reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
//===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass inserts intrinsics to handle small types that would otherwise be
/// promoted during legalization. Here we can manually promote types or insert
/// intrinsics which can handle narrow types that aren't supported by the
/// register classes.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"

#define DEBUG_TYPE "arm-codegenprepare"

using namespace llvm;

static cl::opt<bool>
DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
           cl::desc("Disable ARM specific CodeGenPrepare pass"));

static cl::opt<bool>
EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
          cl::desc("Use DSP instructions for scalar operations"));

static cl::opt<bool>
EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
                   cl::desc("Use DSP instructions for scalar operations\
                            with immediate operands"));

// The goal of this pass is to enable more efficient code generation for
// operations on narrow types (i.e. types with < 32-bits) and this is a
// motivating IR code example:
//
//   define hidden i32 @cmp(i8 zeroext) {
//     %2 = add i8 %0, -49
//     %3 = icmp ult i8 %2, 3
//     ..
//   }
//
// The issue here is that i8 is type-legalized to i32 because i8 is not a
// legal type. Thus, arithmetic is done in integer-precision, but then the
// byte value is masked out as follows:
//
//   t19: i32 = add t4, Constant:i32<-49>
//     t24: i32 = and t19, Constant:i32<255>
//
// Consequently, we generate code like this:
//
//   subs  r0, #49
//   uxtb  r1, r0
//   cmp r1, #3
//
// This shows that masking out the byte value results in generation of
// the UXTB instruction. This is not optimal as r0 already contains the byte
// value we need, and so instead we can just generate:
//
//   sub.w r1, r0, #49
//   cmp r1, #3
//
// We achieve this by type promoting the IR to i32 like so for this example:
//
//   define i32 @cmp(i8 zeroext %c) {
//     %0 = zext i8 %c to i32
//     %c.off = add i32 %0, -49
//     %1 = icmp ult i32 %c.off, 3
//     ..
//   }
//
// For this to be valid and legal, we need to prove that the i32 add is
// producing the same value as the i8 addition, and that e.g. no overflow
// happens.
//
// A brief sketch of the algorithm and some terminology.
// We pattern match interesting IR patterns:
// - which have "sources": instructions producing narrow values (i8, i16), and
// - they have "sinks": instructions consuming these narrow values.
//
// We collect all instruction connecting sources and sinks in a worklist, so
// that we can mutate these instruction and perform type promotion when it is
// legal to do so.

namespace {
class IRPromoter {
  SmallPtrSet<Value*, 8> NewInsts;
  SmallPtrSet<Instruction*, 4> InstsToRemove;
  DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
  SmallPtrSet<Value*, 8> Promoted;
  Module *M = nullptr;
  LLVMContext &Ctx;
  // The type we promote to: always i32
  IntegerType *ExtTy = nullptr;
  // The type of the value that the search began from, either i8 or i16.
  // This defines the max range of the values that we allow in the promoted
  // tree.
  IntegerType *OrigTy = nullptr;
  SetVector<Value*> *Visited;
  SmallPtrSetImpl<Value*> *Sources;
  SmallPtrSetImpl<Instruction*> *Sinks;
  SmallPtrSetImpl<Instruction*> *SafeToPromote;
  SmallPtrSetImpl<Instruction*> *SafeWrap;

  void ReplaceAllUsersOfWith(Value *From, Value *To);
  void PrepareWrappingAdds(void);
  void ExtendSources(void);
  void ConvertTruncs(void);
  void PromoteTree(void);
  void TruncateSinks(void);
  void Cleanup(void);

public:
  IRPromoter(Module *M) : M(M), Ctx(M->getContext()),
                          ExtTy(Type::getInt32Ty(Ctx)) { }


  void Mutate(Type *OrigTy,
              SetVector<Value*> &Visited,
              SmallPtrSetImpl<Value*> &Sources,
              SmallPtrSetImpl<Instruction*> &Sinks,
              SmallPtrSetImpl<Instruction*> &SafeToPromote,
              SmallPtrSetImpl<Instruction*> &SafeWrap);
};

