = P - (I-B);
if (Reg == 0 || Reg == SelfR) // Don't match "self".
return false;
if (!Register::isVirtualRegister(Reg))
return false;
if (!BT.has(Reg))
return false;
const BitTracker::RegisterCell &SC = BT.lookup(Reg);
if (Pos+16 > SC.width())
return false;
for (unsigned i = 0; i < 16; ++i) {
const BitTracker::BitValue &RV = RC[i+B];
if (RV.Type == BitTracker::BitValue::Ref) {
if (RV.RefI.Reg != Reg)
return false;
if (RV.RefI.Pos != i+Pos)
return false;
continue;
}
if (RC[i+B] != SC[i+Pos])
return false;
}
unsigned Sub = 0;
switch (Pos) {
case 0:
Sub = Hexagon::isub_lo;
Low = true;
break;
case 16:
Sub = Hexagon::isub_lo;
Low = false;
break;
case 32:
Sub = Hexagon::isub_hi;
Low = true;
break;
case 48:
Sub = Hexagon::isub_hi;
Low = false;
break;
default:
return false;
}
RH.Reg = Reg;
RH.Sub = Sub;
RH.Low = Low;
// If the subregister is not valid with the register, set it to 0.
if (!HBS::getFinalVRegClass(RH, MRI))
RH.Sub = 0;
return true;
}
bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
unsigned OpNum) {
auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
auto *RRC = HBS::getFinalVRegClass(R, MRI);
return OpRC->hasSubClassEq(RRC);
}
// Check if RC matches the pattern of a S2_packhl. If so, return true and
// set the inputs Rs and Rt.
bool BitSimplification::matchPackhl(unsigned SelfR,
const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
BitTracker::RegisterRef &Rt) {
RegHalf L1, H1, L2, H2;
if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
return false;
if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
return false;
// Rs = H1.L1, Rt = H2.L2
if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
return false;
if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
return false;
Rs = H1;
Rt = H2;
return true;
}
unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
return HLow ? LLow ? Hexagon::A2_combine_ll
: Hexagon::A2_combine_lh
: LLow ? Hexagon::A2_combine_hl
: Hexagon::A2_combine_hh;
}
// If MI stores the upper halfword of a register (potentially obtained via
// shifts or extracts), replace it with a storerf instruction. This could
// cause the "extraction" code to become dead.
bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
if (Opc != Hexagon::S2_storerh_io)
return false;
MachineOperand &ValOp = MI->getOperand(2);
BitTracker::RegisterRef RS = ValOp;
if (!BT.has(RS.Reg))
return false;
const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
RegHalf H;
if (!matchHalf(0, RC, 0, H))
return false;
if (H.Low)
return false;
MI->setDesc(HII.get(Hexagon::S2_storerf_io));
ValOp.setReg(H.Reg);
ValOp.setSubReg(H.Sub);
return true;
}
// If MI stores a value known at compile-time, and the value is within a range
// that avoids using constant-extenders, replace it with a store-immediate.
bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
unsigned Align = 0;
switch (Opc) {
case Hexagon::S2_storeri_io:
Align++;
LLVM_FALLTHROUGH;
case Hexagon::S2_storerh_io:
Align++;
LLVM_FALLTHROUGH;
case Hexagon::S2_storerb_io:
break;
default:
return false;
}
// Avoid stores to frame-indices (due to an unknown offset).
if (!MI->getOperand(0).isReg())
return false;
MachineOperand &OffOp = MI->getOperand(1);
if (!OffOp.isImm())
return false;
int64_t Off = OffOp.getImm();
// Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
return false;
// Source register:
BitTracker::RegisterRef RS = MI->getOperand(2);
if (!BT.has(RS.Reg))
return false;
const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
uint64_t U;
if (!HBS::getConst(RC, 0, RC.width(), U))
return false;
// Only consider 8-bit values to avoid constant-extenders.
int V;
switch (Opc) {
case Hexagon::S2_storerb_io:
V = int8_t(U);
break;
case Hexagon::S2_storerh_io:
V = int16_t(U);
break;
case Hexagon::S2_storeri_io:
V = int32_t(U);
break;
default:
// Opc is already checked above to be one of the three store instructions.
