reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//

#include "LiveDebugVariables.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "livedebugvars"

static cl::opt<bool>
EnableLDV("live-debug-variables", cl::init(true),
          cl::desc("Enable the live debug variables pass"), cl::Hidden);

STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");

char LiveDebugVariables::ID = 0;

INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)

void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}

enum : unsigned { UndefLocNo = ~0U };

/// Describes a location by number along with some flags about the original
/// usage of the location.
class DbgValueLocation {
public:
  DbgValueLocation(unsigned LocNo)
      : LocNo(LocNo) {
    static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
    assert(locNo() == LocNo && "location truncation");
  }

  DbgValueLocation() : LocNo(0) {}

  unsigned locNo() const {
    // Fix up the undef location number, which gets truncated.
    return LocNo == INT_MAX ? UndefLocNo : LocNo;
  }
  bool isUndef() const { return locNo() == UndefLocNo; }

  DbgValueLocation changeLocNo(unsigned NewLocNo) const {
    return DbgValueLocation(NewLocNo);
  }

  friend inline bool operator==(const DbgValueLocation &LHS,
                                const DbgValueLocation &RHS) {
    return LHS.LocNo == RHS.LocNo;
  }

  friend inline bool operator!=(const DbgValueLocation &LHS,
                                const DbgValueLocation &RHS) {
    return !(LHS == RHS);
  }

private:
  unsigned LocNo;
};

/// Map of where a user value is live, and its location.
using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;

/// Map of stack slot offsets for spilled locations.
/// Non-spilled locations are not added to the map.
using SpillOffsetMap = DenseMap<unsigned, unsigned>;

namespace {

class LDVImpl;

/// A UserValue is uniquely identified by the source variable it refers to
/// (Variable), the expression describing how to get the value (Expression) and
/// the specific usage (InlinedAt). InlinedAt differentiates both between
/// inline and non-inline functions, and multiple inlined instances in the same
/// scope. FIXME: The only part of the Expression which matters for UserValue
/// identification is the fragment part.
class UserValueIdentity {
private:
  /// The debug info variable we are part of.
  const DILocalVariable *Variable;
  /// Any complex address expression.
  const DIExpression *Expression;
  /// Function usage identification.
  const DILocation *InlinedAt;

public:
  UserValueIdentity(const DILocalVariable *Var, const DIExpression *Expr,
                    const DILocation *IA)
      : Variable(Var), Expression(Expr), InlinedAt(IA) {}

  bool match(const DILocalVariable *Var, const DIExpression *Expr,
             const DILocation *IA) const {
    // FIXME: The fragment should be part of the identity, but not
    // other things in the expression like stack values.
    return Var == Variable && Expr == Expression && IA == InlinedAt;
  }

  bool match(const UserValueIdentity &Other) const {
    return match(Other.Variable, Other.Expression, Other.InlinedAt);
  }

  unsigned hash_value() const {
    return hash_combine(Variable, Expression, InlinedAt);
  }
};

/// A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
class UserValue {
  const DILocalVariable *Variable; ///< The debug info variable we are part of.
  const DIExpression *Expression; ///< Any complex address expression.
  DebugLoc dl;            ///< The debug location for the variable. This is
                          ///< used by dwarf writer to find lexical scope.

  /// Numbered locations referenced by locmap.
  SmallVector<MachineOperand, 4> locations;

  /// Map of slot indices where this value is live.
  LocMap locInts;

  /// Insert a DBG_VALUE into MBB at Idx for LocNo.
  void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                        SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
                        unsigned SpillOffset, LiveIntervals &LIS,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI);

  /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
  /// is live. Returns true if any changes were made.
  bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                     LiveIntervals &LIS);

public:
  UserValue(const UserValue &) = delete;

  /// Create a new UserValue.
  UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
            LocMap::Allocator &alloc)
      : Variable(var), Expression(expr), dl(std::move(L)), locInts(alloc) {}

  UserValueIdentity getId() {
    return UserValueIdentity(Variable, Expression, dl->getInlinedAt());
  }

  /// Return the location number that matches Loc.
  ///
  /// For undef values we always return location number UndefLocNo without
  /// inserting anything in locations. Since locations is a vector and the
  /// location number is the position in the vector and UndefLocNo is ~0,
  /// we would need a very big vector to put the value at the right position.
  unsigned getLocationNo(const MachineOperand &LocMO) {
    if (LocMO.isReg()) {
      if (LocMO.getReg() == 0)
        return UndefLocNo;
      // For register locations we dont care about use/def and other flags.
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (locations[i].isReg() &&
            locations[i].getReg() == LocMO.getReg() &&
            locations[i].getSubReg() == LocMO.getSubReg())
          return i;
    } else
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (LocMO.isIdenticalTo(locations[i]))
          return i;
    locations.push_back(LocMO);
    // We are storing a MachineOperand outside a MachineInstr.
    locations.back().clearParent();
    // Don't store def operands.
    if (locations.back().isReg()) {
      if (locations.back().isDef())
        locations.back().setIsDead(false);
      locations.back().setIsUse();
    }
    return locations.size() - 1;
  }

