reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPUISelLowering.h"
#include "AMDGPUSubtarget.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/LowLevelTypeImpl.h"

using namespace llvm;

namespace {

struct OutgoingValueHandler : public CallLowering::ValueHandler {
  OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                       MachineInstrBuilder MIB, CCAssignFn *AssignFn)
      : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}

  MachineInstrBuilder MIB;

  bool isIncomingArgumentHandler() const override { return false; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    llvm_unreachable("not implemented");
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    llvm_unreachable("not implemented");
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    Register ExtReg;
    if (VA.getLocVT().getSizeInBits() < 32) {
      // 16-bit types are reported as legal for 32-bit registers. We need to
      // extend and do a 32-bit copy to avoid the verifier complaining about it.
      ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
    } else
      ExtReg = extendRegister(ValVReg, VA);

    MIRBuilder.buildCopy(PhysReg, ExtReg);
    MIB.addUse(PhysReg, RegState::Implicit);
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info,
                 ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
  }
};

struct IncomingArgHandler : public CallLowering::ValueHandler {
  uint64_t StackUsed = 0;

  IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                     CCAssignFn *AssignFn)
    : ValueHandler(B, MRI, AssignFn) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    Register AddrReg = MRI.createGenericVirtualRegister(
      LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
    MIRBuilder.buildFrameIndex(AddrReg, FI);
    StackUsed = std::max(StackUsed, Size + Offset);
    return AddrReg;
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    markPhysRegUsed(PhysReg);

    if (VA.getLocVT().getSizeInBits() < 32) {
      // 16-bit types are reported as legal for 32-bit registers. We need to do
      // a 32-bit copy, and truncate to avoid the verifier complaining about it.
      auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      return;
    }

    switch (VA.getLocInfo()) {
    case CCValAssign::LocInfo::SExt:
    case CCValAssign::LocInfo::ZExt:
    case CCValAssign::LocInfo::AExt: {
      auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      break;
    }
    default:
      MIRBuilder.buildCopy(ValVReg, PhysReg);
      break;
    }
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    // FIXME: Get alignment
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
      MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;

  // FIXME: What is the point of this being a callback?
  bool isIncomingArgumentHandler() const override { return true; }
};

struct FormalArgHandler : public IncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                   CCAssignFn *AssignFn)
    : IncomingArgHandler(B, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

}

AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
  : CallLowering(&TLI) {
}

void AMDGPUCallLowering::splitToValueTypes(
    const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
    const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
    SplitArgTy PerformArgSplit) const {
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  LLVMContext &Ctx = OrigArg.Ty->getContext();

  if (OrigArg.Ty->isVoidTy())
    return;

  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);

  assert(OrigArg.Regs.size() == SplitVTs.size());

  int SplitIdx = 0;
  for (EVT VT : SplitVTs) {
    unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
    Type *Ty = VT.getTypeForEVT(Ctx);



    if (NumParts == 1) {
      // No splitting to do, but we want to replace the original type (e.g. [1 x
      // double] -> double).
      SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
                             OrigArg.Flags, OrigArg.IsFixed);

      ++SplitIdx;
      continue;
    }

    LLT LLTy = getLLTForType(*Ty, DL);

    SmallVector<Register, 8> SplitRegs;

    EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
    Type *PartTy = PartVT.getTypeForEVT(Ctx);
    LLT PartLLT = getLLTForType(*PartTy, DL);

    // FIXME: Should we be reporting all of the part registers for a single
    // argument, and let handleAssignments take care of the repacking?
    for (unsigned i = 0; i < NumParts; ++i) {
      Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
      SplitRegs.push_back(PartReg);
      SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
    }

    PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);

    ++SplitIdx;
  }
}

// Get the appropriate type to make \p OrigTy \p Factor times bigger.
static LLT getMultipleType(LLT OrigTy, int Factor) {
  if (OrigTy.isVector()) {
    return LLT::vector(OrigTy.getNumElements() * Factor,
                       OrigTy.getElementType());
  }

  return LLT::scalar(OrigTy.getSizeInBits() * Factor);
}

// TODO: Move to generic code
static void unpackRegsToOrigType(MachineIRBuilder &B,
                                 ArrayRef<Register> DstRegs,
                                 Register SrcReg,
                                 LLT SrcTy,
                                 LLT PartTy) {
  assert(DstRegs.size() > 1 && "Nothing to unpack");