// This silences a -Wuninitialized false positive on GCC 5.4.
llvm_unreachable("Unexpected store opcode");
}
if (!isInt<8>(V))
return false;
MI->RemoveOperand(2);
switch (Opc) {
case Hexagon::S2_storerb_io:
MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
break;
case Hexagon::S2_storerh_io:
MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
break;
case Hexagon::S2_storeri_io:
MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
break;
}
MI->addOperand(MachineOperand::CreateImm(V));
return true;
}
// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
// last instruction in a sequence that results in something equivalent to
// the pack-halfwords. The intent is to cause the entire sequence to become
// dead.
bool BitSimplification::genPackhl(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
unsigned Opc = MI->getOpcode();
if (Opc == Hexagon::S2_packhl)
return false;
BitTracker::RegisterRef Rs, Rt;
if (!matchPackhl(RD.Reg, RC, Rs, Rt))
return false;
if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
!validateReg(Rt, Hexagon::S2_packhl, 2))
return false;
MachineBasicBlock &B = *MI->getParent();
Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
DebugLoc DL = MI->getDebugLoc();
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
.addReg(Rs.Reg, 0, Rs.Sub)
.addReg(Rt.Reg, 0, Rt.Sub);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
// If MI produces halfword of the input in the low half of the output,
// replace it with zero-extend or extractu.
bool BitSimplification::genExtractHalf(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
RegHalf L;
// Check for halfword in low 16 bits, zeros elsewhere.
if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
return false;
unsigned Opc = MI->getOpcode();
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
// Prefer zxth, since zxth can go in any slot, while extractu only in
// slots 2 and 3.
unsigned NewR = 0;
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
if (L.Low && Opc != Hexagon::A2_zxth) {
if (validateReg(L, Hexagon::A2_zxth, 1)) {
NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
.addReg(L.Reg, 0, L.Sub);
}
} else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
.addReg(L.Reg, 0, L.Sub)
.addImm(16);
}
}
if (NewR == 0)
return false;
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
// combine.
bool BitSimplification::genCombineHalf(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
RegHalf L, H;
// Check for combine h/l
if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
return false;
// Do nothing if this is just a reg copy.
if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
return false;
unsigned Opc = MI->getOpcode();
unsigned COpc = getCombineOpcode(H.Low, L.Low);
if (COpc == Opc)
return false;
if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
return false;
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
BuildMI(B, At, DL, HII.get(COpc), NewR)
.addReg(H.Reg, 0, H.Sub)
.addReg(L.Reg, 0, L.Sub);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
// If MI resets high bits of a register and keeps the lower ones, replace it
// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
bool BitSimplification::genExtractLow(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
unsigned Opc = MI->getOpcode();
switch (Opc) {
case Hexagon::A2_zxtb:
case Hexagon::A2_zxth:
case Hexagon::S2_extractu:
return false;
}
if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
int32_t Imm = MI->getOperand(2).getImm();
if (isInt<10>(Imm))
return false;
}
if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
return false;
unsigned W = RC.width();
while (W > 0 && RC[W-1].is(0))
W--;
if (W == 0 || W == RC.width())
return false;
unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
: (W == 16) ? Hexagon::A2_zxth
: (W < 10) ? Hexagon::A2_andir
: Hexagon::S2_extractu;
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
for (auto &Op : MI->uses()) {
if (!Op.isReg())
continue;
BitTracker::RegisterRef RS = Op;
if (!BT.has(RS.Reg))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
unsigned BN, BW;
if (!HBS::getSubregMask(RS, BN, BW, MRI))
continue;
if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
continue;
if (!validateReg(RS, NewOpc, 1))
continue;
Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
.addReg(RS.Reg, 0, RS.Sub);
if (NewOpc == Hexagon::A2_andir)
MIB.addImm((1 << W) - 1);
else if (NewOpc == Hexagon::S2_extractu)
MIB.addImm(W).addImm(0);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
return false;
}
bool BitSimplification::genBitSplit(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
const RegisterSet &AVs) {
if (!GenBitSplit)
return false;
if (MaxBitSplit.getNumOccurrences()) {
if (CountBitSplit >= MaxBitSplit)
return false;
}
unsigned Opc = MI->getOpcode();
switch (Opc) {
case Hexagon::A4_bitsplit:
case Hexagon::A4_bitspliti:
return false;
}
unsigned W = RC.width();
if (W != 32)
return false;
auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
unsigned Z = C.width();
while (Z > 0 && C[Z-1].is(0))
--Z;
return C.width() - Z;
};
// Count the number of leading zeros in the target RC.
unsigned Z = ctlz(RC);
if (Z == 0 || Z == W)
return false;
// A simplistic analysis: assume the source register (the one being split)
// is fully unknown, and that all its bits are self-references.
const BitTracker::BitValue &B0 = RC[0];
if (B0.Type != BitTracker::BitValue::Ref)
return false;
unsigned SrcR = B0.RefI.Reg;
unsigned SrcSR = 0;
unsigned Pos = B0.RefI.Pos;
// All the non-zero bits should be consecutive bits from the same register.
for (unsigned i = 1; i < W-Z; ++i) {
const BitTracker::BitValue &V = RC[i];
if (V.Type != BitTracker::BitValue::Ref)
return false;
if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
return false;
}
// Now, find the other bitfield among AVs.
for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
// The number of leading zeros here should be the number of trailing
// non-zeros in RC.