class ARMCodeGenPrepare : public FunctionPass {
  const ARMSubtarget *ST = nullptr;
  IRPromoter *Promoter = nullptr;
  std::set<Value*> AllVisited;
  SmallPtrSet<Instruction*, 8> SafeToPromote;
  SmallPtrSet<Instruction*, 4> SafeWrap;

  bool isSafeWrap(Instruction *I);
  bool isSupportedValue(Value *V);
  bool isLegalToPromote(Value *V);
  bool TryToPromote(Value *V);

public:
  static char ID;
  static unsigned TypeSize;
  Type *OrigTy = nullptr;

  ARMCodeGenPrepare() : FunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetPassConfig>();
  }

  StringRef getPassName() const override { return "ARM IR optimizations"; }

  bool doInitialization(Module &M) override;
  bool runOnFunction(Function &F) override;
  bool doFinalization(Module &M) override;
};

}

static bool GenerateSignBits(Value *V) {
  if (!isa<Instruction>(V))
    return false;

  unsigned Opc = cast<Instruction>(V)->getOpcode();
  return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
         Opc == Instruction::SRem || Opc == Instruction::SExt;
}

static bool EqualTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
}

static bool LessOrEqualTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize;
}

static bool GreaterThanTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize;
}

static bool LessThanTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize;
}

/// Some instructions can use 8- and 16-bit operands, and we don't need to
/// promote anything larger. We disallow booleans to make life easier when
/// dealing with icmps but allow any other integer that is <= 16 bits. Void
/// types are accepted so we can handle switches.
static bool isSupportedType(Value *V) {
  Type *Ty = V->getType();

  // Allow voids and pointers, these won't be promoted.
  if (Ty->isVoidTy() || Ty->isPointerTy())
    return true;

  if (auto *Ld = dyn_cast<LoadInst>(V))
    Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();

  if (!isa<IntegerType>(Ty) ||
      cast<IntegerType>(V->getType())->getBitWidth() == 1)
    return false;

  return LessOrEqualTypeSize(V);
}

/// Return true if the given value is a source in the use-def chain, producing
/// a narrow 'TypeSize' value. These values will be zext to start the promotion
/// of the tree to i32. We guarantee that these won't populate the upper bits
/// of the register. ZExt on the loads will be free, and the same for call
/// return values because we only accept ones that guarantee a zeroext ret val.
/// Many arguments will have the zeroext attribute too, so those would be free
/// too.
static bool isSource(Value *V) {
  if (!isa<IntegerType>(V->getType()))
    return false;

  // TODO Allow zext to be sources.
  if (isa<Argument>(V))
    return true;
  else if (isa<LoadInst>(V))
    return true;
  else if (isa<BitCastInst>(V))
    return true;
  else if (auto *Call = dyn_cast<CallInst>(V))
    return Call->hasRetAttr(Attribute::AttrKind::ZExt);
  else if (auto *Trunc = dyn_cast<TruncInst>(V))
    return EqualTypeSize(Trunc);
  return false;
}

/// Return true if V will require any promoted values to be truncated for the
/// the IR to remain valid. We can't mutate the value type of these
/// instructions.
static bool isSink(Value *V) {
  // TODO The truncate also isn't actually necessary because we would already
  // proved that the data value is kept within the range of the original data
  // type.