  MachineFunction &MF = B.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  const unsigned SrcSize = SrcTy.getSizeInBits();
  const unsigned PartSize = PartTy.getSizeInBits();

  if (SrcTy.isVector() && !PartTy.isVector() &&
      PartSize > SrcTy.getElementType().getSizeInBits()) {
    // Vector was scalarized, and the elements extended.
    auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
                                                  SrcReg);
    for (int i = 0, e = DstRegs.size(); i != e; ++i)
      B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
    return;
  }

  if (SrcSize % PartSize == 0) {
    B.buildUnmerge(DstRegs, SrcReg);
    return;
  }

  const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;

  LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
  auto ImpDef = B.buildUndef(BigTy);

  Register BigReg = MRI.createGenericVirtualRegister(BigTy);
  B.buildInsert(BigReg, ImpDef.getReg(0), SrcReg, 0).getReg(0);

  int64_t Offset = 0;
  for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
    B.buildExtract(DstRegs[i], BigReg, Offset);
}

/// Lower the return value for the already existing \p Ret. This assumes that
/// \p B's insertion point is correct.
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
                                        const Value *Val, ArrayRef<Register> VRegs,
                                        MachineInstrBuilder &Ret) const {
  if (!Val)
    return true;

  auto &MF = B.getMF();
  const auto &F = MF.getFunction();
  const DataLayout &DL = MF.getDataLayout();

  CallingConv::ID CC = F.getCallingConv();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  ArgInfo OrigRetInfo(VRegs, Val->getType());
  setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
  SmallVector<ArgInfo, 4> SplitRetInfos;

  splitToValueTypes(
    OrigRetInfo, SplitRetInfos, DL, MRI, CC,
    [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
      unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
    });

  CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());

  OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn);
  return handleAssignments(B, SplitRetInfos, RetHandler);
}

bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
                                     const Value *Val,
                                     ArrayRef<Register> VRegs) const {

  MachineFunction &MF = B.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MFI->setIfReturnsVoid(!Val);

  assert(!Val == VRegs.empty() && "Return value without a vreg");

  CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
  const bool IsShader = AMDGPU::isShader(CC);
  const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
                         AMDGPU::isKernel(CC);
  if (IsWaveEnd) {
    B.buildInstr(AMDGPU::S_ENDPGM)
      .addImm(0);
    return true;
  }

  auto const &ST = B.getMF().getSubtarget<GCNSubtarget>();

  unsigned ReturnOpc =
      IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;

  auto Ret = B.buildInstrNoInsert(ReturnOpc);
  Register ReturnAddrVReg;
  if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
    ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
    Ret.addUse(ReturnAddrVReg);
  }

  if (!lowerReturnVal(B, Val, VRegs, Ret))
    return false;

  if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
    const SIRegisterInfo *TRI = ST.getRegisterInfo();
    Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
                                         &AMDGPU::SGPR_64RegClass);
    B.buildCopy(ReturnAddrVReg, LiveInReturn);
  }

  // TODO: Handle CalleeSavedRegsViaCopy.

  B.insertInstr(Ret);
  return true;
}

Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
                                               Type *ParamTy,
                                               uint64_t Offset) const {

  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();
  PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
  LLT PtrType = getLLTForType(*PtrTy, DL);
  Register DstReg = MRI.createGenericVirtualRegister(PtrType);
  Register KernArgSegmentPtr =
    MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);

  Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
  B.buildConstant(OffsetReg, Offset);

  B.buildGEP(DstReg, KernArgSegmentVReg, OffsetReg);

  return DstReg;
}

void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
                                        Type *ParamTy, uint64_t Offset,
                                        unsigned Align,
                                        Register DstReg) const {
  MachineFunction &MF = B.getMF();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();
  PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
  unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
  Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);

  MachineMemOperand *MMO =
      MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
                                       MachineMemOperand::MODereferenceable |
                                       MachineMemOperand::MOInvariant,
                                       TypeSize, Align);