unsigned SRC = MRI.getRegClass(S)->getID();
if (SRC != Hexagon::IntRegsRegClassID &&
SRC != Hexagon::DoubleRegsRegClassID)
continue;
if (!BT.has(S))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(S);
if (SC.width() != W || ctlz(SC) != W-Z)
continue;
// The Z lower bits should now match SrcR.
const BitTracker::BitValue &S0 = SC[0];
if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
continue;
unsigned P = S0.RefI.Pos;
if (Pos <= P && (Pos + W-Z) != P)
continue;
if (P < Pos && (P + Z) != Pos)
continue;
// The starting bitfield position must be at a subregister boundary.
if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
continue;
unsigned I;
for (I = 1; I < Z; ++I) {
const BitTracker::BitValue &V = SC[I];
if (V.Type != BitTracker::BitValue::Ref)
break;
if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
break;
}
if (I != Z)
continue;
// Generate bitsplit where S is defined.
if (MaxBitSplit.getNumOccurrences())
CountBitSplit++;
MachineInstr *DefS = MRI.getVRegDef(S);
assert(DefS != nullptr);
DebugLoc DL = DefS->getDebugLoc();
MachineBasicBlock &B = *DefS->getParent();
auto At = DefS->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(DefS);
if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
continue;
unsigned ImmOp = Pos <= P ? W-Z : Z;
// Find an existing bitsplit instruction if one already exists.
unsigned NewR = 0;
for (MachineInstr *In : NewMIs) {
if (In->getOpcode() != Hexagon::A4_bitspliti)
continue;
MachineOperand &Op1 = In->getOperand(1);
if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
continue;
if (In->getOperand(2).getImm() != ImmOp)
continue;
// Check if the target register is available here.
MachineOperand &Op0 = In->getOperand(0);
MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
assert(DefI != nullptr);
if (!MDT.dominates(DefI, &*At))
continue;
// Found one that can be reused.
assert(Op0.getSubReg() == 0);
NewR = Op0.getReg();
break;
}
if (!NewR) {
NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
.addReg(SrcR, 0, SrcSR)
.addImm(ImmOp);
NewMIs.push_back(NewBS);
}
if (Pos <= P) {
HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
} else {
HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
}
return true;
}
return false;
}
// Check for tstbit simplification opportunity, where the bit being checked
// can be tracked back to another register. For example:
// %2 = S2_lsr_i_r %1, 5
// %3 = S2_tstbit_i %2, 0
// =>
// %3 = S2_tstbit_i %1, 5
bool BitSimplification::simplifyTstbit(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
unsigned Opc = MI->getOpcode();
if (Opc != Hexagon::S2_tstbit_i)
return false;
unsigned BN = MI->getOperand(2).getImm();
BitTracker::RegisterRef RS = MI->getOperand(1);
unsigned F, W;
DebugLoc DL = MI->getDebugLoc();
if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
return false;
MachineBasicBlock &B = *MI->getParent();
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
const BitTracker::BitValue &V = SC[F+BN];
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
// Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
// a double register, need to use a subregister and adjust bit
// number.
unsigned P = std::numeric_limits<unsigned>::max();
BitTracker::RegisterRef RR(V.RefI.Reg, 0);
if (TC == &Hexagon::DoubleRegsRegClass) {
P = V.RefI.Pos;
RR.Sub = Hexagon::isub_lo;
if (P >= 32) {
P -= 32;
RR.Sub = Hexagon::isub_hi;
}
} else if (TC == &Hexagon::IntRegsRegClass) {
P = V.RefI.Pos;
}
if (P != std::numeric_limits<unsigned>::max()) {
unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
.addReg(RR.Reg, 0, RR.Sub)
.addImm(P);
HBS::replaceReg(RD.Reg, NewR, MRI);
BT.put(NewR, RC);
return true;
}
} else if (V.is(0) || V.is(1)) {
Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
BuildMI(B, At, DL, HII.get(NewOpc), NewR);
HBS::replaceReg(RD.Reg, NewR, MRI);
return true;
}
return false;
}
// Detect whether RD is a bitfield extract (sign- or zero-extended) of
// some register from the AVs set. Create a new corresponding instruction
// at the location of MI. The intent is to recognize situations where
// a sequence of instructions performs an operation that is equivalent to
// an extract operation, such as a shift left followed by a shift right.
bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
const RegisterSet &AVs) {
if (!GenExtract)
return false;
if (MaxExtract.getNumOccurrences()) {
if (CountExtract >= MaxExtract)
return false;
CountExtract++;
}
unsigned W = RC.width();
unsigned RW = W;
unsigned Len;
bool Signed;
// The code is mostly class-independent, except for the part that generates
// the extract instruction, and establishes the source register (in case it
// needs to use a subregister).
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
return false;
assert(RD.Sub == 0);
// Observation:
// If the cell has a form of 00..0xx..x with k zeros and n remaining
// bits, this could be an extractu of the n bits, but it could also be
// an extractu of a longer field which happens to have 0s in the top
// bit positions.