  // Sinks are:
  // - points where the value in the register is being observed, such as an
  //   icmp, switch or store.
  // - points where value types have to match, such as calls and returns.
  // - zext are included to ease the transformation and are generally removed
  //   later on.
  if (auto *Store = dyn_cast<StoreInst>(V))
    return LessOrEqualTypeSize(Store->getValueOperand());
  if (auto *Return = dyn_cast<ReturnInst>(V))
    return LessOrEqualTypeSize(Return->getReturnValue());
  if (auto *ZExt = dyn_cast<ZExtInst>(V))
    return GreaterThanTypeSize(ZExt);
  if (auto *Switch = dyn_cast<SwitchInst>(V))
    return LessThanTypeSize(Switch->getCondition());
  if (auto *ICmp = dyn_cast<ICmpInst>(V))
    return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));

  return isa<CallInst>(V);
}

/// Return whether this instruction can safely wrap.
bool ARMCodeGenPrepare::isSafeWrap(Instruction *I) {
  // We can support a, potentially, wrapping instruction (I) if:
  // - It is only used by an unsigned icmp.
  // - The icmp uses a constant.
  // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
  //   around zero to become a larger number than before.
  // - The wrapping instruction (I) also uses a constant.
  //
  // We can then use the two constants to calculate whether the result would
  // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
  // just underflows the range, the icmp would give the same result whether the
  // result has been truncated or not. We calculate this by:
  // - Zero extending both constants, if needed, to 32-bits.
  // - Take the absolute value of I's constant, adding this to the icmp const.
  // - Check that this value is not out of range for small type. If it is, it
  //   means that it has underflowed enough to wrap around the icmp constant.
  //
  // For example:
  //
  // %sub = sub i8 %a, 2
  // %cmp = icmp ule i8 %sub, 254
  //
  // If %a = 0, %sub = -2 == FE == 254
  // But if this is evalulated as a i32
  // %sub = -2 == FF FF FF FE == 4294967294
  // So the unsigned compares (i8 and i32) would not yield the same result.
  //
  // Another way to look at it is:
  // %a - 2 <= 254
  // %a + 2 <= 254 + 2
  // %a <= 256
  // And we can't represent 256 in the i8 format, so we don't support it.
  //
  // Whereas:
  //
  // %sub i8 %a, 1
  // %cmp = icmp ule i8 %sub, 254
  //
  // If %a = 0, %sub = -1 == FF == 255
  // As i32:
  // %sub = -1 == FF FF FF FF == 4294967295
  //
  // In this case, the unsigned compare results would be the same and this
  // would also be true for ult, uge and ugt:
  // - (255 < 254) == (0xFFFFFFFF < 254) == false
  // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
  // - (255 > 254) == (0xFFFFFFFF > 254) == true
  // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
  //
  // To demonstrate why we can't handle increasing values:
  //
  // %add = add i8 %a, 2
  // %cmp = icmp ult i8 %add, 127
  //
  // If %a = 254, %add = 256 == (i8 1)
  // As i32:
  // %add = 256
  //
  // (1 < 127) != (256 < 127)

  unsigned Opc = I->getOpcode();
  if (Opc != Instruction::Add && Opc != Instruction::Sub)
    return false;

  if (!I->hasOneUse() ||
      !isa<ICmpInst>(*I->user_begin()) ||
      !isa<ConstantInt>(I->getOperand(1)))
    return false;

  ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
  bool NegImm = OverflowConst->isNegative();
  bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
                       ((Opc == Instruction::Add) && NegImm);
  if (!IsDecreasing)
    return false;

  // Don't support an icmp that deals with sign bits.
  auto *CI = cast<ICmpInst>(*I->user_begin());
  if (CI->isSigned() || CI->isEquality())
    return false;

  ConstantInt *ICmpConst = nullptr;
  if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
    ICmpConst = Const;
  else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
    ICmpConst = Const;
  else
    return false;

  // Now check that the result can't wrap on itself.
  APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
    ICmpConst->getValue().zext(32) : ICmpConst->getValue();

  Total += OverflowConst->getValue().getBitWidth() < 32 ?
    OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();

  APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize);

  if (Total.getBitWidth() > Max.getBitWidth()) {
    if (Total.ugt(Max.zext(Total.getBitWidth())))
      return false;
  } else if (Max.getBitWidth() > Total.getBitWidth()) {
    if (Total.zext(Max.getBitWidth()).ugt(Max))
      return false;
  } else if (Total.ugt(Max))
    return false;

  LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
  SafeWrap.insert(I);
  return true;
}

static bool shouldPromote(Value *V) {
  if (!isa<IntegerType>(V->getType()) || isSink(V))
    return false;

  if (isSource(V))
    return true;

  auto *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  if (isa<ICmpInst>(I))
    return false;

  return true;
}

/// Return whether we can safely mutate V's type to ExtTy without having to be
/// concerned with zero extending or truncation.
static bool isPromotedResultSafe(Value *V) {
  if (GenerateSignBits(V))
    return false;

  if (!isa<Instruction>(V))
    return true;

  if (!isa<OverflowingBinaryOperator>(V))
    return true;

  return cast<Instruction>(V)->hasNoUnsignedWrap();
}

/// Return the intrinsic for the instruction that can perform the same
/// operation but on a narrow type. This is using the parallel dsp intrinsics
/// on scalar values.
static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
  // Whether we use the signed or unsigned versions of these intrinsics
  // doesn't matter because we're not using the GE bits that they set in
  // the APSR.
  switch(I->getOpcode()) {
  default:
    break;
  case Instruction::Add:
    return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
      Intrinsic::arm_uadd8;
  case Instruction::Sub:
    return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
      Intrinsic::arm_usub8;
  }
  llvm_unreachable("unhandled opcode for narrow intrinsic");
}

void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
  SmallVector<Instruction*, 4> Users;
  Instruction *InstTo = dyn_cast<Instruction>(To);
  bool ReplacedAll = true;

  LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To
             << "\n");

  for (Use &U : From->uses()) {
    auto *User = cast<Instruction>(U.getUser());
    if (InstTo && User->isIdenticalTo(InstTo)) {
      ReplacedAll = false;
      continue;
    }
    Users.push_back(User);
  }

  for (auto *U : Users)
    U->replaceUsesOfWith(From, To);

  if (ReplacedAll)
    if (auto *I = dyn_cast<Instruction>(From))
      InstsToRemove.insert(I);
}

void IRPromoter::PrepareWrappingAdds() {
  LLVM_DEBUG(dbgs() << "ARM CGP: Prepare underflowing adds.\n");
  IRBuilder<> Builder{Ctx};

  // For adds that safely wrap and use a negative immediate as operand 1, we
  // create an equivalent instruction using a positive immediate.
  // That positive immediate can then be zext along with all the other
  // immediates later.
  for (auto *I : *SafeWrap) {
    if (I->getOpcode() != Instruction::Add)
      continue;

    LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n");
    assert((isa<ConstantInt>(I->getOperand(1)) &&
            cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
           "Wrapping should have a negative immediate as the second operand");

    auto Const = cast<ConstantInt>(I->getOperand(1));
    auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
    Builder.SetInsertPoint(I);
    Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
    if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
      NewInst->copyIRFlags(I);
      NewInsts.insert(NewInst);
    }
    InstsToRemove.insert(I);
    I->replaceAllUsesWith(NewVal);
    LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n");
  }
  for (auto *I : NewInsts)
    Visited->insert(I);
}

void IRPromoter::ExtendSources() {
  IRBuilder<> Builder{Ctx};

  auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
    assert(V->getType() != ExtTy && "zext already extends to i32");
    LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
    Builder.SetInsertPoint(InsertPt);
    if (auto *I = dyn_cast<Instruction>(V))
      Builder.SetCurrentDebugLocation(I->getDebugLoc());

    Value *ZExt = Builder.CreateZExt(V, ExtTy);
    if (auto *I = dyn_cast<Instruction>(ZExt)) {
      if (isa<Argument>(V))
        I->moveBefore(InsertPt);
      else
        I->moveAfter(InsertPt);
      NewInsts.insert(I);
    }