  /// Ensure that all virtual register locations are mapped.
  void mapVirtRegs(LDVImpl *LDV);

  /// Add a definition point to this value.
  void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
    DbgValueLocation Loc(getLocationNo(LocMO));
    // Add a singular (Idx,Idx) -> Loc mapping.
    LocMap::iterator I = locInts.find(Idx);
    if (!I.valid() || I.start() != Idx)
      I.insert(Idx, Idx.getNextSlot(), Loc);
    else
      // A later DBG_VALUE at the same SlotIndex overrides the old location.
      I.setValue(Loc);
  }

  /// Extend the current definition as far as possible down.
  ///
  /// Stop when meeting an existing def or when leaving the live
  /// range of VNI. End points where VNI is no longer live are added to Kills.
  ///
  /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
  /// data-flow analysis to propagate them beyond basic block boundaries.
  ///
  /// \param Idx Starting point for the definition.
  /// \param Loc Location number to propagate.
  /// \param LR Restrict liveness to where LR has the value VNI. May be null.
  /// \param VNI When LR is not null, this is the value to restrict to.
  /// \param [out] Kills Append end points of VNI's live range to Kills.
  /// \param LIS Live intervals analysis.
  void extendDef(SlotIndex Idx, DbgValueLocation Loc,
                 LiveRange *LR, const VNInfo *VNI,
                 SmallVectorImpl<SlotIndex> *Kills,
                 LiveIntervals &LIS);

  /// The value in LI/LocNo may be copies to other registers. Determine if
  /// any of the copies are available at the kill points, and add defs if
  /// possible.
  ///
  /// \param LI Scan for copies of the value in LI->reg.
  /// \param LocNo Location number of LI->reg.
  /// \param Kills Points where the range of LocNo could be extended.
  /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
  void addDefsFromCopies(
      LiveInterval *LI, unsigned LocNo,
      const SmallVectorImpl<SlotIndex> &Kills,
      SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
      MachineRegisterInfo &MRI, LiveIntervals &LIS);

  /// Compute the live intervals of all locations after collecting all their
  /// def points.
  void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                        LiveIntervals &LIS, LexicalScopes &LS);

  /// Replace OldReg ranges with NewRegs ranges where NewRegs is
  /// live. Returns true if any changes were made.
  bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
                     LiveIntervals &LIS);

  /// Rewrite virtual register locations according to the provided virtual
  /// register map. Record the stack slot offsets for the locations that
  /// were spilled.
  void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI,
                        SpillOffsetMap &SpillOffsets);

  /// Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                       const TargetInstrInfo &TII,
                       const TargetRegisterInfo &TRI,
                       const SpillOffsetMap &SpillOffsets);

  /// Return DebugLoc of this UserValue.
  DebugLoc getDebugLoc() { return dl;}

  void print(raw_ostream &, const TargetRegisterInfo *);
};
} // namespace

namespace llvm {
template <> struct DenseMapInfo<UserValueIdentity> {
  static UserValueIdentity getEmptyKey() {
    auto Key = DenseMapInfo<DILocalVariable *>::getEmptyKey();
    return UserValueIdentity(Key, nullptr, nullptr);
  }
  static UserValueIdentity getTombstoneKey() {
    auto Key = DenseMapInfo<DILocalVariable *>::getTombstoneKey();
    return UserValueIdentity(Key, nullptr, nullptr);
  }
  static unsigned getHashValue(const UserValueIdentity &Val) {
    return Val.hash_value();
  }
  static bool isEqual(const UserValueIdentity &LHS,
                      const UserValueIdentity &RHS) {
    return LHS.match(RHS);
  }
};
} // namespace llvm

namespace {
/// A user label is a part of a debug info user label.
class UserLabel {
  const DILabel *Label; ///< The debug info label we are part of.
  DebugLoc dl;          ///< The debug location for the label. This is
                        ///< used by dwarf writer to find lexical scope.
  SlotIndex loc;        ///< Slot used by the debug label.

  /// Insert a DBG_LABEL into MBB at Idx.
  void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
                        LiveIntervals &LIS, const TargetInstrInfo &TII);

public:
  /// Create a new UserLabel.
  UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
      : Label(label), dl(std::move(L)), loc(Idx) {}

  /// Does this UserLabel match the parameters?
  bool match(const DILabel *L, const DILocation *IA,
             const SlotIndex Index) const {
    return Label == L && dl->getInlinedAt() == IA && loc == Index;
  }

  /// Recreate DBG_LABEL instruction from data structures.
  void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);

  /// Return DebugLoc of this UserLabel.
  DebugLoc getDebugLoc() { return dl; }

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// Implementation of the LiveDebugVariables pass.
class LDVImpl {
  LiveDebugVariables &pass;
  LocMap::Allocator allocator;
  MachineFunction *MF = nullptr;
  LiveIntervals *LIS;
  const TargetRegisterInfo *TRI;

  /// Whether emitDebugValues is called.
  bool EmitDone = false;