// The same logic applies to sign-extended fields.
//
// Do not check for the extended extracts, since it would expand the
// search space quite a bit. The search may be expensive as it is.
const BitTracker::BitValue &TopV = RC[W-1];
// Eliminate candidates that have self-referential bits, since they
// cannot be extracts from other registers. Also, skip registers that
// have compile-time constant values.
bool IsConst = true;
for (unsigned I = 0; I != W; ++I) {
const BitTracker::BitValue &V = RC[I];
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
return false;
IsConst = IsConst && (V.is(0) || V.is(1));
}
if (IsConst)
return false;
if (TopV.is(0) || TopV.is(1)) {
bool S = TopV.is(1);
for (--W; W > 0 && RC[W-1].is(S); --W)
;
Len = W;
Signed = S;
// The sign bit must be a part of the field being extended.
if (Signed)
++Len;
} else {
// This could still be a sign-extended extract.
assert(TopV.Type == BitTracker::BitValue::Ref);
if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
return false;
for (--W; W > 0 && RC[W-1] == TopV; --W)
;
// The top bits of RC are copies of TopV. One occurrence of TopV will
// be a part of the field.
Len = W + 1;
Signed = true;
}
// This would be just a copy. It should be handled elsewhere.
if (Len == RW)
return false;
LLVM_DEBUG({
dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
<< ", MI: " << *MI;
dbgs() << "Cell: " << RC << '\n';
dbgs() << "Expected bitfield size: " << Len << " bits, "
<< (Signed ? "sign" : "zero") << "-extended\n";
});
bool Changed = false;
for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
if (!BT.has(R))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(R);
unsigned SW = SC.width();
// The source can be longer than the destination, as long as its size is
// a multiple of the size of the destination. Also, we would need to be
// able to refer to the subregister in the source that would be of the
// same size as the destination, but only check the sizes here.
if (SW < RW || (SW % RW) != 0)
continue;
// The field can start at any offset in SC as long as it contains Len
// bits and does not cross subregister boundary (if the source register
// is longer than the destination).
unsigned Off = 0;
while (Off <= SW-Len) {
unsigned OE = (Off+Len)/RW;
if (OE != Off/RW) {
// The assumption here is that if the source (R) is longer than the
// destination, then the destination is a sequence of words of
// size RW, and each such word in R can be accessed via a subregister.
//
// If the beginning and the end of the field cross the subregister
// boundary, advance to the next subregister.
Off = OE*RW;
continue;
}
if (HBS::isEqual(RC, 0, SC, Off, Len))
break;
++Off;
}
if (Off > SW-Len)
continue;
// Found match.
unsigned ExtOpc = 0;
if (Off == 0) {
if (Len == 8)
ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
else if (Len == 16)
ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
else if (Len < 10 && !Signed)
ExtOpc = Hexagon::A2_andir;
}
if (ExtOpc == 0) {
ExtOpc =
Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
: (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
}
unsigned SR = 0;
// This only recognizes isub_lo and isub_hi.
if (RW != SW && RW*2 != SW)
continue;
if (RW != SW)
SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
Off = Off % RW;
if (!validateReg({R,SR}, ExtOpc, 1))
continue;
// Don't generate the same instruction as the one being optimized.
if (MI->getOpcode() == ExtOpc) {
// All possible ExtOpc's have the source in operand(1).
const MachineOperand &SrcOp = MI->getOperand(1);
if (SrcOp.getReg() == R)
continue;
}
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock &B = *MI->getParent();
Register NewR = MRI.createVirtualRegister(FRC);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
.addReg(R, 0, SR);
switch (ExtOpc) {
case Hexagon::A2_sxtb:
case Hexagon::A2_zxtb:
case Hexagon::A2_sxth:
case Hexagon::A2_zxth:
break;
case Hexagon::A2_andir:
MIB.addImm((1u << Len) - 1);
break;
case Hexagon::S4_extract:
case Hexagon::S2_extractu:
case Hexagon::S4_extractp:
case Hexagon::S2_extractup:
MIB.addImm(Len)
.addImm(Off);
break;
default:
llvm_unreachable("Unexpected opcode");
}
HBS::replaceReg(RD.Reg, NewR, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
Changed = true;
break;
}
return Changed;
}
bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
BitTracker::RegisterRef RD) {
unsigned Opc = MI->getOpcode();
if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
return false;
MachineOperand &CmpOp = MI->getOperand(2);
if (!CmpOp.isImm() || CmpOp.getImm() != 0)
return false;
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
return false;
assert(RD.Sub == 0);
MachineBasicBlock &B = *MI->getParent();
const DebugLoc &DL = MI->getDebugLoc();
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
bool KnownZ = true;