    ReplaceAllUsersOfWith(V, ZExt);
  };

  // Now, insert extending instructions between the sources and their users.
  LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
  for (auto V : *Sources) {
    LLVM_DEBUG(dbgs() << " - " << *V << "\n");
    if (auto *I = dyn_cast<Instruction>(V))
      InsertZExt(I, I);
    else if (auto *Arg = dyn_cast<Argument>(V)) {
      BasicBlock &BB = Arg->getParent()->front();
      InsertZExt(Arg, &*BB.getFirstInsertionPt());
    } else {
      llvm_unreachable("unhandled source that needs extending");
    }
    Promoted.insert(V);
  }
}

void IRPromoter::PromoteTree() {
  LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");

  IRBuilder<> Builder{Ctx};

  // Mutate the types of the instructions within the tree. Here we handle
  // constant operands.
  for (auto *V : *Visited) {
    if (Sources->count(V))
      continue;

    auto *I = cast<Instruction>(V);
    if (Sinks->count(I))
      continue;

    for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
      Value *Op = I->getOperand(i);
      if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
        continue;

      if (auto *Const = dyn_cast<ConstantInt>(Op)) {
        Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
        I->setOperand(i, NewConst);
      } else if (isa<UndefValue>(Op))
        I->setOperand(i, UndefValue::get(ExtTy));
    }

    if (shouldPromote(I)) {
      I->mutateType(ExtTy);
      Promoted.insert(I);
    }
  }

  // Finally, any instructions that should be promoted but haven't yet been,
  // need to be handled using intrinsics.
  for (auto *V : *Visited) {
    auto *I = dyn_cast<Instruction>(V);
    if (!I)
      continue;

    if (Sources->count(I) || Sinks->count(I))
      continue;

    if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I))
      continue;

    assert(EnableDSP && "DSP intrinisc insertion not enabled!");

    // Replace unsafe instructions with appropriate intrinsic calls.
    LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
               << *I << "\n");
    Function *DSPInst =
      Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
    Builder.SetInsertPoint(I);
    Builder.SetCurrentDebugLocation(I->getDebugLoc());
    Value *Args[] = { I->getOperand(0), I->getOperand(1) };
    CallInst *Call = Builder.CreateCall(DSPInst, Args);
    NewInsts.insert(Call);
    ReplaceAllUsersOfWith(I, Call);
  }
}

void IRPromoter::TruncateSinks() {
  LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");

  IRBuilder<> Builder{Ctx};

  auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
    if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
      return nullptr;

    if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
      return nullptr;

    LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
               << *V << "\n");
    Builder.SetInsertPoint(cast<Instruction>(V));
    auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
    if (Trunc)
      NewInsts.insert(Trunc);
    return Trunc;
  };

  // Fix up any stores or returns that use the results of the promoted
  // chain.
  for (auto I : *Sinks) {
    LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n");

    // Handle calls separately as we need to iterate over arg operands.
    if (auto *Call = dyn_cast<CallInst>(I)) {
      for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
        Value *Arg = Call->getArgOperand(i);
        Type *Ty = TruncTysMap[Call][i];
        if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
          Trunc->moveBefore(Call);
          Call->setArgOperand(i, Trunc);
        }
      }
      continue;
    }

    // Special case switches because we need to truncate the condition.
    if (auto *Switch = dyn_cast<SwitchInst>(I)) {
      Type *Ty = TruncTysMap[Switch][0];
      if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
        Trunc->moveBefore(Switch);
        Switch->setCondition(Trunc);
      }
      continue;
    }