  B.buildLoad(DstReg, PtrReg, *MMO);
}

// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
                                 MachineIRBuilder &B,
                                 MachineFunction &MF,
                                 const SIRegisterInfo &TRI,
                                 SIMachineFunctionInfo &Info) {
  // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
  if (Info.hasPrivateSegmentBuffer()) {
    unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
    MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
    CCInfo.AllocateReg(PrivateSegmentBufferReg);
  }

  if (Info.hasDispatchPtr()) {
    unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
    MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchPtrReg);
  }

  if (Info.hasQueuePtr()) {
    unsigned QueuePtrReg = Info.addQueuePtr(TRI);
    MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(QueuePtrReg);
  }

  if (Info.hasKernargSegmentPtr()) {
    MachineRegisterInfo &MRI = MF.getRegInfo();
    Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
    const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
    Register VReg = MRI.createGenericVirtualRegister(P4);
    MRI.addLiveIn(InputPtrReg, VReg);
    B.getMBB().addLiveIn(InputPtrReg);
    B.buildCopy(VReg, InputPtrReg);
    CCInfo.AllocateReg(InputPtrReg);
  }

  if (Info.hasDispatchID()) {
    unsigned DispatchIDReg = Info.addDispatchID(TRI);
    MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchIDReg);
  }

  if (Info.hasFlatScratchInit()) {
    unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
    MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(FlatScratchInitReg);
  }

  // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
  // these from the dispatch pointer.
}

bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
    MachineIRBuilder &B, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  MachineFunction &MF = B.getMF();
  const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();

  const DataLayout &DL = F.getParent()->getDataLayout();

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());

  allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);

  unsigned i = 0;
  const unsigned KernArgBaseAlign = 16;
  const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
  uint64_t ExplicitArgOffset = 0;

  // TODO: Align down to dword alignment and extract bits for extending loads.
  for (auto &Arg : F.args()) {
    Type *ArgTy = Arg.getType();
    unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
    if (AllocSize == 0)
      continue;

    unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);

    uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
    ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;

    ArrayRef<Register> OrigArgRegs = VRegs[i];
    Register ArgReg =
      OrigArgRegs.size() == 1
      ? OrigArgRegs[0]
      : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
    unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
    ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
    lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
    if (OrigArgRegs.size() > 1)
      unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
    ++i;
  }

  TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
  TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
  return true;
}

// TODO: Move this to generic code
static void packSplitRegsToOrigType(MachineIRBuilder &B,
                                    ArrayRef<Register> OrigRegs,
                                    ArrayRef<Register> Regs,
                                    LLT LLTy,
                                    LLT PartLLT) {
  if (!LLTy.isVector() && !PartLLT.isVector()) {
    B.buildMerge(OrigRegs[0], Regs);
    return;
  }

  if (LLTy.isVector() && PartLLT.isVector()) {
    assert(LLTy.getElementType() == PartLLT.getElementType());

    int DstElts = LLTy.getNumElements();
    int PartElts = PartLLT.getNumElements();
    if (DstElts % PartElts == 0)
      B.buildConcatVectors(OrigRegs[0], Regs);
    else {
      // Deal with v3s16 split into v2s16
      assert(PartElts == 2 && DstElts % 2 != 0);
      int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);

      LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
      auto RoundedConcat = B.buildConcatVectors(RoundedDestTy, Regs);
      B.buildExtract(OrigRegs[0], RoundedConcat, 0);
    }

    return;
  }

  assert(LLTy.isVector() && !PartLLT.isVector());

  LLT DstEltTy = LLTy.getElementType();
  if (DstEltTy == PartLLT) {
    // Vector was trivially scalarized.
    B.buildBuildVector(OrigRegs[0], Regs);
  } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
    // Deal with vector with 64-bit elements decomposed to 32-bit
    // registers. Need to create intermediate 64-bit elements.
    SmallVector<Register, 8> EltMerges;
    int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();

    assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);

    for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
      auto Merge = B.buildMerge(DstEltTy,
                                         Regs.take_front(PartsPerElt));
      EltMerges.push_back(Merge.getReg(0));
      Regs = Regs.drop_front(PartsPerElt);
    }

    B.buildBuildVector(OrigRegs[0], EltMerges);
  } else {
    // Vector was split, and elements promoted to a wider type.
    LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
    auto BV = B.buildBuildVector(BVType, Regs);
    B.buildTrunc(OrigRegs[0], BV);
  }
}

bool AMDGPUCallLowering::lowerFormalArguments(
    MachineIRBuilder &B, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  CallingConv::ID CC = F.getCallingConv();