  /// Whether the machine function is modified during the pass.
  bool ModifiedMF = false;

  /// All allocated UserValue instances.
  SmallVector<std::unique_ptr<UserValue>, 8> userValues;

  /// All allocated UserLabel instances.
  SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;

  /// Map virtual register to UserValues which use it.
  using VRMap = DenseMap<unsigned, SmallVector<UserValue *, 4>>;
  VRMap VirtRegToUserVals;

  /// Map unique UserValue identity to UserValue.
  using UVMap = DenseMap<UserValueIdentity, UserValue *>;
  UVMap UserVarMap;

  /// Find or create a UserValue.
  UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
                          const DebugLoc &DL);

  /// Find the UserValues for VirtReg or null.
  SmallVectorImpl<UserValue *> *lookupVirtReg(unsigned VirtReg);

  /// Add DBG_VALUE instruction to our maps.
  ///
  /// \param MI DBG_VALUE instruction
  /// \param Idx Last valid SLotIndex before instruction.
  ///
  /// \returns True if the DBG_VALUE instruction should be deleted.
  bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);

  /// Add DBG_LABEL instruction to UserLabel.
  ///
  /// \param MI DBG_LABEL instruction
  /// \param Idx Last valid SlotIndex before instruction.
  ///
  /// \returns True if the DBG_LABEL instruction should be deleted.
  bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);

  /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
  /// for each instruction.
  ///
  /// \param mf MachineFunction to be scanned.
  ///
  /// \returns True if any debug values were found.
  bool collectDebugValues(MachineFunction &mf);

  /// Compute the live intervals of all user values after collecting all
  /// their def points.
  void computeIntervals();

public:
  LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}

  bool runOnMachineFunction(MachineFunction &mf);

  /// Release all memory.
  void clear() {
    MF = nullptr;
    userValues.clear();
    userLabels.clear();
    VirtRegToUserVals.clear();
    UserVarMap.clear();
    // Make sure we call emitDebugValues if the machine function was modified.
    assert((!ModifiedMF || EmitDone) &&
           "Dbg values are not emitted in LDV");
    EmitDone = false;
    ModifiedMF = false;
  }

  /// Map virtual register to a UserValue.
  void mapVirtReg(unsigned VirtReg, UserValue *UV);

  /// Replace all references to OldReg with NewRegs.
  void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);

  /// Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM);

  void print(raw_ostream&);
};

} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
                          const LLVMContext &Ctx) {
  if (!DL)
    return;

  auto *Scope = cast<DIScope>(DL.getScope());
  // Omit the directory, because it's likely to be long and uninteresting.
  CommentOS << Scope->getFilename();
  CommentOS << ':' << DL.getLine();
  if (DL.getCol() != 0)
    CommentOS << ':' << DL.getCol();

  DebugLoc InlinedAtDL = DL.getInlinedAt();
  if (!InlinedAtDL)
    return;

  CommentOS << " @[ ";
  printDebugLoc(InlinedAtDL, CommentOS, Ctx);
  CommentOS << " ]";
}

static void printExtendedName(raw_ostream &OS, const DINode *Node,
                              const DILocation *DL) {
  const LLVMContext &Ctx = Node->getContext();
  StringRef Res;
  unsigned Line;
  if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
    Res = V->getName();
    Line = V->getLine();
  } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
    Res = L->getName();
    Line = L->getLine();
  }

  if (!Res.empty())
    OS << Res << "," << Line;
  auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
  if (InlinedAt) {
    if (DebugLoc InlinedAtDL = InlinedAt) {
      OS << " @[";
      printDebugLoc(InlinedAtDL, OS, Ctx);
      OS << "]";
    }
  }
}

void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  OS << "!\"";
  printExtendedName(OS, Variable, dl);

  OS << "\"\t";
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    OS << " [" << I.start() << ';' << I.stop() << "):";
    if (I.value().isUndef())
      OS << "undef";
    else {
      OS << I.value().locNo();
    }
  }
  for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    OS << " Loc" << i << '=';
    locations[i].print(OS, TRI);
  }
  OS << '\n';
}

void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  OS << "!\"";
  printExtendedName(OS, Label, dl);

  OS << "\"\t";
  OS << loc;
  OS << '\n';
}

void LDVImpl::print(raw_ostream &OS) {
  OS << "********** DEBUG VARIABLES **********\n";
  for (auto &userValue : userValues)
    userValue->print(OS, TRI);
  OS << "********** DEBUG LABELS **********\n";
  for (auto &userLabel : userLabels)
    userLabel->print(OS, TRI);
}
#endif

void UserValue::mapVirtRegs(LDVImpl *LDV) {
  for (unsigned i = 0, e = locations.size(); i != e; ++i)
    if (locations[i].isReg() &&
        Register::isVirtualRegister(locations[i].getReg()))
      LDV->mapVirtReg(locations[i].getReg(), this);
}

UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
                                 const DIExpression *Expr, const DebugLoc &DL) {
  auto Ident = UserValueIdentity(Var, Expr, DL->getInlinedAt());
  UserValue *&UVEntry = UserVarMap[Ident];

  if (UVEntry)
    return UVEntry;

  userValues.push_back(std::make_unique<UserValue>(Var, Expr, DL, allocator));
  return UVEntry = userValues.back().get();
}

void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *UV) {
  assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
  assert(UserVarMap.find(UV->getId()) != UserVarMap.end() &&
         "UserValue should exist in UserVarMap");
  VirtRegToUserVals[VirtReg].push_back(UV);
}

SmallVectorImpl<UserValue *> *LDVImpl::lookupVirtReg(unsigned VirtReg) {
  VRMap::iterator Itr = VirtRegToUserVals.find(VirtReg);
  if (Itr != VirtRegToUserVals.end())
    return &Itr->getSecond();
  return nullptr;
}

bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
  // DBG_VALUE loc, offset, variable
  if (MI.getNumOperands() != 4 ||
      !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
      !MI.getOperand(2).isMetadata()) {
    LLVM_DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
  // register that hasn't been defined yet. If we do not remove those here, then
  // the re-insertion of the DBG_VALUE instruction after register allocation
  // will be incorrect.
  // TODO: If earlier passes are corrected to generate sane debug information
  // (and if the machine verifier is improved to catch this), then these checks
  // could be removed or replaced by asserts.
  bool Discard = false;
  if (MI.getOperand(0).isReg() &&
      Register::isVirtualRegister(MI.getOperand(0).getReg())) {
    const Register Reg = MI.getOperand(0).getReg();
    if (!LIS->hasInterval(Reg)) {
      // The DBG_VALUE is described by a virtual register that does not have a
      // live interval. Discard the DBG_VALUE.
      Discard = true;
      LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
                        << " " << MI);
    } else {
      // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
      // is defined dead at Idx (where Idx is the slot index for the instruction
      // preceding the DBG_VALUE).
      const LiveInterval &LI = LIS->getInterval(Reg);
      LiveQueryResult LRQ = LI.Query(Idx);
      if (!LRQ.valueOutOrDead()) {
        // We have found a DBG_VALUE with the value in a virtual register that
        // is not live. Discard the DBG_VALUE.
        Discard = true;
        LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
                          << " " << MI);
      }
    }
  }

  // Get or create the UserValue for (variable,offset) here.
  assert(!MI.getOperand(1).isImm() && "DBG_VALUE with indirect flag before "
                                      "LiveDebugVariables");
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  UserValue *UV =
      getUserValue(Var, Expr, MI.getDebugLoc());
  if (!Discard)
    UV->addDef(Idx, MI.getOperand(0));
  else {
    MachineOperand MO = MachineOperand::CreateReg(0U, false);
    MO.setIsDebug();
    UV->addDef(Idx, MO);
  }
  return true;
}

bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
  // DBG_LABEL label
  if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
    LLVM_DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Get or create the UserLabel for label here.
  const DILabel *Label = MI.getDebugLabel();
  const DebugLoc &DL = MI.getDebugLoc();
  bool Found = false;
  for (auto const &L : userLabels) {
    if (L->match(Label, DL->getInlinedAt(), Idx)) {
      Found = true;
      break;
    }
  }
  if (!Found)
    userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));

  return true;
}

bool LDVImpl::collectDebugValues(MachineFunction &mf) {
  bool Changed = false;
  for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
       ++MFI) {
    MachineBasicBlock *MBB = &*MFI;
    for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
         MBBI != MBBE;) {
      // Use the first debug instruction in the sequence to get a SlotIndex
      // for following consecutive debug instructions.
      if (!MBBI->isDebugInstr()) {
        ++MBBI;
        continue;
      }
      // Debug instructions has no slot index. Use the previous
      // non-debug instruction's SlotIndex as its SlotIndex.
      SlotIndex Idx =
          MBBI == MBB->begin()
              ? LIS->getMBBStartIdx(MBB)
              : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
      // Handle consecutive debug instructions with the same slot index.
      do {
        // Only handle DBG_VALUE in handleDebugValue(). Skip all other
        // kinds of debug instructions.
        if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
            (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
          MBBI = MBB->erase(MBBI);
          Changed = true;
        } else
          ++MBBI;
      } while (MBBI != MBBE && MBBI->isDebugInstr());
    }
  }
  return Changed;
}

void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
                          const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
                          LiveIntervals &LIS) {
  SlotIndex Start = Idx;
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
  SlotIndex Stop = LIS.getMBBEndIdx(MBB);
  LocMap::iterator I = locInts.find(Start);

  // Limit to VNI's live range.
  bool ToEnd = true;
  if (LR && VNI) {
    LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
    if (!Segment || Segment->valno != VNI) {
      if (Kills)
        Kills->push_back(Start);
      return;
    }
    if (Segment->end < Stop) {
      Stop = Segment->end;
      ToEnd = false;
    }
  }

  // There could already be a short def at Start.
  if (I.valid() && I.start() <= Start) {
    // Stop when meeting a different location or an already extended interval.
    Start = Start.getNextSlot();
    if (I.value() != Loc || I.stop() != Start)
      return;
    // This is a one-slot placeholder. Just skip it.
    ++I;
  }