    // Now handle the others.
    for (unsigned i = 0; i < I->getNumOperands(); ++i) {
      Type *Ty = TruncTysMap[I][i];
      if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
        Trunc->moveBefore(I);
        I->setOperand(i, Trunc);
      }
    }
  }
}

void IRPromoter::Cleanup() {
  LLVM_DEBUG(dbgs() << "ARM CGP: Cleanup..\n");
  // Some zexts will now have become redundant, along with their trunc
  // operands, so remove them
  for (auto V : *Visited) {
    if (!isa<ZExtInst>(V))
      continue;

    auto ZExt = cast<ZExtInst>(V);
    if (ZExt->getDestTy() != ExtTy)
      continue;

    Value *Src = ZExt->getOperand(0);
    if (ZExt->getSrcTy() == ZExt->getDestTy()) {
      LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
                 << "\n");
      ReplaceAllUsersOfWith(ZExt, Src);
      continue;
    }

    // Unless they produce a value that is narrower than ExtTy, we can
    // replace the result of the zext with the input of a newly inserted
    // trunc.
    if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
        Src->getType() == OrigTy) {
      auto *Trunc = cast<TruncInst>(Src);
      assert(Trunc->getOperand(0)->getType() == ExtTy &&
             "expected inserted trunc to be operating on i32");
      ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
    }
  }

  for (auto *I : InstsToRemove) {
    LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
    I->dropAllReferences();
    I->eraseFromParent();
  }

  InstsToRemove.clear();
  NewInsts.clear();
  TruncTysMap.clear();
  Promoted.clear();
  SafeToPromote->clear();
  SafeWrap->clear();
}

void IRPromoter::ConvertTruncs() {
  LLVM_DEBUG(dbgs() << "ARM CGP: Converting truncs..\n");
  IRBuilder<> Builder{Ctx};

  for (auto *V : *Visited) {
    if (!isa<TruncInst>(V) || Sources->count(V))
      continue;

    auto *Trunc = cast<TruncInst>(V);
    Builder.SetInsertPoint(Trunc);
    IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
    IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);

    unsigned NumBits = DestTy->getScalarSizeInBits();
    ConstantInt *Mask =
      ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
    Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);

    if (auto *I = dyn_cast<Instruction>(Masked))
      NewInsts.insert(I);

    ReplaceAllUsersOfWith(Trunc, Masked);
  }
}

void IRPromoter::Mutate(Type *OrigTy,
                        SetVector<Value*> &Visited,
                        SmallPtrSetImpl<Value*> &Sources,
                        SmallPtrSetImpl<Instruction*> &Sinks,
                        SmallPtrSetImpl<Instruction*> &SafeToPromote,
                        SmallPtrSetImpl<Instruction*> &SafeWrap) {
  LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
             << ARMCodeGenPrepare::TypeSize << " to 32-bits\n");

  assert(isa<IntegerType>(OrigTy) && "expected integer type");
  this->OrigTy = cast<IntegerType>(OrigTy);
  assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
         "original type not smaller than extended type");

  this->Visited = &Visited;
  this->Sources = &Sources;
  this->Sinks = &Sinks;
  this->SafeToPromote = &SafeToPromote;
  this->SafeWrap = &SafeWrap;

  // Cache original types of the values that will likely need truncating
  for (auto *I : Sinks) {
    if (auto *Call = dyn_cast<CallInst>(I)) {
      for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
        Value *Arg = Call->getArgOperand(i);
        TruncTysMap[Call].push_back(Arg->getType());
      }
    } else if (auto *Switch = dyn_cast<SwitchInst>(I))
      TruncTysMap[I].push_back(Switch->getCondition()->getType());
    else {
      for (unsigned i = 0; i < I->getNumOperands(); ++i)
        TruncTysMap[I].push_back(I->getOperand(i)->getType());
    }
  }
  for (auto *V : Visited) {
    if (!isa<TruncInst>(V) || Sources.count(V))
      continue;
    auto *Trunc = cast<TruncInst>(V);
    TruncTysMap[Trunc].push_back(Trunc->getDestTy());
  }

  // Convert adds using negative immediates to equivalent instructions that use
  // positive constants.
  PrepareWrappingAdds();