bool KnownNZ = false;
BitTracker::RegisterRef SR = MI->getOperand(1);
if (!BT.has(SR.Reg))
return false;
const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
unsigned F, W;
if (!HBS::getSubregMask(SR, F, W, MRI))
return false;
for (uint16_t I = F; I != F+W; ++I) {
const BitTracker::BitValue &V = SC[I];
if (!V.is(0))
KnownZ = false;
if (V.is(1))
KnownNZ = true;
}
auto ReplaceWithConst = [&](int C) {
Register NewR = MRI.createVirtualRegister(FRC);
BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
.addImm(C);
HBS::replaceReg(RD.Reg, NewR, MRI);
BitTracker::RegisterCell NewRC(W);
for (uint16_t I = 0; I != W; ++I) {
NewRC[I] = BitTracker::BitValue(C & 1);
C = unsigned(C) >> 1;
}
BT.put(BitTracker::RegisterRef(NewR), NewRC);
return true;
};
auto IsNonZero = [] (const MachineOperand &Op) {
if (Op.isGlobal() || Op.isBlockAddress())
return true;
if (Op.isImm())
return Op.getImm() != 0;
if (Op.isCImm())
return !Op.getCImm()->isZero();
if (Op.isFPImm())
return !Op.getFPImm()->isZero();
return false;
};
auto IsZero = [] (const MachineOperand &Op) {
if (Op.isGlobal() || Op.isBlockAddress())
return false;
if (Op.isImm())
return Op.getImm() == 0;
if (Op.isCImm())
return Op.getCImm()->isZero();
if (Op.isFPImm())
return Op.getFPImm()->isZero();
return false;
};
// If the source register is known to be 0 or non-0, the comparison can
// be folded to a load of a constant.
if (KnownZ || KnownNZ) {
assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
}
// Special case: if the compare comes from a C2_muxii, then we know the
// two possible constants that can be the source value.
MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
if (!InpDef)
return false;
if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
MachineOperand &Src1 = InpDef->getOperand(2);
MachineOperand &Src2 = InpDef->getOperand(3);
// Check if both are non-zero.
bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
if (KnownNZ1 && KnownNZ2)
return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
// Check if both are zero.
bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
if (KnownZ1 && KnownZ2)
return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
// If for both operands we know that they are either 0 or non-0,
// replace the comparison with a C2_muxii, using the same predicate
// register, but with operands substituted with 0/1 accordingly.
if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
Register NewR = MRI.createVirtualRegister(FRC);
BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
.addReg(InpDef->getOperand(1).getReg())
.addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
.addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
HBS::replaceReg(RD.Reg, NewR, MRI);
// Create a new cell with only the least significant bit unknown.
BitTracker::RegisterCell NewRC(W);
NewRC[0] = BitTracker::BitValue::self();
NewRC.fill(1, W, BitTracker::BitValue::Zero);
BT.put(BitTracker::RegisterRef(NewR), NewRC);
return true;
}
}
return false;
}
bool BitSimplification::processBlock(MachineBasicBlock &B,
const RegisterSet &AVs) {
if (!BT.reached(&B))
return false;
bool Changed = false;
RegisterSet AVB = AVs;
RegisterSet Defs;
for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
MachineInstr *MI = &*I;
Defs.clear();
HBS::getInstrDefs(*MI, Defs);
unsigned Opc = MI->getOpcode();
if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
continue;
if (MI->mayStore()) {
bool T = genStoreUpperHalf(MI);
T = T || genStoreImmediate(MI);
Changed |= T;
continue;
}
if (Defs.count() != 1)
continue;
const MachineOperand &Op0 = MI->getOperand(0);
if (!Op0.isReg() || !Op0.isDef())
continue;
BitTracker::RegisterRef RD = Op0;
if (!BT.has(RD.Reg))
continue;
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
bool T = genPackhl(MI, RD, RC);
T = T || simplifyExtractLow(MI, RD, RC, AVB);
Changed |= T;
continue;
}
if (FRC->getID() == Hexagon::IntRegsRegClassID) {
bool T = genBitSplit(MI, RD, RC, AVB);
T = T || simplifyExtractLow(MI, RD, RC, AVB);
T = T || genExtractHalf(MI, RD, RC);
T = T || genCombineHalf(MI, RD, RC);
T = T || genExtractLow(MI, RD, RC);
T = T || simplifyRCmp0(MI, RD);
Changed |= T;
continue;
}
if (FRC->getID() == Hexagon::PredRegsRegClassID) {
bool T = simplifyTstbit(MI, RD, RC);
Changed |= T;
continue;
}
}
return Changed;
}
bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
auto &HST = MF.getSubtarget<HexagonSubtarget>();
auto &HRI = *HST.getRegisterInfo();
auto &HII = *HST.getInstrInfo();
MDT = &getAnalysis<MachineDominatorTree>();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool Changed;
Changed = DeadCodeElimination(MF, *MDT).run();
const HexagonEvaluator HE(HRI, MRI, HII, MF);
BitTracker BT(HE, MF);
LLVM_DEBUG(BT.trace(true));
BT.run();
MachineBasicBlock &Entry = MF.front();
RegisterSet AIG; // Available registers for IG.