  // Limited by the next def.
  if (I.valid() && I.start() < Stop)
    Stop = I.start();
  // Limited by VNI's live range.
  else if (!ToEnd && Kills)
    Kills->push_back(Stop);

  if (Start < Stop)
    I.insert(Start, Stop, Loc);
}

void UserValue::addDefsFromCopies(
    LiveInterval *LI, unsigned LocNo,
    const SmallVectorImpl<SlotIndex> &Kills,
    SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
    MachineRegisterInfo &MRI, LiveIntervals &LIS) {
  if (Kills.empty())
    return;
  // Don't track copies from physregs, there are too many uses.
  if (!Register::isVirtualRegister(LI->reg))
    return;

  // Collect all the (vreg, valno) pairs that are copies of LI.
  SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
  for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
    MachineInstr *MI = MO.getParent();
    // Copies of the full value.
    if (MO.getSubReg() || !MI->isCopy())
      continue;
    Register DstReg = MI->getOperand(0).getReg();

    // Don't follow copies to physregs. These are usually setting up call
    // arguments, and the argument registers are always call clobbered. We are
    // better off in the source register which could be a callee-saved register,
    // or it could be spilled.
    if (!Register::isVirtualRegister(DstReg))
      continue;

    // Is LocNo extended to reach this copy? If not, another def may be blocking
    // it, or we are looking at a wrong value of LI.
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
    LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
    if (!I.valid() || I.value().locNo() != LocNo)
      continue;

    if (!LIS.hasInterval(DstReg))
      continue;
    LiveInterval *DstLI = &LIS.getInterval(DstReg);
    const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
    assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
    CopyValues.push_back(std::make_pair(DstLI, DstVNI));
  }

  if (CopyValues.empty())
    return;

  LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
                    << '\n');

  // Try to add defs of the copied values for each kill point.
  for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
    SlotIndex Idx = Kills[i];
    for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
      LiveInterval *DstLI = CopyValues[j].first;
      const VNInfo *DstVNI = CopyValues[j].second;
      if (DstLI->getVNInfoAt(Idx) != DstVNI)
        continue;
      // Check that there isn't already a def at Idx
      LocMap::iterator I = locInts.find(Idx);
      if (I.valid() && I.start() <= Idx)
        continue;
      LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
                        << DstVNI->id << " in " << *DstLI << '\n');
      MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
      assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
      unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
      DbgValueLocation NewLoc(LocNo);
      I.insert(Idx, Idx.getNextSlot(), NewLoc);
      NewDefs.push_back(std::make_pair(Idx, NewLoc));
      break;
    }
  }
}

void UserValue::computeIntervals(MachineRegisterInfo &MRI,
                                 const TargetRegisterInfo &TRI,
                                 LiveIntervals &LIS, LexicalScopes &LS) {
  SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;

  // Collect all defs to be extended (Skipping undefs).
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    if (!I.value().isUndef())
      Defs.push_back(std::make_pair(I.start(), I.value()));

  // Extend all defs, and possibly add new ones along the way.
  for (unsigned i = 0; i != Defs.size(); ++i) {
    SlotIndex Idx = Defs[i].first;
    DbgValueLocation Loc = Defs[i].second;
    const MachineOperand &LocMO = locations[Loc.locNo()];

    if (!LocMO.isReg()) {
      extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
      continue;
    }

    // Register locations are constrained to where the register value is live.
    if (Register::isVirtualRegister(LocMO.getReg())) {
      LiveInterval *LI = nullptr;
      const VNInfo *VNI = nullptr;
      if (LIS.hasInterval(LocMO.getReg())) {
        LI = &LIS.getInterval(LocMO.getReg());
        VNI = LI->getVNInfoAt(Idx);
      }
      SmallVector<SlotIndex, 16> Kills;
      extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
      // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
      // if the original location for example is %vreg0:sub_hi, and we find a
      // full register copy in addDefsFromCopies (at the moment it only handles
      // full register copies), then we must add the sub1 sub-register index to
      // the new location. However, that is only possible if the new virtual
      // register is of the same regclass (or if there is an equivalent
      // sub-register in that regclass). For now, simply skip handling copies if
      // a sub-register is involved.
      if (LI && !LocMO.getSubReg())
        addDefsFromCopies(LI, Loc.locNo(), Kills, Defs, MRI, LIS);
      continue;
    }

    // For physregs, we only mark the start slot idx. DwarfDebug will see it
    // as if the DBG_VALUE is valid up until the end of the basic block, or
    // the next def of the physical register. So we do not need to extend the
    // range. It might actually happen that the DBG_VALUE is the last use of
    // the physical register (e.g. if this is an unused input argument to a
    // function).
  }

  // The computed intervals may extend beyond the range of the debug
  // location's lexical scope. In this case, splitting of an interval
  // can result in an interval outside of the scope being created,
  // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
  // this, trim the intervals to the lexical scope.