  // Insert zext instructions between sources and their users.
  ExtendSources();

  // Promote visited instructions, mutating their types in place. Also insert
  // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
  // promote.
  PromoteTree();

  // Convert any truncs, that aren't sources, into AND masks.
  ConvertTruncs();

  // Insert trunc instructions for use by calls, stores etc...
  TruncateSinks();

  // Finally, remove unecessary zexts and truncs, delete old instructions and
  // clear the data structures.
  Cleanup();

  LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
}

/// We accept most instructions, as well as Arguments and ConstantInsts. We
/// Disallow casts other than zext and truncs and only allow calls if their
/// return value is zeroext. We don't allow opcodes that can introduce sign
/// bits.
bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    switch (I->getOpcode()) {
    default:
      return isa<BinaryOperator>(I) && isSupportedType(I) &&
             !GenerateSignBits(I);
    case Instruction::GetElementPtr:
    case Instruction::Store:
    case Instruction::Br:
    case Instruction::Switch:
      return true;
    case Instruction::PHI:
    case Instruction::Select:
    case Instruction::Ret:
    case Instruction::Load:
    case Instruction::Trunc:
    case Instruction::BitCast:
      return isSupportedType(I);
    case Instruction::ZExt:
      return isSupportedType(I->getOperand(0));
    case Instruction::ICmp:
      // Now that we allow small types than TypeSize, only allow icmp of
      // TypeSize because they will require a trunc to be legalised.
      // TODO: Allow icmp of smaller types, and calculate at the end
      // whether the transform would be beneficial.
      if (isa<PointerType>(I->getOperand(0)->getType()))
        return true;
      return EqualTypeSize(I->getOperand(0));
    case Instruction::Call: {
      // Special cases for calls as we need to check for zeroext
      // TODO We should accept calls even if they don't have zeroext, as they
      // can still be sinks.
      auto *Call = cast<CallInst>(I);
      return isSupportedType(Call) &&
             Call->hasRetAttr(Attribute::AttrKind::ZExt);
    }
    }
  } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
    return isSupportedType(V);
  } else if (isa<Argument>(V))
    return isSupportedType(V);

  return isa<BasicBlock>(V);
}

/// Check that the type of V would be promoted and that the original type is
/// smaller than the targeted promoted type. Check that we're not trying to
/// promote something larger than our base 'TypeSize' type.
bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {

  auto *I = dyn_cast<Instruction>(V);
  if (!I)
    return true;

  if (SafeToPromote.count(I))
   return true;

  if (isPromotedResultSafe(V) || isSafeWrap(I)) {
    SafeToPromote.insert(I);
    return true;
  }

  if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
    return false;

  // If promotion is not safe, can we use a DSP instruction to natively
  // handle the narrow type?
  if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
    return false;

  if (ST->isThumb() && !ST->hasThumb2())
    return false;

  // TODO
  // Would it be profitable? For Thumb code, these parallel DSP instructions
  // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
  // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
  // halved. They also do not take immediates as operands.
  for (auto &Op : I->operands()) {
    if (isa<Constant>(Op)) {
      if (!EnableDSPWithImms)
        return false;
    }
  }
  LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n");
  return true;
}

bool ARMCodeGenPrepare::TryToPromote(Value *V) {
  OrigTy = V->getType();
  TypeSize = OrigTy->getPrimitiveSizeInBits();
  if (TypeSize > 16 || TypeSize < 8)
    return false;

  SafeToPromote.clear();
  SafeWrap.clear();

  if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
    return false;

  LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
             << TypeSize << "\n");

  SetVector<Value*> WorkList;
  SmallPtrSet<Value*, 8> Sources;
  SmallPtrSet<Instruction*, 4> Sinks;
  SetVector<Value*> CurrentVisited;
  WorkList.insert(V);