ConstGeneration ImmG(BT, HII, MRI);
Changed |= visitBlock(Entry, ImmG, AIG);
RegisterSet ARE; // Available registers for RIE.
RedundantInstrElimination RIE(BT, HII, HRI, MRI);
bool Ried = visitBlock(Entry, RIE, ARE);
if (Ried) {
Changed = true;
BT.run();
}
RegisterSet ACG; // Available registers for CG.
CopyGeneration CopyG(BT, HII, HRI, MRI);
Changed |= visitBlock(Entry, CopyG, ACG);
RegisterSet ACP; // Available registers for CP.
CopyPropagation CopyP(HRI, MRI);
Changed |= visitBlock(Entry, CopyP, ACP);
Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
BT.run();
RegisterSet ABS; // Available registers for BS.
BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
Changed |= visitBlock(Entry, BitS, ABS);
Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
if (Changed) {
for (auto &B : MF)
for (auto &I : B)
I.clearKillInfo();
DeadCodeElimination(MF, *MDT).run();
}
return Changed;
}
// Recognize loops where the code at the end of the loop matches the code
// before the entry of the loop, and the matching code is such that is can
// be simplified. This pass relies on the bit simplification above and only
// prepares code in a way that can be handled by the bit simplifcation.
//
// This is the motivating testcase (and explanation):
//
// {
// loop0(.LBB0_2, r1) // %for.body.preheader
// r5:4 = memd(r0++#8)
// }
// {
// r3 = lsr(r4, #16)
// r7:6 = combine(r5, r5)
// }
// {
// r3 = insert(r5, #16, #16)
// r7:6 = vlsrw(r7:6, #16)
// }
// .LBB0_2:
// {
// memh(r2+#4) = r5
// memh(r2+#6) = r6 # R6 is really R5.H
// }
// {
// r2 = add(r2, #8)
// memh(r2+#0) = r4
// memh(r2+#2) = r3 # R3 is really R4.H
// }
// {
// r5:4 = memd(r0++#8)
// }
// { # "Shuffling" code that sets up R3 and R6
// r3 = lsr(r4, #16) # so that their halves can be stored in the
// r7:6 = combine(r5, r5) # next iteration. This could be folded into
// } # the stores if the code was at the beginning
// { # of the loop iteration. Since the same code
// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
// r7:6 = vlsrw(r7:6, #16) # there.
// }:endloop0
//
//
// The outcome:
//
// {
// loop0(.LBB0_2, r1)
// r5:4 = memd(r0++#8)
// }
// .LBB0_2:
// {
// memh(r2+#4) = r5
// memh(r2+#6) = r5.h
// }
// {
// r2 = add(r2, #8)
// memh(r2+#0) = r4
// memh(r2+#2) = r4.h
// }
// {
// r5:4 = memd(r0++#8)
// }:endloop0
namespace llvm {
FunctionPass *createHexagonLoopRescheduling();
void initializeHexagonLoopReschedulingPass(PassRegistry&);
} // end namespace llvm
namespace {
class HexagonLoopRescheduling : public MachineFunctionPass {
public:
static char ID;
HexagonLoopRescheduling() : MachineFunctionPass(ID) {
initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
const HexagonInstrInfo *HII = nullptr;
const HexagonRegisterInfo *HRI = nullptr;
MachineRegisterInfo *MRI = nullptr;
BitTracker *BTP = nullptr;
struct LoopCand {
LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
MachineBasicBlock *LB, *PB, *EB;
};
using InstrList = std::vector<MachineInstr *>;
struct InstrGroup {
BitTracker::RegisterRef Inp, Out;
InstrList Ins;
};
struct PhiInfo {
PhiInfo(MachineInstr &P, MachineBasicBlock &B);
unsigned DefR;
BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
};
static unsigned getDefReg(const MachineInstr *MI);
bool isConst(unsigned Reg) const;
bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
bool isShuffleOf(unsigned OutR, unsigned InpR) const;
bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
unsigned &InpR2) const;
void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
bool processLoop(LoopCand &C);
};
} // end anonymous namespace
char HexagonLoopRescheduling::ID = 0;
INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
"Hexagon Loop Rescheduling", false, false)
HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
MachineBasicBlock &B) {
DefR = HexagonLoopRescheduling::getDefReg(&P);
LB = &B;
PB = nullptr;
for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
const MachineOperand &OpB = P.getOperand(i+1);
if (OpB.getMBB() == &B) {
LR = P.getOperand(i);
continue;
}
PB = OpB.getMBB();
PR = P.getOperand(i);
}
}
unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
RegisterSet Defs;
HBS::getInstrDefs(*MI, Defs);
if (Defs.count() != 1)
return 0;
return Defs.find_first();
}
bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
if (!BTP->has(Reg))
return false;
const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
for (unsigned i = 0, w = RC.width(); i < w; ++i) {
const BitTracker::BitValue &V = RC[i];
if (!V.is(0) && !V.is(1))
return false;
}
return true;
}
bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
unsigned DefR) const {
unsigned Opc = MI->getOpcode();