  LexicalScope *Scope = LS.findLexicalScope(dl);
  if (!Scope)
    return;

  SlotIndex PrevEnd;
  LocMap::iterator I = locInts.begin();

  // Iterate over the lexical scope ranges. Each time round the loop
  // we check the intervals for overlap with the end of the previous
  // range and the start of the next. The first range is handled as
  // a special case where there is no PrevEnd.
  for (const InsnRange &Range : Scope->getRanges()) {
    SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
    SlotIndex REnd = LIS.getInstructionIndex(*Range.second);

    // At the start of each iteration I has been advanced so that
    // I.stop() >= PrevEnd. Check for overlap.
    if (PrevEnd && I.start() < PrevEnd) {
      SlotIndex IStop = I.stop();
      DbgValueLocation Loc = I.value();

      // Stop overlaps previous end - trim the end of the interval to
      // the scope range.
      I.setStopUnchecked(PrevEnd);
      ++I;

      // If the interval also overlaps the start of the "next" (i.e.
      // current) range create a new interval for the remainder
      if (RStart < IStop)
        I.insert(RStart, IStop, Loc);
    }

    // Advance I so that I.stop() >= RStart, and check for overlap.
    I.advanceTo(RStart);
    if (!I.valid())
      return;

    // The end of a lexical scope range is the last instruction in the
    // range. To convert to an interval we need the index of the
    // instruction after it.
    REnd = REnd.getNextIndex();

    // Advance I to first interval outside current range.
    I.advanceTo(REnd);
    if (!I.valid())
      return;

    PrevEnd = REnd;
  }

  // Check for overlap with end of final range.
  if (PrevEnd && I.start() < PrevEnd)
    I.setStopUnchecked(PrevEnd);
}

void LDVImpl::computeIntervals() {
  LexicalScopes LS;
  LS.initialize(*MF);

  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
    userValues[i]->mapVirtRegs(this);
  }
}

bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
  clear();
  MF = &mf;
  LIS = &pass.getAnalysis<LiveIntervals>();
  TRI = mf.getSubtarget().getRegisterInfo();
  LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
                    << mf.getName() << " **********\n");

  bool Changed = collectDebugValues(mf);
  computeIntervals();
  LLVM_DEBUG(print(dbgs()));
  ModifiedMF = Changed;
  return Changed;
}

static void removeDebugValues(MachineFunction &mf) {
  for (MachineBasicBlock &MBB : mf) {
    for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      MBBI = MBB.erase(MBBI);
    }
  }
}

bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
  if (!EnableLDV)
    return false;
  if (!mf.getFunction().getSubprogram()) {
    removeDebugValues(mf);
    return false;
  }
  if (!pImpl)
    pImpl = new LDVImpl(this);
  return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}

void LiveDebugVariables::releaseMemory() {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->clear();
}

LiveDebugVariables::~LiveDebugVariables() {
  if (pImpl)
    delete static_cast<LDVImpl*>(pImpl);
}

//===----------------------------------------------------------------------===//
//                           Live Range Splitting
//===----------------------------------------------------------------------===//

bool
UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                         LiveIntervals& LIS) {
  LLVM_DEBUG({
    dbgs() << "Splitting Loc" << OldLocNo << '\t';
    print(dbgs(), nullptr);
  });
  bool DidChange = false;
  LocMap::iterator LocMapI;
  LocMapI.setMap(locInts);
  for (unsigned i = 0; i != NewRegs.size(); ++i) {
    LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
    if (LI->empty())
      continue;

    // Don't allocate the new LocNo until it is needed.
    unsigned NewLocNo = UndefLocNo;

    // Iterate over the overlaps between locInts and LI.
    LocMapI.find(LI->beginIndex());
    if (!LocMapI.valid())
      continue;
    LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
    LiveInterval::iterator LIE = LI->end();
    while (LocMapI.valid() && LII != LIE) {
      // At this point, we know that LocMapI.stop() > LII->start.
      LII = LI->advanceTo(LII, LocMapI.start());
      if (LII == LIE)
        break;

      // Now LII->end > LocMapI.start(). Do we have an overlap?
      if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
        // Overlapping correct location. Allocate NewLocNo now.
        if (NewLocNo == UndefLocNo) {
          MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
          MO.setSubReg(locations[OldLocNo].getSubReg());
          NewLocNo = getLocationNo(MO);
          DidChange = true;
        }

        SlotIndex LStart = LocMapI.start();
        SlotIndex LStop  = LocMapI.stop();
        DbgValueLocation OldLoc = LocMapI.value();

        // Trim LocMapI down to the LII overlap.
        if (LStart < LII->start)
          LocMapI.setStartUnchecked(LII->start);
        if (LStop > LII->end)
          LocMapI.setStopUnchecked(LII->end);

        // Change the value in the overlap. This may trigger coalescing.
        LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));

        // Re-insert any removed OldLocNo ranges.
        if (LStart < LocMapI.start()) {
          LocMapI.insert(LStart, LocMapI.start(), OldLoc);
          ++LocMapI;
          assert(LocMapI.valid() && "Unexpected coalescing");
        }
        if (LStop > LocMapI.stop()) {
          ++LocMapI;
          LocMapI.insert(LII->end, LStop, OldLoc);
          --LocMapI;
        }
      }