  // Return true if V was added to the worklist as a supported instruction,
  // if it was already visited, or if we don't need to explore it (e.g.
  // pointer values and GEPs), and false otherwise.
  auto AddLegalInst = [&](Value *V) {
    if (CurrentVisited.count(V))
      return true;

    // Ignore GEPs because they don't need promoting and the constant indices
    // will prevent the transformation.
    if (isa<GetElementPtrInst>(V))
      return true;

    if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
      LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
      return false;
    }

    WorkList.insert(V);
    return true;
  };

  // Iterate through, and add to, a tree of operands and users in the use-def.
  while (!WorkList.empty()) {
    Value *V = WorkList.back();
    WorkList.pop_back();
    if (CurrentVisited.count(V))
      continue;

    // Ignore non-instructions, other than arguments.
    if (!isa<Instruction>(V) && !isSource(V))
      continue;

    // If we've already visited this value from somewhere, bail now because
    // the tree has already been explored.
    // TODO: This could limit the transform, ie if we try to promote something
    // from an i8 and fail first, before trying an i16.
    if (AllVisited.count(V))
      return false;

    CurrentVisited.insert(V);
    AllVisited.insert(V);

    // Calls can be both sources and sinks.
    if (isSink(V))
      Sinks.insert(cast<Instruction>(V));

    if (isSource(V))
      Sources.insert(V);

    if (!isSink(V) && !isSource(V)) {
      if (auto *I = dyn_cast<Instruction>(V)) {
        // Visit operands of any instruction visited.
        for (auto &U : I->operands()) {
          if (!AddLegalInst(U))
            return false;
        }
      }
    }

    // Don't visit users of a node which isn't going to be mutated unless its a
    // source.
    if (isSource(V) || shouldPromote(V)) {
      for (Use &U : V->uses()) {
        if (!AddLegalInst(U.getUser()))
          return false;
      }
    }
  }

  LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
             for (auto *I : CurrentVisited)
               I->dump();
             );
  unsigned ToPromote = 0;
  for (auto *V : CurrentVisited) {
    if (Sources.count(V))
      continue;
    if (Sinks.count(cast<Instruction>(V)))
      continue;
    ++ToPromote;
  }

  if (ToPromote < 2)
    return false;

  Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote,
                   SafeWrap);
  return true;
}

bool ARMCodeGenPrepare::doInitialization(Module &M) {
  Promoter = new IRPromoter(&M);
  return false;
}

bool ARMCodeGenPrepare::runOnFunction(Function &F) {
  if (skipFunction(F) || DisableCGP)
    return false;

  auto *TPC = &getAnalysis<TargetPassConfig>();
  if (!TPC)
    return false;

  const TargetMachine &TM = TPC->getTM<TargetMachine>();
  ST = &TM.getSubtarget<ARMSubtarget>(F);
  bool MadeChange = false;
  LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");

  // Search up from icmps to try to promote their operands.
  for (BasicBlock &BB : F) {
    auto &Insts = BB.getInstList();
    for (auto &I : Insts) {
      if (AllVisited.count(&I))
        continue;

      if (isa<ICmpInst>(I)) {
        auto &CI = cast<ICmpInst>(I);

        // Skip signed or pointer compares
        if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
          continue;

        LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");

        for (auto &Op : CI.operands()) {
          if (auto *I = dyn_cast<Instruction>(Op))
            MadeChange |= TryToPromote(I);
        }
      }
    }
    LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
                dbgs() << F;
                report_fatal_error("Broken function after type promotion");
               });
  }
  if (MadeChange)
    LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");

  return MadeChange;
}

bool ARMCodeGenPrepare::doFinalization(Module &M) {
  delete Promoter;
  return false;
}

INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
                      "ARM IR optimizations", false, false)
INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
                    false, false)

char ARMCodeGenPrepare::ID = 0;
unsigned ARMCodeGenPrepare::TypeSize = 0;

FunctionPass *llvm::createARMCodeGenPreparePass() {
  return new ARMCodeGenPrepare();
}