switch (Opc) {
case TargetOpcode::COPY:
case Hexagon::S2_lsr_i_r:
case Hexagon::S2_asr_i_r:
case Hexagon::S2_asl_i_r:
case Hexagon::S2_lsr_i_p:
case Hexagon::S2_asr_i_p:
case Hexagon::S2_asl_i_p:
case Hexagon::S2_insert:
case Hexagon::A2_or:
case Hexagon::A2_orp:
case Hexagon::A2_and:
case Hexagon::A2_andp:
case Hexagon::A2_combinew:
case Hexagon::A4_combineri:
case Hexagon::A4_combineir:
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
case Hexagon::A2_combine_ll:
case Hexagon::A2_combine_lh:
case Hexagon::A2_combine_hl:
case Hexagon::A2_combine_hh:
return true;
}
return false;
}
bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
unsigned InpR) const {
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
const MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg())
continue;
if (Op.getReg() == InpR)
return i == n-1;
}
return false;
}
bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
if (!BTP->has(OutR) || !BTP->has(InpR))
return false;
const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
const BitTracker::BitValue &V = OutC[i];
if (V.Type != BitTracker::BitValue::Ref)
continue;
if (V.RefI.Reg != InpR)
return false;
}
return true;
}
bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
unsigned OutR2, unsigned &InpR2) const {
if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
return false;
const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
unsigned W = OutC1.width();
unsigned MatchR = 0;
if (W != OutC2.width())
return false;
for (unsigned i = 0; i < W; ++i) {
const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
return false;
if (V1.Type != BitTracker::BitValue::Ref)
continue;
if (V1.RefI.Pos != V2.RefI.Pos)
return false;
if (V1.RefI.Reg != InpR1)
return false;
if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
return false;
if (!MatchR)
MatchR = V2.RefI.Reg;
else if (V2.RefI.Reg != MatchR)
return false;
}
InpR2 = MatchR;
return true;
}
void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
unsigned NewPredR) {
DenseMap<unsigned,unsigned> RegMap;
const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
Register PhiR = MRI->createVirtualRegister(PhiRC);
BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
.addReg(NewPredR)
.addMBB(&PB)
.addReg(G.Inp.Reg)
.addMBB(&LB);
RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
for (unsigned i = G.Ins.size(); i > 0; --i) {
const MachineInstr *SI = G.Ins[i-1];
unsigned DR = getDefReg(SI);
const TargetRegisterClass *RC = MRI->getRegClass(DR);
Register NewDR = MRI->createVirtualRegister(RC);
DebugLoc DL = SI->getDebugLoc();
auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
const MachineOperand &Op = SI->getOperand(j);
if (!Op.isReg()) {
MIB.add(Op);
continue;
}
if (!Op.isUse())
continue;
unsigned UseR = RegMap[Op.getReg()];
MIB.addReg(UseR, 0, Op.getSubReg());
}
RegMap.insert(std::make_pair(DR, NewDR));
}
HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
}
bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
<< "\n");
std::vector<PhiInfo> Phis;
for (auto &I : *C.LB) {
if (!I.isPHI())
break;
unsigned PR = getDefReg(&I);
if (isConst(PR))
continue;
bool BadUse = false, GoodUse = false;
for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
MachineInstr *UseI = UI->getParent();
if (UseI->getParent() != C.LB) {
BadUse = true;
break;
}
if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
GoodUse = true;
}
if (BadUse || !GoodUse)
continue;
Phis.push_back(PhiInfo(I, *C.LB));
}
LLVM_DEBUG({
dbgs() << "Phis: {";
for (auto &I : Phis) {
dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
<< printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
<< ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
<< I.LB->getNumber() << ')';
}
dbgs() << " }\n";
});
if (Phis.empty())
return false;
bool Changed = false;
InstrList ShufIns;
// Go backwards in the block: for each bit shuffling instruction, check
// if that instruction could potentially be moved to the front of the loop:
// the output of the loop cannot be used in a non-shuffling instruction
// in this loop.
for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
if (I->isTerminator())
continue;
if (I->isPHI())
break;
RegisterSet Defs;
HBS::getInstrDefs(*I, Defs);
if (Defs.count() != 1)
continue;
unsigned DefR = Defs.find_first();
if (!Register::isVirtualRegister(DefR))
continue;
if (!isBitShuffle(&*I, DefR))
continue;
bool BadUse = false;
for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
MachineInstr *UseI = UI->getParent();
if (UseI->getParent() == C.LB) {
if (UseI->isPHI()) {
// If the use is in a phi node in this loop, then it should be
// the value corresponding to the back edge.