      // Advance to the next overlap.
      if (LII->end < LocMapI.stop()) {
        if (++LII == LIE)
          break;
        LocMapI.advanceTo(LII->start);
      } else {
        ++LocMapI;
        if (!LocMapI.valid())
          break;
        LII = LI->advanceTo(LII, LocMapI.start());
      }
    }
  }

  // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
  locations.erase(locations.begin() + OldLocNo);
  LocMapI.goToBegin();
  while (LocMapI.valid()) {
    DbgValueLocation v = LocMapI.value();
    if (v.locNo() == OldLocNo) {
      LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
                        << LocMapI.stop() << ")\n");
      LocMapI.erase();
    } else {
      // Undef values always have location number UndefLocNo, so don't change
      // locNo in that case. See getLocationNo().
      if (!v.isUndef() && v.locNo() > OldLocNo)
        LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
      ++LocMapI;
    }
  }

  LLVM_DEBUG({
    dbgs() << "Split result: \t";
    print(dbgs(), nullptr);
  });
  return DidChange;
}

bool
UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
                         LiveIntervals &LIS) {
  bool DidChange = false;
  // Split locations referring to OldReg. Iterate backwards so splitLocation can
  // safely erase unused locations.
  for (unsigned i = locations.size(); i ; --i) {
    unsigned LocNo = i-1;
    const MachineOperand *Loc = &locations[LocNo];
    if (!Loc->isReg() || Loc->getReg() != OldReg)
      continue;
    DidChange |= splitLocation(LocNo, NewRegs, LIS);
  }
  return DidChange;
}

void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
  bool DidChange = false;
  if (auto *UserVals = lookupVirtReg(OldReg))
    for (auto *UV : *UserVals)
      DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);

  if (!DidChange)
    return;

  // Map all of the new virtual registers.
  if (auto *UserVals = lookupVirtReg(OldReg))
    for (auto *UV : *UserVals)
      for (unsigned i = 0; i != NewRegs.size(); ++i)
        mapVirtReg(NewRegs[i], UV);
}

void LiveDebugVariables::
splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
}

void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
                                 const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI,
                                 SpillOffsetMap &SpillOffsets) {
  // Build a set of new locations with new numbers so we can coalesce our
  // IntervalMap if two vreg intervals collapse to the same physical location.
  // Use MapVector instead of SetVector because MapVector::insert returns the
  // position of the previously or newly inserted element. The boolean value
  // tracks if the location was produced by a spill.
  // FIXME: This will be problematic if we ever support direct and indirect
  // frame index locations, i.e. expressing both variables in memory and
  // 'int x, *px = &x'. The "spilled" bit must become part of the location.
  MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
  SmallVector<unsigned, 4> LocNoMap(locations.size());
  for (unsigned I = 0, E = locations.size(); I != E; ++I) {
    bool Spilled = false;
    unsigned SpillOffset = 0;
    MachineOperand Loc = locations[I];
    // Only virtual registers are rewritten.
    if (Loc.isReg() && Loc.getReg() &&
        Register::isVirtualRegister(Loc.getReg())) {
      Register VirtReg = Loc.getReg();
      if (VRM.isAssignedReg(VirtReg) &&
          Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
        // This can create a %noreg operand in rare cases when the sub-register
        // index is no longer available. That means the user value is in a
        // non-existent sub-register, and %noreg is exactly what we want.
        Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
      } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
        // Retrieve the stack slot offset.
        unsigned SpillSize;
        const MachineRegisterInfo &MRI = MF.getRegInfo();
        const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
        bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
                                             SpillOffset, MF);

        // FIXME: Invalidate the location if the offset couldn't be calculated.
        (void)Success;

        Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
        Spilled = true;
      } else {
        Loc.setReg(0);
        Loc.setSubReg(0);
      }
    }

    // Insert this location if it doesn't already exist and record a mapping
    // from the old number to the new number.
    auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
    unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
    LocNoMap[I] = NewLocNo;
  }

  // Rewrite the locations and record the stack slot offsets for spills.
  locations.clear();
  SpillOffsets.clear();
  for (auto &Pair : NewLocations) {
    bool Spilled;
    unsigned SpillOffset;
    std::tie(Spilled, SpillOffset) = Pair.second;
    locations.push_back(Pair.first);
    if (Spilled) {
      unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
      SpillOffsets[NewLocNo] = SpillOffset;
    }
  }

  // Update the interval map, but only coalesce left, since intervals to the
  // right use the old location numbers. This should merge two contiguous
  // DBG_VALUE intervals with different vregs that were allocated to the same
  // physical register.
  for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
    DbgValueLocation Loc = I.value();
    // Undef values don't exist in locations (and thus not in LocNoMap either)
    // so skip over them. See getLocationNo().
    if (Loc.isUndef())
      continue;
    unsigned NewLocNo = LocNoMap[Loc.locNo()];
    I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
    I.setStart(I.start());
  }
}