  // The infrastructure for normal calling convention lowering is essentially
  // useless for kernels. We want to avoid any kind of legalization or argument
  // splitting.
  if (CC == CallingConv::AMDGPU_KERNEL)
    return lowerFormalArgumentsKernel(B, F, VRegs);

  const bool IsShader = AMDGPU::isShader(CC);
  const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);

  MachineFunction &MF = B.getMF();
  MachineBasicBlock &MBB = B.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
  const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const DataLayout &DL = F.getParent()->getDataLayout();


  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());

  if (!IsEntryFunc) {
    Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
    Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
                                         &AMDGPU::SGPR_64RegClass);
    MBB.addLiveIn(ReturnAddrReg);
    B.buildCopy(LiveInReturn, ReturnAddrReg);
  }

  if (Info->hasImplicitBufferPtr()) {
    Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
    MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(ImplicitBufferPtrReg);
  }


  SmallVector<ArgInfo, 32> SplitArgs;
  unsigned Idx = 0;
  unsigned PSInputNum = 0;

  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()) == 0)
      continue;

    const bool InReg = Arg.hasAttribute(Attribute::InReg);

    // SGPR arguments to functions not implemented.
    if (!IsShader && InReg)
      return false;

    if (Arg.hasAttribute(Attribute::SwiftSelf) ||
        Arg.hasAttribute(Attribute::SwiftError) ||
        Arg.hasAttribute(Attribute::Nest))
      return false;

    if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
      const bool ArgUsed = !Arg.use_empty();
      bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);

      if (!SkipArg) {
        Info->markPSInputAllocated(PSInputNum);
        if (ArgUsed)
          Info->markPSInputEnabled(PSInputNum);
      }

      ++PSInputNum;

      if (SkipArg) {
        for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
          B.buildUndef(VRegs[Idx][I]);

        ++Idx;
        continue;
      }
    }

    ArgInfo OrigArg(VRegs[Idx], Arg.getType());
    setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);

    splitToValueTypes(
      OrigArg, SplitArgs, DL, MRI, CC,
      // FIXME: We should probably be passing multiple registers to
      // handleAssignments to do this
      [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
        packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
                                LLTy, PartLLT);
      });

    ++Idx;
  }

  // At least one interpolation mode must be enabled or else the GPU will
  // hang.
  //
  // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
  // set PSInputAddr, the user wants to enable some bits after the compilation
  // based on run-time states. Since we can't know what the final PSInputEna
  // will look like, so we shouldn't do anything here and the user should take
  // responsibility for the correct programming.
  //
  // Otherwise, the following restrictions apply:
  // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
  // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
  //   enabled too.
  if (CC == CallingConv::AMDGPU_PS) {
    if ((Info->getPSInputAddr() & 0x7F) == 0 ||
        ((Info->getPSInputAddr() & 0xF) == 0 &&
         Info->isPSInputAllocated(11))) {
      CCInfo.AllocateReg(AMDGPU::VGPR0);
      CCInfo.AllocateReg(AMDGPU::VGPR1);
      Info->markPSInputAllocated(0);
      Info->markPSInputEnabled(0);
    }

    if (Subtarget.isAmdPalOS()) {
      // For isAmdPalOS, the user does not enable some bits after compilation
      // based on run-time states; the register values being generated here are
      // the final ones set in hardware. Therefore we need to apply the
      // workaround to PSInputAddr and PSInputEnable together.  (The case where
      // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
      // set up an input arg for a particular interpolation mode, but nothing
      // uses that input arg. Really we should have an earlier pass that removes
      // such an arg.)
      unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
      if ((PsInputBits & 0x7F) == 0 ||
          ((PsInputBits & 0xF) == 0 &&
           (PsInputBits >> 11 & 1)))
        Info->markPSInputEnabled(
          countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
    }
  }

  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());

  if (!MBB.empty())
    B.setInstr(*MBB.begin());

  FormalArgHandler Handler(B, MRI, AssignFn);
  if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
    return false;

  if (!IsEntryFunc) {
    // Special inputs come after user arguments.
    TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
  }

  // Start adding system SGPRs.
  if (IsEntryFunc) {
    TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
  } else {
    CCInfo.AllocateReg(Info->getScratchRSrcReg());
    CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
    CCInfo.AllocateReg(Info->getFrameOffsetReg());
    TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
  }

  // Move back to the end of the basic block.
  B.setMBB(MBB);

  return true;
}