unsigned Idx = UI.getOperandNo();
if (UseI->getOperand(Idx+1).getMBB() != C.LB)
BadUse = true;
} else {
auto F = find(ShufIns, UseI);
if (F == ShufIns.end())
BadUse = true;
}
} else {
// There is a use outside of the loop, but there is no epilog block
// suitable for a copy-out.
if (C.EB == nullptr)
BadUse = true;
}
if (BadUse)
break;
}
if (BadUse)
continue;
ShufIns.push_back(&*I);
}
// Partition the list of shuffling instructions into instruction groups,
// where each group has to be moved as a whole (i.e. a group is a chain of
// dependent instructions). A group produces a single live output register,
// which is meant to be the input of the loop phi node (although this is
// not checked here yet). It also uses a single register as its input,
// which is some value produced in the loop body. After moving the group
// to the beginning of the loop, that input register would need to be
// the loop-carried register (through a phi node) instead of the (currently
// loop-carried) output register.
using InstrGroupList = std::vector<InstrGroup>;
InstrGroupList Groups;
for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
MachineInstr *SI = ShufIns[i];
if (SI == nullptr)
continue;
InstrGroup G;
G.Ins.push_back(SI);
G.Out.Reg = getDefReg(SI);
RegisterSet Inputs;
HBS::getInstrUses(*SI, Inputs);
for (unsigned j = i+1; j < n; ++j) {
MachineInstr *MI = ShufIns[j];
if (MI == nullptr)
continue;
RegisterSet Defs;
HBS::getInstrDefs(*MI, Defs);
// If this instruction does not define any pending inputs, skip it.
if (!Defs.intersects(Inputs))
continue;
// Otherwise, add it to the current group and remove the inputs that
// are defined by MI.
G.Ins.push_back(MI);
Inputs.remove(Defs);
// Then add all registers used by MI.
HBS::getInstrUses(*MI, Inputs);
ShufIns[j] = nullptr;
}
// Only add a group if it requires at most one register.
if (Inputs.count() > 1)
continue;
auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
return G.Out.Reg == P.LR.Reg;
};
if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
continue;
G.Inp.Reg = Inputs.find_first();
Groups.push_back(G);
}
LLVM_DEBUG({
for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
InstrGroup &G = Groups[i];
dbgs() << "Group[" << i << "] inp: "
<< printReg(G.Inp.Reg, HRI, G.Inp.Sub)
<< " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
dbgs() << " " << *G.Ins[j];
}
});
for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
InstrGroup &G = Groups[i];
if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
continue;
auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
return G.Out.Reg == P.LR.Reg;
};
auto F = llvm::find_if(Phis, LoopInpEq);
if (F == Phis.end())
continue;
unsigned PrehR = 0;
if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
unsigned Opc = DefPrehR->getOpcode();
if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
continue;
if (!DefPrehR->getOperand(1).isImm())
continue;
if (DefPrehR->getOperand(1).getImm() != 0)
continue;
const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
if (RC != MRI->getRegClass(F->PR.Reg)) {
PrehR = MRI->createVirtualRegister(RC);
unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
: Hexagon::A2_tfrpi;
auto T = C.PB->getFirstTerminator();
DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
.addImm(0);
} else {
PrehR = F->PR.Reg;
}
}
// isSameShuffle could match with PrehR being of a wider class than
// G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
// it would match for the input being a 32-bit register, and PrehR
// being a 64-bit register (where the low 32 bits match). This could
// be handled, but for now skip these cases.
if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
continue;
moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
Changed = true;
}
return Changed;
}
bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
auto &HST = MF.getSubtarget<HexagonSubtarget>();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
MRI = &MF.getRegInfo();
const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
BitTracker BT(HE, MF);
LLVM_DEBUG(BT.trace(true));
BT.run();
BTP = &BT;
std::vector<LoopCand> Cand;
for (auto &B : MF) {
if (B.pred_size() != 2 || B.succ_size() != 2)
continue;
MachineBasicBlock *PB = nullptr;
bool IsLoop = false;
for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
if (*PI != &B)
PB = *PI;
else
IsLoop = true;
}
if (!IsLoop)
continue;
MachineBasicBlock *EB = nullptr;
for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
if (*SI == &B)
continue;
// Set EP to the epilog block, if it has only 1 predecessor (i.e. the
// edge from B to EP is non-critical.
if ((*SI)->pred_size() == 1)
EB = *SI;
break;
}
Cand.push_back(LoopCand(&B, PB, EB));
}
bool Changed = false;
for (auto &C : Cand)
Changed |= processLoop(C);
return Changed;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonLoopRescheduling() {
return new HexagonLoopRescheduling();
}
FunctionPass *llvm::createHexagonBitSimplify() {
return new HexagonBitSimplify();
}
|