/// Find an iterator for inserting a DBG_VALUE instruction.
static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
                   LiveIntervals &LIS) {
  SlotIndex Start = LIS.getMBBStartIdx(MBB);
  Idx = Idx.getBaseIndex();

  // Try to find an insert location by going backwards from Idx.
  MachineInstr *MI;
  while (!(MI = LIS.getInstructionFromIndex(Idx))) {
    // We've reached the beginning of MBB.
    if (Idx == Start) {
      MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
      return I;
    }
    Idx = Idx.getPrevIndex();
  }

  // Don't insert anything after the first terminator, though.
  return MI->isTerminator() ? MBB->getFirstTerminator() :
                              std::next(MachineBasicBlock::iterator(MI));
}

/// Find an iterator for inserting the next DBG_VALUE instruction
/// (or end if no more insert locations found).
static MachineBasicBlock::iterator
findNextInsertLocation(MachineBasicBlock *MBB,
                       MachineBasicBlock::iterator I,
                       SlotIndex StopIdx, MachineOperand &LocMO,
                       LiveIntervals &LIS,
                       const TargetRegisterInfo &TRI) {
  if (!LocMO.isReg())
    return MBB->instr_end();
  Register Reg = LocMO.getReg();

  // Find the next instruction in the MBB that define the register Reg.
  while (I != MBB->end() && !I->isTerminator()) {
    if (!LIS.isNotInMIMap(*I) &&
        SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
      break;
    if (I->definesRegister(Reg, &TRI))
      // The insert location is directly after the instruction/bundle.
      return std::next(I);
    ++I;
  }
  return MBB->end();
}

void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                                 SlotIndex StopIdx, DbgValueLocation Loc,
                                 bool Spilled, unsigned SpillOffset,
                                 LiveIntervals &LIS, const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI) {
  SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
  // Only search within the current MBB.
  StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
  MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
  // Undef values don't exist in locations so create new "noreg" register MOs
  // for them. See getLocationNo().
  MachineOperand MO = !Loc.isUndef() ?
    locations[Loc.locNo()] :
    MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
                              /* isKill */ false, /* isDead */ false,
                              /* isUndef */ false, /* isEarlyClobber */ false,
                              /* SubReg */ 0, /* isDebug */ true);

  ++NumInsertedDebugValues;

  assert(cast<DILocalVariable>(Variable)
             ->isValidLocationForIntrinsic(getDebugLoc()) &&
         "Expected inlined-at fields to agree");

  // If the location was spilled, the new DBG_VALUE will be indirect. If the
  // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
  // that the original virtual register was a pointer. Also, add the stack slot
  // offset for the spilled register to the expression.
  const DIExpression *Expr = Expression;
  if (Spilled)
    Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, SpillOffset);

  assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");

  do {
    BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
            Spilled, MO, Variable, Expr);

    // Continue and insert DBG_VALUES after every redefinition of register
    // associated with the debug value within the range
    I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
  } while (I != MBB->end());
}

void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
                                 LiveIntervals &LIS,
                                 const TargetInstrInfo &TII) {
  MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
  ++NumInsertedDebugLabels;
  BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
      .addMetadata(Label);
}

void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                                const TargetInstrInfo &TII,
                                const TargetRegisterInfo &TRI,
                                const SpillOffsetMap &SpillOffsets) {
  MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();

  for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
    SlotIndex Start = I.start();
    SlotIndex Stop = I.stop();
    DbgValueLocation Loc = I.value();
    auto SpillIt =
        !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
    bool Spilled = SpillIt != SpillOffsets.end();
    unsigned SpillOffset = Spilled ? SpillIt->second : 0;

    LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
    MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
    SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);

    LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
    insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
                     TRI);
    // This interval may span multiple basic blocks.
    // Insert a DBG_VALUE into each one.
    while (Stop > MBBEnd) {
      // Move to the next block.
      Start = MBBEnd;
      if (++MBB == MFEnd)
        break;
      MBBEnd = LIS.getMBBEndIdx(&*MBB);
      LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
      insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
                       TRI);
    }
    LLVM_DEBUG(dbgs() << '\n');
    if (MBB == MFEnd)
      break;

    ++I;
  }
}

void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
  LLVM_DEBUG(dbgs() << "\t" << loc);
  MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();

  LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
  insertDebugLabel(&*MBB, loc, LIS, TII);

  LLVM_DEBUG(dbgs() << '\n');
}

void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
  LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
  if (!MF)
    return;
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  SpillOffsetMap SpillOffsets;
  for (auto &userValue : userValues) {
    LLVM_DEBUG(userValue->print(dbgs(), TRI));
    userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
    userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
  }
  LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
  for (auto &userLabel : userLabels) {
    LLVM_DEBUG(userLabel->print(dbgs(), TRI));
    userLabel->emitDebugLabel(*LIS, *TII);
  }
  EmitDone = true;
}

void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}

bool LiveDebugVariables::doInitialization(Module &M) {
  return Pass::doInitialization(M);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->print(dbgs());
}
#endif